用于釜馏物发酵的工艺和方法与流程

文档序号:16852019发布日期:2019-02-12 22:49阅读:245来源:国知局
用于釜馏物发酵的工艺和方法与流程

本申请要求于2016年4月20日提交的美国临时申请no.62/324,951的优先权。

本发明一般涉及用于蒸馏乙醇的工艺和方法,具体地,涉及用于提高稀釜馏物处理效率的工艺和方法。



背景技术:

参考图1,燃料级乙醇生产工艺100一般包括碾磨、糖化、发酵、蒸馏和蒸发的步骤(参见例如griend的us7572353)。如图1所示,一般工艺通常首先碾磨谷物并将碾磨过的谷物与水和酶合并在一起,从而分解谷物以产生糖(糖化)。然后,一般将混合物与酵母合并并使其发酵。

在一般工艺的发酵部分,将碾磨过的玉米浆发酵以产生乙醇浓度通常低于15%(按体积计)的啤酒。在一般工艺的蒸馏部分,在蒸馏塔中提取啤酒中的乙醇。蒸馏塔一般具有许多水平塔板,用于使上升的乙醇蒸气和下降的液体相接触。在蒸馏塔中,随着啤酒从较高的塔板流向较低的塔板,低压蒸汽渗透穿过啤酒。随着上升的蒸汽加热啤酒,啤酒中的乙醇蒸发并上升到塔的顶部,在那里作为蒸气排出。啤酒中剩余的水分和其它谷物材料下降到塔的底部,作为“底层啤酒”或“全釜馏物”排出。然后,一般将这种全釜馏物材料通过全釜馏物离心机分离成固体和所谓的“稀釜馏物”。得到的固体一般被称为带可溶物的湿釜馏物(湿态谷物酒糟)(wetdistiller’sgrainswithsolubles,wdgs),然后,一般将其干燥以产生干态谷物釜馏物(ddg),其是有价值的饲料成分。然后,一般将稀釜馏物通过蒸发工艺浓缩,其中将液体从稀釜馏物蒸发掉以产生浆料,其还可以在ddg干燥器中干燥以进一步增加动物饲料副产品的产量。

虽然实践证明是可行的,但是目前用于生产乙醇的方法没有对重要的油、生物质和其它重要的副产品(诸如甘油)进行处理。因此,本发明提供了包括釜馏物发酵的用于生产乙醇的更高效的工艺。



技术实现要素:

为了最小化现有技术中存在的限制,并且为了最小化在阅读本说明书后将变得显而易见的其它限制,本发明的优选的实施方式提供了新颖的工艺,其中对稀釜馏物进行处理以生产藻油和富含蛋白质的生物质以及其它富含能量的副产品。

根据优选的实施方式,在蒸发工艺期间将稀釜馏物从蒸发器中移出以产生中间釜馏物(mid-stillage)。优选地将这种中间釜馏物转到新的工艺,在新工艺中它被引入预处理离心机以移除悬浮固体、泥状物和玉米油。

此后,优选地将中间釜馏物冷却,然后引入发酵罐,在发酵罐中对中间釜馏物进行分批发酵处理,伴随藻类“种子”从藻类接种系统进料。一旦收获了批料,就优选地将富油的藻类/中间釜馏物加热以使细胞破裂并释放出油。此后,优选地将富油的藻类/中间釜馏物通过离心机进行处理,其产生固体、轻相油和“洁净的”中间釜馏物流,其可以蒸发至很高水平的固体。

附图说明

为了加强其清晰度并提高对本发明的各种元素和实施方式的理解,图中的元素不一定是按比例绘制的。此外,为了提供本发明的各种实施方式的清晰视图,没有描绘已知为本领域技术人员所常见和熟知的元素。因此,应该理解的是,为了清晰和简洁,附图在形式上是泛化的。

图1是说明用于生产乙醇的常规工艺的图。

图2是说明根据本发明的第一优选的实施方式用于生产生物燃料的示例性方法的流程图。

图3是说明根据本发明的另一优选的实施方式用于生产生物燃料的示例性方法的流程图。

具体实施方式

在下面阐述本发明的一些实施方式和应用的讨论中,参考构成本发明一部分的所附附图,以及通过例证方式示出的并可以在其中实践本发明的具体的实施方式。需要理解的是,在不脱离本发明范围的情况下可以采用其它实施方式并可以作出改变。

