一种熊果酸盐、其制备方法及其晶体的制作方法

文档序号:3567798阅读:359来源:国知局
专利名称:一种熊果酸盐、其制备方法及其晶体的制作方法
技术领域
本发明具体的涉及一种熊果酸盐、其制备方法及其晶体。
背景技术
熊果酸的主要药理作用有其主要药理作用有降血脂、抗动脉粥样硬化、降低血糖、 抗炎及抗病毒、抗氧化、保肝、增强机体免疫功能、抗肿瘤等。上世纪70年代用于临床治疗以来,在高脂血症,脂肪肝,病毒性肝炎及肿瘤等疾病中已经有十分广泛的临床应用。以熊果酸为主要有效成分的泰脂安胶囊已成为目前国内用于治疗高脂血症等的主要中药二类新药。理化性质方面,熊果酸为乌索烷型五环三萜类化合物,其粉末白色结晶性,无臭, 无味,不溶于水。按生物药剂分类系统的分类,该化合物属于低溶解度-高渗透性药物,即 BCS- II类药物。熊果酸的主要问题为水溶性差,其在水中溶解度小于0.001mg/mL,由于水溶性差,口服熊果酸几乎不可被吸收(生物利用度不到)。另外,通过处方前研究表明, 熊果酸容易转化成无定形形式,且有溶剂化物的多晶型存在,在生产工艺上较难控制质量稳定性。提高药物溶解度有很多方法,如通过结构修饰,药剂学方法等。为了改变其生物利用度,目前主要采用的是通过制剂手段来提高其溶解度。在中国专利的检索中,有将熊果酸制成豆磷脂纳米粒冻干粉针(02147711. 6)、氰基丙烯酸酯纳米粒冻干粉针剂、(02147712.4)、熊果酸聚乳酸纳米粒冻干粉针剂(02147713.幻、脂微球制剂(200610020604. 8)、磷脂复合物(200610010228. 4)、滴丸(200610129969. 4 和200310116883. 4)、脂肪乳注射剂(200510114817. 2)等等。然而,通过制剂学手段提高溶解度往往工艺较为复杂,成本较高。而其衍生物和前体药物有化学修饰物氨基醇O00710158384. X)、化学修饰物胺Q00710158385. 4)、化学修饰物氨基酸Q00610047235. 1)、化学修饰物氨基醇Q00610047236. 6)、化学修饰物胺、杂环 (200610047237. 0)、亲水性聚乙二醇支载熊果酸(200710048614. 7)、熊果酸衍生物 (200910027213. 2)、18-去氢乌索酸(03119751. 5)、3 β -琥珀酰基-18-去氢乌索酸二钠盐 (03113998. 1)等。这些衍生物和前体药物则缺乏必要的药理学数据和临床疗效的支持。在不改变结构的基础上,可替代的提高溶解度的方法还有盐型筛选。所谓的盐型筛选,是指将药物和不同的客体分子(酸或碱)反应生成盐,药物与酸碱分子之间主要以离子键形式发生作用。《美国药典》2006版收载的产品中游离形式的药物占44%,以盐的形式存在的药物占56%。盐型不仅可以提高药物的溶解度或溶出度,还可改善药物其他不理想的物理化学或生物药剂学性质,如降低吸湿性、提高物理化学稳定性、改变熔点、改善研磨性能、便于制备纯化、实现缓控释、改善味觉和配伍性、延长药物专利保护期等。然而,国内应用盐型筛选提高熊果酸的溶解度的专利未见报道。本专利经过对熊果酸的一系列盐的合成,包括钠盐,钾盐,哌嗪盐,胆碱盐,钙盐,镁盐,叔丁胺盐,优选了具有良好物理化学性质的哌嗪盐。

发明内容
本发明所要解决的技术问题是为了克服现有的熊果酸中结晶度差,水溶性差,生物利用度低的不足,以及熊果酸盐吸湿性强、不稳定的缺陷,而提供一种熊果酸盐、其制备方法及其晶体。本发明的熊果酸盐不但溶解度和溶出速率好,而且吸湿性低,物理化学稳定性高,结晶工艺可操作性强,具有较高的生物利用度,具有优良的临床应用前景。本发明解决上述技术问题所采用的技术方案之一是一种熊果酸盐,其为熊果酸哌嗪盐,具有以下的化学结构式本发明还涉及一种上述熊果酸哌嗪盐的晶体,该晶体的X-射线粉末衍射图中,辐射源为 CuKa ,在衍射角度 2 θ = 5. 095,5. 649,10. 582,10. 987,11. 881,14. 380,15. 383 度处有主峰;而在 2 θ =13. 019,16. 426,17. 422,19. 519,20. 471,21. 