一种具有超低滞回电致应变铁电陶瓷材料及其制备方法与流程

文档序号:14238328阅读:1030来源:国知局
一种具有超低滞回电致应变铁电陶瓷材料及其制备方法与流程

本发明属于铁电陶瓷材料制备技术领域,具体涉及一种具有超低滞回电致应变铁电陶瓷材料及其制备方法。



背景技术:

铁电陶瓷常常被用于高精度驱动器或者位移器中,因为通过施加外加电场,可以产生对应的应变或者位移。这样的一种应变对于块体陶瓷而言常常可以控制在纳米到微米数量级,从而在需要精密控制位移的场合,如高精度位移器,光学器件和电子器件等。

但是,常规的铁电陶瓷在极化后具有压电性,当施加大信号驱动电场的时候,会因为畴壁的移动导致其应变曲线上存在很大的滞回。即增加电场和降低电场的时候产生的应变不相等,这样的一种特性对于基于铁电陶瓷材料的驱动器而言设计上和性能上都存在很大的影响。滞回度(h)往往采用施加电场最大值一半时候的应变差值(δse/2)与最大应变(smax)之间的比值确定,即h=δse/2/smax×100%。对于铁电陶瓷而言,滞回度往往在20~50%之间。另外因为畴壁移动的原因,大的滞回度往往意味在在使用过程中会导致大的能量损耗。而能量的损耗会一起材料温度的上升,从而导致性能的衰退。严重时候会导致性能的彻底丧失。



技术实现要素:

本发明的目的在于提供一种具有超低滞回电致应变铁电陶瓷材料及其制备方法,该方法步骤简单、易于操作、重复性好;该铁电陶瓷材料致密度高,具有超低滞回电致应变特性。

本发明是通过以下技术方案来实现:

本发明公开了一种具有超低滞回电致应变铁电陶瓷材料,该铁电陶瓷材料的化学组成式为:(nb0.85ba0.15)(nb0.85ti0.15-xfex)o3,x=0.01~0.02。

优选地,该铁电陶瓷材料在30~120℃之间,测试电场最大值为60kv/cm时,等效压电常数smax/emax为135~190pm/v,且滞回度在所有温度点均小于10%。

本发明还公开了一种具有超低滞回电致应变铁电陶瓷材料的制备方法,包括以下步骤:

1)按照化学组成式:(nb0.85ba0.15)(nb0.85ti0.15-xfex)o3,x=0.01~0.02,取原料naco3、nb2o5、baco3、tio2和fe2o3,球磨混合均匀,制得混合料,将混合料烘干、研磨、过筛后,于900℃下进行预烧,保温2h,冷却至室温;

2)将步骤1)处理后的产物再次球磨处理,然后烘干、研磨、过80目筛后,加入产物质量5%的聚乙烯醇溶液,混合均匀后,过60~100目筛,得粉料;

3)将粉料静置24h后,压制成型,制得坯体,将坯体于600℃下,保温2h,排除有机物;

4)将步骤3)处理后的坯体于1220℃中烧结,保温4h,随炉自然冷却至室温,制得陶瓷片;

5)将陶瓷片打磨、晾干后在其上下表面涂覆银浆,于600℃下保温处理20min,冷却至室温,制得具有超低滞回电致应变铁电陶瓷材料。

优选地,步骤1)中,球磨是将原料放入球磨罐中,加入球磨溶剂异丙醇和氧化锆球,以250转/分,球磨6h。

优选地,步骤1)中,将混合料在80℃下烘干,研磨过80目筛。

优选地,步骤2)中,球磨是将产物放入球磨罐中,以250转/分,球磨24h,烘干是在80℃下进行。

优选地,步骤2)中,加入的聚乙烯醇溶液的浓度为5%。

优选地,步骤3)中,是将粉料放入直径为8mm的不锈钢模具中,在250mpa压力下压成圆柱状的坯体。

优选地,步骤4)中,是将坯体置于坩埚中,加盖,用同类粉料做埋料埋烧进行烧结。

优选地,步骤5)中,将陶瓷片打磨至厚度为0.8mm。

与现有技术相比,本发明具有以下有益的技术效果:

