一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法

文档序号:3477949阅读:292来源:国知局
一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法
【专利摘要】本发明公开了一种负载型三氟甲磺酸铜催化剂及其制备方法以及环己酮乙二醇缩酮的制备方法,其中,该催化剂包括载体以及负载在所述载体上的三氟甲磺酸铜,所述载体为球形介孔二氧化硅,且以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为10-90重量%,所述载体的含量为10-90重量%;且所述载体的平均粒子直径为3-20微米,比表面积为1000-2000平方米/克,最可几孔径为1-3纳米,孔壁厚度为1.5-2.3纳米。本发明的催化剂中三氟甲磺酸铜负载在特定的球形介孔二氧化硅载体上,该催化剂催化缩酮反应的活性较高,而且重复使用时该催化剂催化缩酮反应的活性仍然较高,使得该催化剂被回收并循环再利用。
【专利说明】一种负载型三氟甲磺酸铜催化剂及其制备方法和应用以及环己酮乙二醇缩酮的制备方法【技术领域】
[0001]本发明涉及一种负载型三氟甲磺酸铜催化剂及其制备方法,还涉及使用该催化剂在缩酮合成中的应用,以及一种环己酮乙二醇缩酮的制备方法。
【背景技术】
[0002]1992 年 Mobile 公司合成出介孔材料(Beck J S, Vartuli J C,Roth W J, etal.J.Am.Chem.Soc.,1992,114(27): 10834-10843),该介孔材料具有高的比表面,规整的孔道结构以及窄的孔径分布,使得介孔材料在催化、分离、医药等领域的应用得到了很大的关注;1998年赵东元等人合成出一种新型材料-介孔材料SBA-15 (D.Y.Zhao, J.L.Feng, Q.S.Huo, et al Science 279 (1998) 548-550),该材料具有高度有序的立方单晶介孔材料孔径(6-30nm)、孔体积大(1.0cm3/g )、较厚的孔壁(4_6nm)保持的高机械强度以及良好的催化吸附性能;赵东元、余承忠、余永豪发明一种介孔分子筛载体材料的制备方法(CN1341553A),该介孔材料作为多相反应催化剂载体,容易实现催化剂与产物的分离(Wight, A.P.; Davis, Μ.Ε.Chem.Rev.2002, 102, 3589 ;De Vos, D.E.; Dams, M.; Sels, B.F.; Jacobs, P.A.Chem.Rev.2002, 102, 3615.)。然而目前常用的有序介孔材料SBA-15具有较强的吸水、吸潮能力,棒长度接近5 μ m,并且棒与棒之间存在粘连,在催化反应过程中不利于物料在介孔孔道内传输,这将进一步加剧有序介孔材料的团聚,给有序介孔材料的存储、输运、后加工及应用带来不便。
[0003]随着化学工业的迅速发展,对缩酮品种及需求量不断增加。缩酮是一类可用于有机化合物的羰基保护或制药工业的中间体,甚至用作特殊反应溶剂。缩酮的合成一般是在强酸催化下,由酮与醇类合成的,所用的催化剂有硫酸、磷酸、氯化氢气体、对甲基苯磺酸,其优点是催化剂价廉易得。但是,反应结束后催化剂与产物的分离需进行中和和水洗等过程,不仅工艺复杂还产生废水污染环境,随着人民生活水平的提高,对环境保护提出了越来越高地要求;并且质子酸对设备具有较强的腐蚀作用。
[0004]因此,开发出一种新型的用于合成缩酮的催化剂成为迫切需要解决的问题。

【发明内容】

[0005]本发明的目的在于克服现有用于催化合成缩酮的催化剂存在的对设备腐蚀严重、工艺复杂等缺点,提供一种新型的用于合成缩酮的催化剂以及缩酮的制备方法。