061,22. 265,22. 925, 26. 005度处可有较弱的峰;其中2 θ值误差范围为士0. 3。本发明解决上述技术问题所采用的另一技术方案是一种熊果酸哌嗪盐的制备方法,包括以下步骤在极性溶剂或中等极性溶剂中,将熊果酸与哌嗪进行中和反应,即可。本发明所述的中和反应可采用本领域常规的酸碱中和反应的方法和条件,本发明也对反应原料和反应条件进行了优化,具体如下所述。本发明所述的中和反应中,熊果酸的投料量与哌嗪的投料量的摩尔比较佳的为 1 0.5 1 1.2。反应溶剂的选择根据熊果酸自身的性质,以及成盐后盐的性质来优选。根据熊果酸自身的溶解度,所述的极性溶剂较佳的选自二甲亚砜、二甲基乙酰胺和二甲基甲酰胺中的一种或多种,中等极性溶剂较佳的选自1,4_ 二氧六环和/或四氢呋喃。反应溶剂与熊果酸的体积质量比为10 2(Mml/g,较佳的为10 100ml/g。所述的中和反应较佳的在搅拌下进行,搅拌的速率较佳的为100 lOOOrpm。所述的中和反应的反应时间如本领域中常规的一样,较佳的为以检测反应完全为止,一般为1 M小时;所述的中和反应的反应温度如本领域中常规的一样,较佳的为达到所用反应溶剂沸点以下5 10摄氏度,或用加热回流的方法加热到所用反应溶剂沸点,本发明较佳的为阳 180°C,更佳的为60 170°C。本发明所述的中和反应结束后,反应溶液经过结晶即可获得本发明的熊果酸哌嗪盐的晶体。其中结晶的方法可以是本领域常规的结晶方法,较佳的是溶剂挥发法,反溶剂法,冷却法,反溶剂-冷却法,反溶剂-晶种法,冷却-晶种法或反溶剂-冷却-晶种法。溶剂挥发法一般只适合于初步筛选。反溶剂法,冷却法,反溶剂-冷却法,反溶剂-晶种法,冷却-晶种法和反溶剂-冷却-晶种法,适合在工业界广泛使用。所述的反溶剂法是指在熊果酸盐反应溶液中加入介电常数不一样的反溶剂,使药物盐的结晶析出的方法。对于反溶剂法,溶剂和反溶剂的种类的选择,加入反溶剂的温度, 用量,速率,母液的浓度等都值得详细考察。所使用的反溶剂主要根据溶剂的相容性、极性、 挥发性、沸点来选择。所述的反溶剂法中使用的反溶剂选自水、乙腈、丙酮、异丙醇、乙酸乙酯、甲基乙基酮、甲基叔丁基醚、乙酸异丙酯、环己烷、正己烷、庚烷和戊烷中的一种或多种, 更佳的选自水、乙腈和庚烷中的一种或多种。反溶剂的加入量较佳的是溶剂体积量的1 10倍,更佳的为3 5倍。上述反溶剂法中的各条件可为单独使用该方法时的条件,也可为与其他结晶方法结合使用时采用的条件。所述的冷却法是指将熊果酸盐的反应溶液加热到一定温度,再将该反应溶液以一定速率缓慢冷却,使药物盐的结晶析出的方法。冷却法中,反应溶液温度较佳的可以加热到所用溶剂沸点以下5 10摄氏度,也可用加热回流的方法加热到所用溶剂沸点。较佳的, 冷却到室温或冰浴零度即可。冷却的速率较佳的取值为2 10°C /h,更佳的为3 5°C / h,最佳的为5°C/h。冷却的速率直接影响晶核形成的速率。在一次成核过程中,若冷却速率太快,生成的晶体有可能爆发成核或产生次稳定型和无定形,后者可带来混晶、物理稳定性、化学稳定性发面的问题。因此控制冷却速率极为重要。上述冷却法中的各条件可为单独使用该方法时的条件,也可为与其他结晶方法结合使用时采用的条件。更佳的,混合使用反溶剂法和冷却法,即反溶剂-冷却法。所述的反溶剂-冷却法是指在冷却析晶的某个时点以一定的速率加入反溶剂,以提高或维持一定的过饱和度,从而提高结晶的效率和产率的方法。在产率过低的情况下,冷却析晶的过程中可以加入反溶剂提高过饱和度,从而提高结晶的效率和产率。或者,更佳的,混合使用反溶剂法和晶种法, 即反溶剂-晶种法。所述的反溶剂-晶种法是指在熊果酸盐的反应溶液中加入一定量的一定大小的晶种和介电常数不一样的反溶剂,使药物盐的结晶析出的方法。或者,更佳的,混合使用冷却法和晶种法,即冷却-晶种法。所述的冷却-晶种法是指将熊果酸盐的反应溶液加热到一定温度,再将该溶液以一定速率缓慢冷却,在一定温度下可加入一定量的一定大小的晶种,使药物盐的结晶析出的方法。本发明中,晶种的使用可避免难以控制的一次成核,已经在化工产品的放大实验和生产中被广泛使用。