下文描述了各种发明特征,它们可以各自相互独立地使用或者与其它特征组合使用。但是,任何单一的发明特征可能无法解决上述任何问题,或者只能解决上述问题之一。此外,上述问题中的一个或多个可能不会被下述任何特征完全地解决。

本发明涉及由生物质生产生物燃料和其它消耗品的工艺和方法。这些生物燃料和消耗品可以包括食品、饲料、化学品、燃料(即可再生柴油、乙醇等)等,为方便起见下文统称其为生物燃料。具体地,本发明涉及旨在提高常规乙醇生产方法的效率的工艺。

根据优选的实施方式,本发明使用的酶可以优选地包括酶,诸如葡糖淀粉酶以及其它可选择的酶。可替代的酶的实例包括:木聚糖酶、淀粉酶、乳糖酶、糖化酶(diastase)、蔗糖酶、麦芽糖酶、转化酶、α-半乳糖苷酶等。

现参考图2,现在讨论根据本发明多个方面的工艺和方法的示例性优选的实施方式200。如所示,示例性工艺/方法200从乙醇生产工艺的蒸馏步骤202开始。如所示,经过蒸馏202,乙醇被生产且剩余的全釜馏物被处理并送至离心机204。在离心机204处,大部分悬浮的固体被移除,然后剩余的“稀釜馏物”(即5-8%的固体)被送至蒸发器212用于进一步处理。在蒸发器处,稀釜馏物优选地从5-8%固体被浓缩至13-17%固体,然后作为“中间釜馏物”211被移除用于额外的处理。应该理解的是,虽然13-17%是优选的,但可以根据需要在较早或较晚的时间点将稀釜馏物从蒸发中移除。因此,中间釜馏物可替代地可以包含9-27%固体范围内任一点的固体。

从蒸发器212移除后,中间釜馏物211优选地通过中间釜馏物预处理离心机210或其它机械净化装置进行处理。在离心分离机210处,中间釜馏物优选地被分离成轻相玉米油207、泥状物206和澄清的中间釜馏物214。根据优选的实施方式,澄清的中间釜馏物214为水相,具有少于1%的悬浮固体。此后,轻相玉米油207优选地被移除并送至乙醇车间用于进一步处理。如进一步所示,泥状物层206优选地与来自进料的大部分悬浮固体一起被移除,并送至玉米油回收系统211用于进一步处理。

然后下一步,澄清的中间釜馏物214优选地通过一个或多个热交换器冷却以冷却至发酵温度。通常,送入的中间釜馏物温度会是60-85℃。根据本发明的一个方面,第一冷却步骤可以是能量回收藻类处理进料/产物热交换器。在这一步骤中,优选地用冷的发酵工艺产物冷却中间釜馏物。此后,第二冷却步骤可以优选地以冷却水热交换器的形式应用。优选地,来自冷却步骤2的目标温度范围将是25-35℃。

一旦达到所需的温度,然后冷却的、澄清的中间釜馏物214优选地被送至一个或多个藻类发酵罐218。根据优选的实施方式,然后使用发酵罐218操作分批发酵工艺。根据优选的实施方式,优选地在送入的中间釜馏物中加入强碱(诸如氢氧化钠等)以将ph从大约3.5-4.0提高至5.5-7.0。此外,藻类“种子”优选地从藻类接种系统进料,以达到1.5-3.0克/l藻类的起始浓度。另外,优选地将大量空气连续注入发酵罐中以支持好氧化学过程,优选的曝气目标为0.05-1.00vvm(ft3/min空气/ft3罐体积)。在这一过程中,可以根据需要添加酸注射或碱注射以维持发酵罐ph在目标ph范围内。此外,每个发酵罐将优选地包括溶解氧(do)探针、温度传感器和泡沫探针。优选地,可以根据需要使用抗泡沫化学品以应对泡沫水平的测量。另外,每个发酵罐将优选地包括循环泵,循环泵将泵送发酵器内容物通过外部热交换器冷却器并帮助提供罐搅拌。此外,每个发酵罐将优选地包括多叶轮搅拌器,设计成最大程度地将氧转移到工艺流体中,以及热交换器冷却器以控制温度在25-35℃的范围内。优选地,将以冷却水或冷冻水作为冷却源。根据优选的实施方式,发酵批处理时间可以为约48小时,可能的范围为24-92小时。