[0006]本发明提供了一种负载型三氟甲磺酸铜催化剂,其中,该催化剂包括球形介孔二氧化硅载体以及负载在所述球形介孔二氧化硅载体上的三氟甲磺酸铜,以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为10-90重量%,所述球形介孔二氧化硅载体的含量为10-90重量% ;且所述球形介孔二 氧化硅载体的平均粒子直径为3-20微米,比表面积为1000-2000平方米/克,最可几孔径为1.0-3.0纳米,孔壁厚度为1.5-2.3纳米。
[0007]本发明还提供了一种负载型三氟甲磺酸铜催化剂的制备方法,其中,该方法包括:将所述球形介孔二氧化硅载体与三氟甲磺酸铜一起球磨,使三氟甲磺酸铜负载在所述球形介孔二氧化硅载体上,以所述球形介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为10-90重量%,所述球形介孔二氧化硅载体的用量为10-90重量% ;且所述球形介孔二氧化硅载体的平均粒子直径为3-20微米,比表面积为1000-2000平方米/克,最可几孔径为1-3纳米,孔壁厚度为1.5-2.3纳米。
[0008]此外,本发明还提供了所述催化剂在缩酮反应中的应用。
[0009]还有,本发明还提供了一种环己酮乙二醇缩酮的制备方法,其中,该方法包括:在催化剂的存在下,在缩酮反应的条件下,使环己酮和乙二醇接触,以得到缩酮,其中,所述催化剂为本发明提供的负载型三氟甲磺酸铜催化剂。
[0010]本发明的催化剂中三氟甲磺酸铜负载在特定的球形介孔二氧化硅载体上,一方面,该催化剂催化缩酮反应的活性较高,而且重复使用时该催化剂催化缩酮反应的活性仍然较高,使得该催化剂被回收并循环再利用。另一方面还由于将具有腐蚀性的三氟甲磺酸铜负载到特定的球形介孔二氧化硅载体上,防止了设备腐蚀,因此该负载型三氟甲磺酸铜催化剂是一种绿色环保的催化剂。
[0011]本发明中,通过球磨法将三氟甲磺酸铜负载于特定的球形介孔二氧化硅载体上,整个球磨过程中未引入溶剂,过程简便易行,球磨过程后所得催化剂亦保持球形,且使用这种催化剂来催化环己酮和乙二醇的缩酮反应时,催化剂可以经过回收而反复使用,并且本发明提供的负载型三氟甲磺酸铜催化剂能够减少副反应,提高产品纯度,不腐蚀设备,有利于环保。
【专利附图】

【附图说明】
[0012]图1是X-射线衍射图谱,其中,a为球形介孔二氧化硅载体(JKQ)的XRD谱图、b为通过球磨法负载三氟甲磺酸铜的球形介孔二氧化硅(JKQ-Cu(OTf)2)的XRD谱图,横坐标为2Θ,纵坐标为强度。
[0013]图2是TEM透射电镜图,其中,a为球形介孔二氧化硅载体(JKQ)的孔结构示意图、b为通过球磨法负载三氟甲磺酸铜的球形介孔二氧化硅(JKQ-Cu(OTf)2)的孔结构示意图。
[0014]图3是SEM扫描电镜图,其中,a为球形介孔二氧化硅载体(JKQ)的微观形貌图,b为通过球磨法负载了三氟甲磺酸铜的球形介孔二氧化硅(JKQ-Cu(OTf)2)的微观形貌图。
[0015]图4是SEM扫描电镜图,其中,a为棒状介孔材料SBA-15的微观形貌图,b为通过球磨法制备的负载三氟甲磺酸铜的棒状介孔材料SBA-15的微观形貌图。
【具体实施方式】
[0016]本发明提供了一种负载在所述球形介孔二氧化硅载体上的三氟甲磺酸铜,其中,该催化剂包括球形介孔二氧化硅载体以及负载在所述球形介孔二氧化硅载体上的三氟甲磺酸铜,以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为10-90重量%,所述球形介孔二氧化硅载体的含量为10-90重量%,更优选情况下,以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为30-60重量%,所述球形介孔二氧化硅载体的含量为40-70重量% ;且