晶种指的是用一定工艺小批量生产的具有某晶型的晶体,经过结晶工艺本身或进一步加工粉碎成一定尺度,用于在结晶放大工艺中使用,以避免一次成核的晶体粒子。所述晶种可用较小或相同规模的合成和结晶工艺获得一定尺寸的同种晶型的晶体,然后用物理或机械的方法粉碎成更小的所需尺寸的晶体,即为晶种。投入晶种的温度、 方式、数量和晶种的大小都应进行详细考察。本发明中,在所述的晶种法中,加入晶种的温度较佳的取值为30 120°C,更佳的是35 100°C ;加入晶种的量可以取值为0. 1 1%, 更佳的是0. 3 0. 7%,所述的百分比是晶种量占熊果酸哌嗪盐理论产量的百分比;加入晶种的粒径较佳的是10 500 μ m,更佳的是20 400 μ m。在结晶的所有过程中,结晶较佳的在搅拌状态下进行的,搅拌速率较佳的是100 lOOOrpm,更佳的是300 700rpm。搅拌速率在小试和放大实验中可以通过数学方法转化。更佳的,混合使用反溶剂法、冷却法和晶种法,即反溶剂-冷却-晶种法。所述的反溶剂-冷却-晶种法是指冷却析晶的某个时点投入晶种,以诱使结晶的发生,并在冷却析晶的另一时点以一定的速率加入反溶剂,以提高或维持一定的过饱和度,从而提高结晶的效率和产率的方法。本发明中,所述的晶体析出后按常规的方法过滤,洗涤,干燥即得本发明的晶体形熊果酸哌嗪盐。本发明所用的原料或试剂除特别说明之外,均市售可得。本发明的积极进步效果在于相比于现有技术,本发明的熊果酸哌嗪盐不但溶解度和溶出速率好,而且吸湿性低,稳定性高,具有较高的生物利用度,具有优良的临床应用前景。


图1是实施例1制得的熊果酸哌嗪盐的晶体的偏光显微镜图。图2是实施例1制得的熊果酸哌嗪盐的晶体的DSC/TGA图。图3是实施例1制得的熊果酸哌嗪盐的晶体的X-射线粉末衍射图。图4是实施例1制得的熊果酸哌嗪盐的晶体的的动态吸湿等温线曲线图。图5是实施例1制得的熊果酸哌嗪盐的熊果酸哌嗪盐的晶体的溶解度(人工模拟胃液,空腹下人工模拟肠液,进食后的人工模拟肠液见中国药典或美国药典)。
具体实施例方式下面用实施例来进一步说明本发明,但本发明并不受其限制。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。实施例中所述的“室温”是指进行试验的操作间的温度,一般为5 30°C。实施例1熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入4L1,4_二氧六环,75°C加热至溶解,加入哌嗪的1,4-二氧六环溶液(哌嗪9. 43g,即0. 1095mol, 1,4_ 二氧六环0. 438L),恒温,IOOrpm搅拌2h,以5°C /h的冷却速率降至室温,析出晶体,过滤,用 1,4_ 二氧六环洗涤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为 85%。实施例2熊果酸哌嗪盐的合成将IOOg(0. 219mol)熊果酸投入反应釜中,加入4L 二甲基乙酰胺,75°C加热至溶解,加入哌嗪的乙酸乙酯溶液(哌嗪9. 43g,即0. 1095mol,乙酸乙酯 0. 438L),恒温,300rpm搅拌15min,以2°C /h的冷却速率降至室温,析出晶体,过滤,用水饱和乙酸乙酯洗涤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为 91%。所得晶体粒径为500 μ m,用球磨机、万能粉碎机、气流粉碎机、锤击式粉碎机或冲击式粉碎机等粉碎成 ο μ m、30 μ m、50 μ m、100 μ m、300 μ m等不同粒径晶种,供以下实施例使用。实施例3熊果酸哌嗪盐的合成将IOOg(0. 219mol)熊果酸投入反应釜中,加入4L 二甲亚砜,180°C加热至溶解,加入哌嗪的异丙醇溶液(哌嗪9. 43g,即0. 1095mol,异丙醇0. 438L), 恒温,200rpm搅拌15min,以5 °C /h的冷却速率降至120°C,加入粒径在10 μ m的晶种 (0. 1094g,均勻混悬在IOOmL水中,该晶种占熊果酸哌嗪盐理论产量的0. 