本发明公开的具有超低滞回电致应变铁电陶瓷材料,设计时通过引入低价态的受主元素掺杂,如用三价的fe取代四价的ti,形成缺陷偶极子对来降低铁电陶瓷中的畴壁移动性,从而在很大程度上降低滞回度。因此本发明通过对0.85nanbo3-0.15batio3这个体系进行掺杂调控,获得超低的应变滞回度(<10%),制得的铁电陶瓷材料化学组成式为:(nb0.85ba0.15)(nb0.85ti0.15-xfex)o3,x=0.01~0.02。该材料具有超低滞回电致应变,可以作为高精度驱动器的核心材料,具有重要的应用价值和经济价值。

进一步地,本发明的铁电陶瓷材料在30~120℃之间,测试电场最大值为60kv/cm时,其等效压电常数smax/emax为135~190pm/v,滞回度在所有温度点均小于10%。

本发明公开的具有超低滞回电致应变铁电陶瓷材料的制备方法,在较低的温度下(烧结温度低1220℃)采用固相反应法制备,工艺步骤简单,易于操作,重复性好,可控性强。

附图说明

图1为实施例1制得的#1样品在30℃~120℃之间的单轴电场作用下的电致应变曲线与温度关系;

图2为实施例2制得的#2样品在30℃~120℃之间的单轴电场作用下的电致应变曲线与温度关系;

图3为实施例1制得的#1样品和实施例2制得的#2样品的等效压电常数smax/emax随温度的变化关系;

图4为实施例1制得的#1样品和实施例2制得的#2样品的滞回度随温度的变化关系。

具体实施方式

下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。

实施例1

一种具有超低滞回电致应变铁电陶瓷材料,该铁电陶瓷材料的化学组成式为:(nb0.85ba0.15)(nb0.85ti0.14fe0.01)o3。简写为nn-1fe,记为#1样品。

上述具有超低滞回电致应变铁电陶瓷材料的制备方法,包括以下步骤:

1)按上述化学组成式配比,称取原料naco3,nb2o5,baco3,tio2和fe2o3,将称取的原料混合后放入球磨罐中,加入球磨溶剂异丙醇和氧化锆球,球磨6小时,球磨转速为250转/分,再将混合料放入烘箱内80℃烘干,在放入研钵内研磨,过80目筛;在马弗炉中于900℃进行预烧,保温2小时,自然冷却到室温,出炉;合成产物(nb0.85ba0.15)(nb0.85ti0.14fe0.01)o3。

2)再次球磨24小时,球磨转速为250转/分。再将混合料放入烘箱内80℃烘干,在放入研钵内研磨,过80目筛

3)将步骤2)烘干的粉料在研钵中研细,过筛,加入质量百分比为5%的聚乙烯醇(pva)溶液,该溶液浓度为5%,混合均匀,过筛取60~100目之间的粉料。

4)将步骤3)中造粒后的粉料静置24小时,再将粉料放入直径为8mm的不锈钢模具中,在250mpa压力下压成圆柱状坯件;

5)将步骤4)中的坯体放入马弗炉中,温度升至600℃,保温2小时,进行有机物排除;

6)将步骤5)中排胶后的坯体放入坩埚中,加盖,用同类粉料做埋料埋烧,在1220℃中烧结,保温4小时,随炉自然冷却至室温;

7)将步骤6)中烧好的陶瓷片打磨至厚度为0.8mm,自然晾干,在其上下表面涂覆银浆,置于炉中升温至600℃,保温20min,自然冷却至室温;测试样品的介电性能和应变性能。