所述球形介孔二氧化硅载体的平均粒子直径为3-20微米,优选为10-20微米;t匕表面积为1000-2000平方米/克,优选为1100-1500平方米/克,更优选为1200平方米/克;孔体积可以为0.5-1.5毫升/克,优选为0.6-1.0毫升/克,最优选为0.7毫升/克;最可几孔径为1.0-3.0纳米,优选为1.5-2.5纳米,更优选为1.9纳米;孔壁厚度为1.5-2.3纳米,优选为1.7-2.1纳米,更优选为1.9纳米,在这种情况下,不仅可以获得令人满意的催化效果,而且还可以降低成本。
[0017]根据本发明,所述负载型三氟甲磺酸铜催化剂的比表面积可以为90-130平方米/克,优选为100-120平方米/克,更优选为111平方米/克;孔体积可以为0.01-0.05毫升/克,优选为0.01-0.03毫升/克,更优选为0.02毫升/克;最可几孔径可以为1.0-3.0纳米,优选为1.5-2.5纳米,更优选为2.0纳米;孔壁厚度为1.0-5.0纳米,优选为1.0-4.0纳米,更优选为3.3纳米。
[0018]根据本发明,所述的载体为球形介孔二氧化硅,所述球形介孔二氧化硅载体由包括以下步骤的方法制得:
[0019](I)将模板剂和盐酸混合至固体物充分溶解;
[0020](2)将步骤(I)所得溶液与硅酸酯在温度为25_60°C,机械搅拌速率为100_400r/min下搅拌1-100小时后静置5-100小时;
[0021](3)将步骤(2)所得产物在晶化条件下晶化;
[0022](4)将步骤(3)所得晶化产物过滤,并将过滤所得固体用去离子水洗涤、干燥;
[0023](5)将步骤(4)干燥所得晶化产物加热,脱除模板剂;
[0024]所述模板剂为十六烷基三甲基溴化铵和聚乙二醇辛基苯基醚(又名曲拉通X-100)。
[0025]根据本发明,所述硅酸酯、聚乙二醇辛基苯基醚、十六烷基三甲基溴化铵、酸性水溶液中的酸和酸性水溶液中的水的摩尔比可以在一定范围内变化,优选地,所述硅酸酯、聚乙二醇辛基苯基醚(曲拉通X-100)、十六烷基三甲基溴化铵、酸性水溶液中的酸和水的摩尔比为1:0.1-0.5:0.1-0.6:5-50:100-500,更优选地,所述硅酸酯、聚乙二醇辛基苯基醚(曲拉通X-100)、十六烷基三甲基溴化铵、酸性水溶液中的酸和水的摩尔比为1:0.2-0.5:0.2-0.4:10-20:200-300,最优选地,所述硅酸酯、聚乙二醇辛基苯基醚(曲拉通X-100)、十六烷基三甲基溴化铵、酸性水溶液中的酸和水的摩尔比为1:0.4:0.217:13:244。其中,十六烷基三甲基溴化铵和聚乙二醇辛基苯基醚的摩尔数根据十六烷基三甲基溴化铵和聚乙二醇辛基苯基醚的平均分子量计算得到。
[0026]优选情况下,,所述硅酸酯可以为正硅酸乙酯。
[0027]根据本发明,所述酸性水溶液可以为任何酸性水溶液,优选为无机酸性水溶液,进一步优选为氯化氢水溶液。
[0028]优选情况下,所述接触的条件包括温度可以为25_60°C,优选为30_50°C,最优选为40°C。时间可以为10-60分钟,最优选为15分钟。所述接触优选在搅拌下进行。
[0029]优选情况下,所述晶化的条件包括温度可以为25_60°C,优选为30_50°C,最优选为40°C。时间可以为10-40小时,优选为20-30小时,最优选为24小时。所述接触和晶化的温度可以相同或不同,只要在上述范围内即可。
[0030]根据本发明,所述脱除模板剂的方法可以为煅烧法,所述煅烧法的条件包括,温度可以为500-700°C,优选为600°C。时间可以为10-40小时,优选为20-30小时,最优选为24小时。[0031]所述模板剂可以是本领域常规使用的例如十六烷基三甲基溴化铵和聚乙二醇辛基苯基醚模板剂。