1 % ),以5°C /h的冷却速率降至4°C,析出晶体,过滤,用异丙醇洗涤45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为93%。实施例4熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入20L 二甲基甲酰胺,70°C加热至溶解,加入哌嗪的乙酸乙酯溶液(哌嗪9. 43g,即0. 1095mol,乙酸乙酯 0. 438L),恒温,400rpm搅拌15min,以3°C /h的冷却速率降至室温,析出晶体,过滤,用乙酸乙酯洗涤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为94%。实施例5熊果酸哌嗪盐的合成将IOOg(0. 219mol)熊果酸投入反应釜中,加入IOL四氢呋喃,55°C加热至溶解,加入哌嗪的甲基乙基酮溶液(哌嗪9. 43g,即0. 1095mol,甲基乙基酮 0. 438L),恒温,500rpm搅拌15min,以5°C /h的冷却速率降至55°C,加入粒径在50 μ m的晶种(0. 4g,均勻混悬在IOOmL庚烷中,该晶种占熊果酸哌嗪盐理论产量的0. 3655% ),缓慢加入55°C的20L庚烷,以7。C /h的冷却速率降至4°C,析出晶体,过滤,用甲基乙基酮洗涤, 45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为94%。实施例6熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入20L1,4_ 二氧六环,60°C加热至溶解,加入哌嗪的1,4_ 二氧六环溶液(哌嗪22. 63g,即0. 263mol,l, 4-二氧六环0. 438L),恒温,600rpm搅拌15min,以4°C /h的冷却速率降至45°C,加入粒径在 IOOym的晶种(1. 0g,均勻混悬在100mLl,4-二氧六环中,该晶种占熊果酸哌嗪盐理论产量的0. 9138% ),缓慢加入45°C的60L乙腈,以5°C /h的冷却速率降至4°C,析出晶体,过滤, 用乙腈洗涤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为93%。实施例7熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入20L 二甲亚砜,170°C加热至溶解,加入哌嗪的乙醇溶液(哌嗪22. 63g,即0. 263mol,乙醇0. 438L),恒温,700rpm搅拌15min,以6°C /h的冷却速率降至100°C,加入粒径在300 μ m的晶种(0. 6g, 均勻混悬在50mL乙醇中,该晶种占熊果酸哌嗪盐理论产量的0. 5483% ),缓慢加入55°C的 60L水,以5°C /h的冷却速率降至4°C,析出晶体,过滤,用水洗涤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为95%。实施例8熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入3L1,4_ 二氧六环,750C加热至溶解,加入哌嗪的1,4- 二氧六环溶液(哌嗪22. 63g,即0. 263mol, 1,4_ 二氧六环0. 438L),恒温,800rpm搅拌15min,以7°C /h的冷却速率降至45°C,加入30L正己烷,以5 °C /h的冷却速率降至4°C,析出晶体,过滤,用正己烷洗涤,45 °C真空干燥24h,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为90%。实施例9熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入3L1,4_ 二氧六环,750C加热至溶解,加入哌嗪的1,4- 二氧六环溶液(哌嗪22. 63g,即0. 263mol, 1,4_ 二氧六环0. 