实施例2

一种具有超低滞回电致应变铁电陶瓷材料,该铁电陶瓷材料的化学组成式为:(nb0.85ba0.15)(nb0.85ti0.13fe0.02)o3。简写为nn-2fe,记为#2样品。

上述具有超低滞回电致应变铁电陶瓷材料的制备方法,包括以下步骤:

1)按上述化学组成式配比,称取原料naco3,nb2o5,baco3,tio2和fe2o3,将称取的原料混合后放入球磨罐中,加入球磨溶剂异丙醇和氧化锆球,球磨6小时,球磨转速为250转/分,再将混合料放入烘箱内80℃烘干,在放入研钵内研磨,过80目筛;在马弗炉中于900℃进行预烧,保温2小时,自然冷却到室温,出炉;合成产物(nb0.85ba0.15)(nb0.85ti0.13fe0.02)o3。

2)再次球磨24小时,球磨转速为250转/分。再将混合料放入烘箱内80℃烘干,在放入研钵内研磨,过80目筛

3)将步骤2)烘干的粉料在研钵中研细,过筛,加入质量百分比为5%的聚乙烯醇(pva)溶液,该溶液浓度为5%,混合均匀,过筛取60~100目之间的粉料。

4)将步骤3)中造粒后的粉料静置24小时,再将粉料放入直径为8mm的不锈钢模具中,在250mpa压力下压成圆柱状坯件;

5)将步骤4)中的坯体放入马弗炉中,温度升至600℃,保温2小时,进行有机物排除;

6)将步骤5)中排胶后的坯体放入坩埚中,加盖,用同类粉料做埋料埋烧,在1220℃中烧结,保温4小时,随炉自然冷却至室温;

7)将步骤6)中烧好的陶瓷片打磨至厚度为0.8mm,自然晾干,在其上下表面涂覆银浆,置于炉中升温至600℃,保温20min,自然冷却至室温;测试样品的介电性能和应变性能。

参见图1,为实施例1制得的#1样品在30℃到120℃之间的单轴电致应变曲线随温度的变化关系,其中,测试电场强度60kv/cm,测试频率1hz。从图中可以看出,#1样品随温度的其应变曲线整体滞回度较小,且滞回度随温度的增加有所降低,因此符合高精度应变控制的要求。

参见图2,为实施例2制得的#2样品在30℃到120℃之间的单轴电致应变曲线随温度的变化关系,其中,测试电场强度60kv/cm,测试频率1hz。从图中可以看出,#2样品随温度的其应变曲线整体滞回度较小,且滞回度随温度的增加有所降低,因此符合高精度应变控制的要求。

参见图3,为实施例1制得的#1样品和实施例2制得的#2样品在60kv/cm电场下的等效压电常数smax/emax随温度的变化关系,可以看出,在30℃到120℃之间,#1样品的压电常数为最小为160pm/v,最大为190pm/v。#2样品的压电常数为最小为135pm/v,最大为160pm/v。

参见图4,为实施例1制得的#1样品和实施例2制得的#2样品的应变滞回度随温度的变化关系,在所有温度测试点,其滞回度均小于10%。而#2样品的平均滞回度小于5%。

综上所述,对铁电陶瓷而言,其h的大小也是评估该材料是否适合驱动器的一个重要指标,本发明通过引入低价态的受主元素掺杂,如用三价的fe取代四价的ti,形成缺陷偶极子对来降低铁电陶瓷中的畴壁移动性,从而在很大程度上降低滞回度。基于该思路,对0.85nanbo3-0.15batio3体系进行了掺杂调控,得到一种致密度高,具有超低滞回电致应变的铁电陶瓷。在30℃到120℃之间,测试电场最大值为60kv/cm时,其等效压电常数smax/emax为135到190pm/v,滞回度在所有温度点均小于10%。本发明的成分及工艺步骤简单、易于操作、重复性好。可以应用于对温度稳定性有高要求的高精度驱动器上,具有重大的经济价值。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1