[0032]本发明还提供了一种催化剂的制备方法,其中,该方法包括:将所述球形介孔二氧化硅载体与三氟甲磺酸铜一起在密封球磨罐中球磨,使三氟甲磺酸铜负载在所述球形介孔二氧化硅载体上,以所述球形介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为10-90重量%,所述球形介孔二氧化硅载体的用量为10-90重量%,更优选地,以所述球形介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为30-60重量%,所述球形介孔二氧化娃载体的用量为40-70重量% ;且所述球形介孔二氧化硅载体的平均粒子直径为3-20微米,优选为10-20微米;比表面积为1000-2000平方米/克,优选为1100-1500平方米/克,更优选为1200平方米/克;孔体积为0.5-1.5晕升/克,优选为0.6-1.0晕升/克,更优选为0.7晕升/克;最可几孔径为1.0-3.0纳米,优选为1.5-2.5纳米,更优选为1.9纳米;孔壁厚度为1.5-2.3纳米,优选为
1.7-2.1纳米,更优选为1.9纳米。
[0033]对研磨的条件和具体操作方法没有特别的限定,以不破坏或基本不破坏载体结构并使三氟甲磺酸铜进入载体孔道内为准。本领域技术人员可以根据上述原则选择各种合适的条件来实施本发明。
[0034]根据本发明的一种实施方式,所述负载型三氟甲磺酸铜催化剂的制备方法包括:将球形介孔二氧化硅和三氟甲磺酸铜加入到球磨机的球磨罐中,球磨罐内壁为聚四氟乙烯内衬,磨球的直径为2-3mm,转速为400r/min。在球磨罐内温度为15_100°C下连续研磨
0.1-100小时,之后取出固体粉末,即得到负载三氟甲磺酸铜的球形介孔二氧化硅。磨球的数量取决于球磨罐的大小,对于大小为50-150ml的球磨罐,可以使用I个磨球。所述磨球的材质可以是玛瑙、聚四氟乙烯,优选为聚四氟乙烯。
[0035]根据本发明的一种【具体实施方式】,所述负载型三氟甲磺酸铜催化剂的制备方法包括以下步骤:
[0036]第I步,将十六烷基三甲基溴化铵(CTAB)和聚乙二醇辛基苯基醚(曲拉通X-100),加入到盐酸中,混合至固体物充分溶解;
[0037]第2步,在上一步所得溶液中加入硅酸酯,按摩尔投料比计,
[0038]硅酸酯:聚乙二醇辛基苯基醚(曲拉通X-100):十六烷基三甲基溴化铵:氯化氢:水=1:0.1-0.5:0.1-0.6:5-50:100_500,优选为 I:0.2-0.5:0.2-0.4: 10-20:200-300,特别优选为1:0.4:0.217:13:244。其中,十六烷基三甲基溴化铵和聚乙二醇辛基苯基醚的摩尔数根据十六烷基三甲基溴化铵和聚乙二醇辛基苯基醚的平均分子量计算得到,
[0039]混合至固体物充分溶解;
[0040]第3步,将上步所得溶液置于密闭反应容器中,在25_60°C温度下晶化10小时-40小时;
[0041]第4步,将晶化后产物过滤(优选用去离子水稀释后)、将过滤所得固体用去离子水洗涤、干燥,得到球形介孔材料原粉;
[0042]第5步,将所得球形介孔材料原粉在500-700°C煅烧10_40小时,脱除模板剂,得到脱除模板剂的球形介孔二氧化硅;
[0043]第6步,将上步所得脱除模板剂的球形介孔二氧化硅和三氟甲磺酸铜加入到球磨机的球磨罐中,在转速为300-500r/min下在球磨罐内温度为15_100°C下连续研磨0.1-100小时,以所述球形介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为10-90重量%,所述球形介孔二氧化娃载体的用量为10-90重量% ;优选为所述三氟甲磺酸铜的用量为30-60重量%,所述球形介孔二氧化娃载体的用量为40-70重量% ;之后取出固体粉末,即得到负载三氟甲磺酸铜的球形介孔二氧化硅。