438L),恒温,800rpm搅拌15min,以7°C /h的冷却速率降至45°C,加入30L环己烷,以5°C /h的冷却速率降至4°C,析出晶体,过滤,用环己烷洗涤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为91%。实施例10熊果酸哌嗪盐的合成将100g(0. 219mol)熊果酸投入反应釜中,加入IL四氢呋喃,60°C加热至溶解,加入哌嗪的四氢呋喃溶液(哌嗪22. 63g,即0. 263mol,四氢呋喃 0. 438L),恒温,900rpm搅拌15min,缓慢加入60°C的20L乙酸乙酯,以8°C /h的冷却速率降至4°C,析出晶体,过滤,用庚烷洗涤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为90%。实施例11熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入20L 二甲基乙酰胺,75°C加热至溶解,加入哌嗪的乙酸异丙酯溶液(哌嗪22. 63g,即0. 263mol,乙酸异丙酯0. 438L),恒温,IOOOrpm搅拌15min,加入以9°C /h的冷却速率降至55°C,加入粒径在 300 μ m的晶种(0. 9g,均勻混悬在IOOmL乙酸异丙酯中,该晶种占熊果酸哌嗪盐理论产量的 0. 8224% ),以9°C /h的冷却速率降至4°C,析出晶体,过滤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为93%。实施例12熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入15L 二甲基甲酰胺,55°C加热至溶解,加入哌嗪的丙酮溶液(哌嗪22. 63g,即0. ^3mol,丙酮0. 438L), 恒温,500rpm搅拌15min,以10°C /h的冷却速率降至45°C,加入粒径在300 μ m的晶种 (1. 0g,均勻混悬在IOOmL丙酮中,该晶种占熊果酸哌嗪盐理论产量的0. 9138% ),加入45°C 的45L丙酮,以10°C /h的冷却速率降至4°C,析出晶体,过滤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为85%。实施例13熊果酸哌嗪盐的合成将100g(0. 219mol)熊果酸投入反应釜中,加入20L四氢呋喃,55 °C加热至溶解,加入哌嗪的四氢呋喃溶液(哌嗪22. 63g,即0. 263mol,四氢呋喃 0. 438L),恒温,500rpm搅拌15min,以5°C /h的冷却速率降至30°C,加入粒径在500 μ m的晶种(0. 5g,均勻混悬在IOOmL四氢呋喃中,该晶种占熊果酸哌嗪盐理论产量的0. 4569% ), 加入30°C的60L甲基乙基酮,以5°C /h的冷却速率降至4°C,析出晶体,过滤,45°C真空干燥 Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为87%。实施例14熊果酸哌嗪盐的合成将100g(0. 219mol)熊果酸投入反应釜中,加入4L1,4_ 二氧六环,75°C加热至溶解,加入哌嗪的异丙醇溶液(哌嗪22.63g,即0. ^3mol,异丙醇 0. 438L),恒温,500rpm搅拌15min,以5°C /h的冷却速率降至30°C,加入粒径在30 μ m的晶种(1.094g,均勻混悬在IOOmL异丙醇中,该晶种占熊果酸哌嗪盐理论产量的),加入300C的60L异丙醇,以5°C /h的冷却速率降至4°C,析出晶体,过滤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为93%。实施例15熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入IOLl,4_ 二氧六环,室温搅拌至溶解,加入哌嗪的异丙醇溶液(哌嗪14. 15g,即0. 164mol,异丙醇 0. 438L),恒温,500rpm搅拌15min,加入粒径在30 μ m的晶种(1. 094g,均勻混悬在IOOmL异丙醇中,该晶种占熊果酸哌嗪盐理论产量的),加入30°C的15L乙酸异丙酯和15L甲基叔丁基醚,析出晶体,过滤,45°C真空干燥Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为82%。实施例16熊果酸哌嗪盐的合成将IOOg (0. 219mol)熊果酸投入反应釜中,加入IOLl,4_ 二氧六环,室温搅拌至溶解,加入哌嗪的异丙醇溶液(哌嗪18. 86g,即0. 219mol,异丙醇 0. 438L),恒温,500rpm搅拌15min,加入30°C的30L丙酮,析出晶体,过滤,45°C真空干燥 Mh,得白色固体,即熊果酸哌嗪盐。熊果酸哌嗪盐产率为78%。下面通过试验例来检验上述制备的熊果酸哌嗪盐的物理化学性质,进一步说明本发明的有益效果。试验实施例1偏光显微镜法对实施例1制备的结晶,应用偏光显微镜进行检测,目镜放大10倍,物镜放大20 倍,检测结果见图1。从图1可见晶体具有明显双折射现象;其晶癖为针状;其粒径在20 ΙΟΟμ 范围内。试验实施例2差动热分析法与热重分析对实施例1制备的结晶,进行差示扫描量热(differential scanningcalorimeter,DSC)与重分t/ (thermogravimetric analysis, TGA), 11/]^热检测条件是升温速率为5°C /min ;升温范围为25 350°C;氮气流速50mL/min ;热重分析检测条件是升温速率为5°C /min ;升温范围为25 350°C;天平氮气流速40mL/min ;样本氮气流速60mL/min ;检测结果见图2。从图2可见晶体失去哌嗪温度为212. ^°C,加热到220°C时,熊果酸哌嗪盐失去16. 63%重量;失去哌嗪后,熊果酸于mi. 35°C熔融降解。试验实施例3X-射线粉末衍射法对实施例1制备的结晶,进行X-射线粉末衍射检测,检测条件是X-射线源 CuK(波长为1.54056A );工作电压40KV ;工作电流强度40mA ;检测器=LynxEye检测器; 扫描角度4 40° 0-让讨3);步长值0.05° ;扫描速度1秒/步长,检测结果见图3。 从图3可见晶体特征X-射线粉末衍射花样在2-theta角2 θ = 5. 095,5. 649,10. 582, 10. 987,11. 881,14. 380,15. 383 度处有主峰;而在 2 θ = 13. 019,16. 426,17. 422,19. 519, 20. 471,21. 061,26. 005度处可有较弱的峰。试验实施例4吸湿性测定法对实施例1制备的结晶,测定吸湿性,检测步骤和条件如下动态水份吸湿仪(DVS Advantage, Surface Measurement System Ltd.);实验温度25°C ;湿度循环范围0% 的相对湿度到95%的相对湿度;步长值5%的相对湿度;增重平衡标准5分钟内重量变化小于0. 01% ;最长平衡时间120分钟。检测结果见图4。从图4可见晶体在0%的相对湿度到95%的相对湿度之间增重1. 544%,熊果酸哌嗪盐具有低吸湿性的优点。
试验实施例5溶解度测定法对实施例1制备的结晶,测定溶解度,检测步骤或条件具体如下分别精密称取 IOmg化合物于不同小瓶中,加入人工模拟胃液,空腹下人工模拟肠液,进食后的人工模拟肠液(见中国药典或美国药典),平衡至溶解度不再发生变化,HPLC测定药物浓度,检测结果见图5。从图5可见熊果酸在人工模拟胃液,空腹下人工模拟肠液,进食后的人工模拟肠液中溶解度分别为0. 034,0. 130和0. 159mg/mL ;熊果酸哌嗪盐在人工模拟胃液,空腹下人工模拟肠液,进食后的人工模拟肠液中溶解度分别为0. 0001,0. 108,0. 712mg/mL ;可知,在进食后的人工模拟肠液中熊果酸哌嗪盐溶解度相比于熊果酸有明显改善。试验实施例6反离子测定法将实施例1制备的熊果酸哌嗪盐结晶用高效液相方法进行定量,实验方法为 Waters高效液相仪06954998),检测器为蒸发光散射,蒸发管温度为50°C,雾化气压力为 3. 