[0044]所述模板剂可以是本领域常规使用的例如十六烷基三甲基溴化铵和聚乙二醇辛基苯基醚模板剂。
[0045]所述晶化和脱除模板剂的方法和条件已经为本领域技术人员公知,例如,所述晶化条件包括:温度可以为25-60°C,优选为30-50°C,最优选为40°C。时间可以为10-40小时,优选为20-30小时,最优选为24小时;除模板剂的温度可以为500-700°C,优选为6000C ο时间可以为10-40小时,优选为20-30小时,最优选为24小时。
[0046]此外,本发明还提供了所述催化剂在缩酮反应中的应用。
[0047]还有,本发明还提供了一种缩酮的制备方法,其中,该方法包括:在催化剂的存在下,在缩酮反应的条件下,使环己酮和乙二醇接触,以得到缩酮,其中,所述催化剂为本发明提供的负载型三氟甲磺酸铜催化剂。
[0048]根据本发明,在缩酮反应中,环己酮和乙二醇的摩尔比可以在很大范围内改变,例如,环己酮和乙二醇的摩尔比可以为1:0.1-0.2,所述负载型三氟甲磺酸铜催化剂的用量没有特别的限制,本领域技术人员可以根据反应的需要进行适当的调整,但优选情况下,相对于100重量份的环己酮,所述催化剂的用量可以为1-15重量份,更优选为2-14重量份。
[0049]本发明中,所述缩酮反应的条件为本领域技术人员所公知,例如,所述缩酮反应的条件可以包括:回流反应条件下,反应的时间为1-10小时,优选地,反应的时间可以为2-8小时。
[0050]根据本发明,在缩酮反应结束后,可以对最终的反应混合物进行离心分离,将离心得到的固相物在25-200°C下真空干燥1-24小时,优选在50_120°C下真空干燥6_10小时,可以得到回收的催化剂。
[0051]以下结合实施例对本发明进行详细的描述。
[0052]以下实施例中,X射线衍射分析在购自德国Bruker AXS公司的型号为D8 Advance的X射线衍射仪上进行;透射电镜分析在购自荷兰FEI公司的型号为Tecnai 20的透射电子显微镜上进行;扫描电镜分析在购自美国FEI公司的型号为XL-30的扫描电子显微镜上进行;氮气吸脱附仪购自美国康塔公司的型号为Autosorb-1的氮气吸脱附仪上进行。
[0053]十六烷基三甲基溴化铵(CTAB)购自百灵威(J&K),平均分子量364,CAS =57-09-0 ;聚乙二醇辛基苯基醚(曲拉通X-100)购自上海生工生物工程有限公司,货号TB0198 ;三氟甲磺酸铜自 ACROS,CAS: 34946982-2。
[0054]实施例1
[0055]本实施例用于说明根据本发明的负载型三氟甲磺酸铜催化剂及其制备方法。
[0056]将1.5克CTAB (十六烷基三甲基溴化铵)与1.5ml的聚乙二醇辛基苯基醚(曲拉通-X100)加入到29.6克的37%的浓盐酸和75克水的盐酸中,在40°C下混合搅拌至CTAB完全溶解;再将4.35克正硅酸乙酯加入到上述溶液中,在40°C温度下,在机械搅拌速率为340r/min下搅拌15小时,在40°C静置24小时;将所得溶液转移到聚四氟乙烯内衬的反应釜中,在50°C晶化24小时后经过过滤、洗涤、干燥后得到球形介孔材料原粉;将球形介孔材料原粉在马弗炉中600°C煅烧24小时,脱除模板剂,得到脱除模板剂的球形介孔二氧化硅(命名为JKQ) ο
[0057]将上述I克球形介孔二氧化硅JKQ在室温状态与I克三氟甲磺酸铜一起放入100ml球磨罐,其中,球磨罐和磨球的材质均为聚四氟乙烯,磨球的直径为3mm,数量为I个,转速为400r/min。封闭球磨罐,在球磨罐内温度为60°C下球磨I小时,得到2克目标产物负载型三氟甲磺酸铜催化剂,命名为JKQ-Cu(OTf)2,其中,根据载体的含量=加入的载体的重量/负载型三氟甲磺酸铜催化剂的重量X100%计算得到,以负载型三氟甲磺酸铜催化剂的总量为基准,三氟甲磺酸铜的含量为50重量%,球形介孔二氧化硅载体的含量为50重量%。