4bar,液相柱为 YMC 的氰基柱(5 μ m,4. 6 X 250mm),SN 号:042578321 ;流动相为 3% (ν/ν) 硝酸的水乙腈(5 95);进样体积为5yL,柱温为30°C;流动相流速lmL/min ;单针时间 IOmin0用外标法定量得熊果酸哌嗪盐中含有哌嗪为8. 6 % (wt);其理论含量为8. 633% (wt)。该实验证实熊果酸哌嗪盐含有1分子的熊果酸和0. 5分子的哌嗪。对比实施例按照与试验实施例4同样的条件,对其他几类熊果酸盐的吸湿性进行测定,发现钠盐、钾盐(75%相对湿度吸湿10-15% )、胆碱盐(75%相对湿度吸湿6-10% )、钙盐(75% 相对湿度吸湿2-5% )、镁盐(75%相对湿度吸湿2-5% ),容易吸湿;而叔丁胺盐(75%相对湿度吸湿0. 6%左右),虽然不吸湿,但是溶解度没有明显改善(人工模拟胃肠液中溶解度在 0. 007-0. 095mg/mL 之间)。
权利要求
1. 一种熊果酸哌嗪盐,具有以下的化学结构式
2.一种如权利要求1所述的熊果酸哌嗪盐的晶体,其特征在于,该晶体的X-射线粉末衍射图中,辐射源为CuK α工,在衍射角度26= 5. 095,5. 649,10. 582,10. 987,11. 881, 14. 380,15. 383 度处有主峰;而在 2 θ = 13. 019,16. 426,17. 422,19. 519,20. 471,21. 061, 22. 265,22. 925,26. 005度处有较弱的峰;其中2 θ值误差范围为士0.3。
3.—种如权利要求1所述的熊果酸哌嗪盐的制备方法,其特征在于包括以下步骤在极性溶剂或中等极性溶剂中,将熊果酸与哌嗪进行中和反应,即可。
4.如权利要求3所述的制备方法,其特征在于,所述的熊果酸的投料量与哌嗪的投料量的摩尔比为1 0. 5 1 1. 2。
5.如权利要求3所述的制备方法,其特征在于,所述的极性溶剂选自二甲亚砜、二甲基乙酰胺和二甲基甲酰胺中的一种或多种,所述的中等极性溶剂选自1,4_ 二氧六环和/或四氢呋喃。
6.如权利要求3所述的制备方法,其特征在于,反应溶剂与熊果酸的体积质量比为 10 204ml/g。
7.如权利要求3所述的制备方法,其特征在于,所述的中和反应在搅拌下进行,搅拌的速率为100 IOOOrpm0
8.如权利要求3所述的制备方法,其特征在于,所述的中和反应的反应温度为55 180 "C。
9.如权利要求3所述的制备方法,其特征在于,所述的中和反应结束后,反应溶液经过结晶即可获得晶体形的熊果酸哌嗪盐,其中结晶的方法是溶剂挥发法,反溶剂法,冷却法, 反溶剂-冷却法,反溶剂-晶种法,冷却-晶种法或反溶剂-冷却-晶种法。
10.如权利要求9所述的制备方法,其特征在于,所述的反溶剂法中使用的反溶剂选自水、乙腈、丙酮、异丙醇、乙酸乙酯、甲基乙基酮、甲基叔丁基醚、乙酸异丙酯、环己烷、正己烷、庚烷和戊烷中的一种或多种,反溶剂的加入量是溶剂体积量的1 10倍。
11.如权利要求9所述的制备方法,其特征在于,所述的冷却法中,反应溶液的冷却的速率为2 10°C /h,较佳的为冷却的速率5°C /h。
12.如权利要求9所述的制备方法,其特征在于,所述的晶种法中,加入晶种的温度为 30 120°C ;加入晶种的量为0. 1 1%,所述的百分比是晶种量占熊果酸哌嗪盐理论产量的百分比;加入晶种的粒径是10 500 μ m。
全文摘要
本发明公开了一种熊果酸盐、其制备方法及其晶体。本发明的熊果酸盐为熊果酸哌嗪盐,具有以下的化学结构式。本发明的熊果酸盐不但溶解度和溶出速率好,而且吸湿性低,物理化学稳定性高,结晶工艺可操作性强,具有较高的生物利用度,具有优良的临床应用前景。优良临床应用前景的熊果酸药用盐的形式。
文档编号C07D295/027GK102234304SQ201010166510
公开日2011年11月9日 申请日期2010年4月29日 优先权日2010年4月29日
发明者张志明, 施斌 申请人:上海开拓者医药发展有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1