[0058]用XRD、扫描电镜、透射电镜和氮气吸脱附仪来对该负载型三氟甲磺酸铜催化剂进行表征。
[0059]图1是X-射线衍射图谱,其中,a为球形介孔二氧化硅载体JKQ的XRD谱图,b为通过球磨法负载三氟甲磺酸铜的球形介孔二氧化硅(JKQ-Cu(OTf)2)的XRD谱图,横坐标为2 Θ,纵坐标为强度。由上述两个XRD谱图可知,球形介孔二氧化硅载体JKQ和JKQ-Cu (OTf)2均具有很好的介孔相结构,这和文献报道的介孔材料XRD谱图相一致(XueleiPang, Fangqiong Tang, Microporous and mesoporous Materials, 2005(85):1~6)。
[0060]图2是TEM透射电镜图,其中,a为球形介孔二氧化硅载体(JKQ)的孔结构示意图,b为通过球磨法负载三氟甲磺酸铜的球形介孔二氧化硅(JKQ-Cu(OTf)2)的孔结构示意图。由TEM透射电镜图可知,球形介孔二氧化硅载体(JKQ)在负载三氟甲磺酸铜前、后均显示介孔材料所特有的二维六方孔道结构,表明样品的孔道结构在负载催化剂后基本保持不变,这一结论和XRD谱图得到的结论保持一致。
[0061]图3是SEM扫描电镜图,其中,a为球形介孔二氧化硅载体(JKQ)的微观形貌图,b为负载了三氟甲磺酸铜的球形介孔二氧化硅(JKQ-Cu(OTf)2)的微观形貌图。由图可知,球形介孔二氧化硅JKQ微观形貌为颗粒度3-20 μ m的介孔球,球磨法制备的JKQ-Cu (OTf) 2微观形貌依旧基本保持球形,颗粒度3-20 μ m。
[0062]图4是SEM扫描电镜图,其中,a为棒状介孔材料SBA-15的微观形貌图,b为通过球磨法制备的负载三氟甲磺酸铜的棒状介孔材料SBA-15的微观形貌图。由图4可知,通过球磨法制备的负载三氟甲磺酸铜的棒状介孔材料SBA-15的微观形貌则完全被破坏。
[0063]表1为球形介孔二氧化硅载体JKQ与本发明的负载三氟甲磺酸铜的球形介孔二氧化硅(JKQ-Cu(OTf)2)的孔结构参数。
[0064]表1
[0065]
【权利要求】
1.一种负载型三氟甲磺酸铜催化剂,其特征在于,该催化剂包括球形介孔二氧化硅载体以及负载在所述球形介孔二氧化硅载体上的三氟甲磺酸铜,以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为10-90重量%,所述球形介孔二氧化硅载体的含量为10-90重量% ;且所述球形介孔二氧化硅载体的平均粒子直径为3-20微米,比表面积为1000-2000平方米/克,最可几孔径为1-3纳米,孔壁厚度为1.5-2.3纳米。
2.根据权利要求1所述的负载型三氟甲磺酸铜催化剂,其中,以所述催化剂的总重量为基准,所述三氟甲磺酸铜的含量为30-60重量%,所述球形介孔二氧化硅载体的含量为40-70重量% ;且所述球形介孔二氧化硅载体的平均粒子直径为10-20微米,比表面积为1100-1500平方米/克,最可几孔径为1.5-2.5纳米,孔壁厚度为1.7-2.1纳米。
3.根据权利要求1或2所述的负载型三氟甲磺酸铜催化剂,其中,所述负载型三氟甲磺酸铜催化剂的比表面积为90-130平方米/克,最可几孔径为1-3纳米,孔壁厚度为1-5纳米。
4.根据权利要求1或3所述的负载型三氟甲磺酸铜催化剂,其中,所述球形介孔二氧化硅载体由包括以下步骤的方法制得: (1)将模板剂和盐酸混合至固体物充分溶解; (2)将步骤(1)所得溶液与硅酸酯在温度为25-60°C,机械搅拌速率为100-400r/min下搅拌1-100小时后静置5-100小时; (3)将步骤(2)所得产物在晶化条件下晶化; (4)将步骤(3)所得晶化产物过滤,并将过滤所得固体用去离子水洗涤、干燥; (5)将步骤(4)干燥所得产物加热,脱除模板剂; 所述模板剂为十六烷基三甲基`溴化铵和聚乙二醇辛基苯基醚。
5.根据权利要求4所述的负载型三氟甲磺酸铜催化剂,其中,所述硅酸酯为正硅酸乙酯,所述晶化条件包括:温度为25-60°C,时间为10-40小时;所述脱除模板剂的条件包括温度为500-700°C,时间为10-40小时。
6.根据权利要求4或5所述的负载型三氟甲磺酸铜催化剂,其中,按摩尔比计,硅酸酯:聚乙二醇辛基苯基醚:十六烷基三甲基溴化铵:氯化氢:水=1:0.1-0.5:0.1-0.6:5-50:100-500。
7.一种负载型三氟甲磺酸铜催化剂的制备方法,其中,该方法包括:将所述球形介孔二氧化硅载体与三氟甲磺酸铜一起球磨,使三氟甲磺酸铜负载在所述球形介孔二氧化硅载体上,以所述球形介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为10-90重量%,所述球形介孔二氧化娃载体的用量为10-90重量% ;且所述球形介孔二氧化硅载体的平均粒子直径为3-20微米,比表面积为1000-2000平方米/克,最可几孔径为1-3纳米,孔壁厚度为1.5-2.3纳米。
8.根据权利要求7所述的制备方法,其中,以所述球形介孔二氧化硅载体与三氟甲磺酸铜的总重量为基准,所述三氟甲磺酸铜的用量为30-60重量%,所述球形介孔二氧化硅载体的用量为40-70重量% ;所述球形介孔二氧化硅载体的平均粒子直径为10-20微米,比表面积为1100-1500平方米/克,最可几孔径为1.5-2.5纳米,孔壁厚度为1.7-2.1纳米。
9.根据权利要求7所述的制备方法,其中,所述球磨的条件包括:磨球直径为2-3mm,转速为300-500r/min,球磨罐内温度为15_100°C,时间为0.1-100小时。
10.根据权利要求7所述的制备方法,其中,所述球形介孔二氧化硅载体由包括以下步骤的方法制得: (1)将模板剂和盐酸混合至固体物充分溶解; (2)将步骤(1)所得溶液与硅酸酯在温度为25-60°C,机械搅拌速率为100-400r/min下搅拌1-100小时后静置5-100小时; (3)将步骤(2)所得产物在晶化条件下晶化; (4)将步骤(3)所得晶化产物过滤,并将过滤所得固体用去离子水洗涤、干燥; (5)将步骤(4)干燥所得晶化产物加热,脱除模板剂; 所述模板剂为十六烷基三甲基溴化铵和聚乙二醇辛基苯基醚。
11.根据权利要求10所述的制备方法,其中,所述硅酸酯为正硅酸乙酯,所述晶化条件包括:温度为25-60°C,时间为10-40小时;所述脱除模板剂的条件包括温度为500-700°C,时间为10-40小时。
12.根据权利要求10或11所述的制备方法,其中,按摩尔比计,硅酸酯:聚乙二醇辛基苯基醚:十六烷基三甲基溴化铵:氯化氢:水=1:0.1-0.5:0.1-0.6:5-50:100_500。
13.权利要求7-12中任意一项所述的制备方法制得的催化剂。
14.权利要求1-6和13中任意一项所述催化剂在缩酮反应中的应用。
15.一种环己酮乙二醇缩酮的制备方法,其中,该方法包括:在催化剂的存在下,在缩酮反应的条件下,使环己酮和乙二醇接触,以得到缩酮,其特征在于,所述催化剂为权利要求1-6和13中任意一项所述的催化剂。
16.根据权利要求15所述的制备方法,其中,环己酮和乙二醇的摩尔比可以为1:.0.1-0.2,且以所述催化剂中负载的三氟甲磺酸铜计,相对于100重量份的环己酮,所述催化剂的用量可以为1-15重量份。
【文档编号】C07D317/72GK103586086SQ201210289344
【公开日】2014年2月19日 申请日期:2012年8月14日 优先权日:2012年8月14日
【发明者】亢宇, 张明森, 黄文氢, 杨菁, 张伟, 王焕茹 申请人:中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1