优选地,发酵罐中的生化工艺将涉及藻类,藻类将发酵代谢中间釜馏物中存在的各种碳源。根据其它优选的实施方式,可以使用各种微藻物种中的任何,诸如来自小球藻属的藻类,包括原始小球藻(c.protothecoides)、普通小球藻(c.vulgaris)、c.sorokiniana、c.saccharofila和其它小球藻物种。可替代地,可以使用其它微藻物种,诸如莱茵衣藻(chlamydomonasreinhardtii)、绿球藻(chlorococcumlittorale)、亚心形扁藻(platymonassubcordiformis)、鱼腥藻(anabaena)、念珠藻(nostocmuscorum)、海绵状念珠蓝藻(n.spongiaeforme)、繁育拟惠氏藻(westiellopsisprolifica)、oscillotoriamiamibg7或盐生隐杆藻(aphanothecehalophytico)。

根据本发明的优选的实施方式,澄清的中间釜馏物214的乙醇发酵工艺将产生碳副产物,包括:甘油;有机酸诸如醋酸和乳酸;残余糖诸如葡萄糖、麦芽糖和dp3's;残余淀粉(dp4+);和残余蛋白质。优选地,发酵工艺中将不添加氮或蛋白质以维持高的碳氮比,这将有利于产生藻油而不是蛋白质。中间釜馏物通常包含高水平的藻类生长所需的矿物质,诸如磷和镁。因此,可以避免使用昂贵的矿物质和化学添加剂。

现参考图3,根据本发明的优选的实施方式,本发明的藻类发酵系统将优选地还包括接种系统220,以在发酵工艺开始时提供足够的藻类浓度。优选地,接种系统220将是多容器发酵系统以将藻类从种子(“试管”)生产水平放大(scaleup)。优选地,放大容器将具有与全规模发酵器相同的特征:空气注入、冷却、搅拌、ph和溶解氧的控制。

根据本发明的另一个方面,藻类接种系统220可以优选地使用甘油作为初始碳源。使用甘油将优选地允许藻类在全规模发酵工艺开始之前就适应消耗甘油。根据优选的实施方式,用于接种系统的可能的甘油源可以是生物柴油甘油。根据其它优选的实施方式,甘油(可能地以生物柴油甘油的形式)也可以作为用于主要藻类发酵系统的可能的原料使用。

再参考图3,一旦批料(batch)形成完成,然后优选地收获藻类/富油的中间釜馏物。在优选的实施方式中,在收获之前,首先加热藻类/富油的中间釜馏物。根据本发明的一个方面,藻类/富油的中间釜馏物可以优选地是通过从蒸发(如果可用)送入的中间釜馏物首先加热,并然后加热至大约85-99℃。根据所公开的工艺,暴露于高温将导致藻类细胞破裂而从细胞中释放藻油,用于通过离心机224回收。

另如图3所示,根据优选的实施方式,海藻油优选地通过3-相离心机224回收,该离心机产生轻相油226、洁净的中间釜馏物(主要是水)228和泥状物/固体230。如所示,轻相油可以被分离作为植物油和/或生物柴油原料232销售。另如所示,泥状物/固体可以被送回乙醇车间ddgs干燥器或在新的单独的干燥系统中干燥,以生产富含藻类蛋白质的动物饲料成分。

至于“洁净的”中间釜馏物228(水),这种液体优选地被送至二次蒸发系统以进一步浓缩中间釜馏物。优选地,二次蒸发产物将被进料至乙醇车间ddgs干燥器或其它干燥系统236。

应用本发明的原理和特点,实现了出人意料且重大的效率。这些效率已经在多种测试设置中得到了鉴定和确认。如下详细提供了示例性的测试条件和结果。

示例性测试1

示例性测试2

上述本发明优选的实施方式的描述是出于说明和描述的目的给出的。并不意图穷尽或将本发明局限于公开的确切形式。根据上述教导,许多修改和变化都是可能的。本发明的范围旨在不受该详细描述的限制,而受本文所附的权利要求和权利要求的等同物的限制。

权利要求书(按照条约第19条的修改)

1.一种由生物质生产生物燃料和其它消耗品的工艺,其中,所述工艺包括以下步骤:

分离乙醇和全釜馏物;

将所述全釜馏物转至离心机;

离心所述全釜馏物以移除固体并产生稀釜馏物,其中所述稀釜馏物包括5-8%(w/v)的固体;

将所述稀釜馏物转至蒸发器;

从所述稀釜馏物中蒸发水分以产生中间釜馏物,其中所述中间釜馏物包括9-27%(w/v)的固体;

将所述中间釜馏物分离成轻相玉米油、泥状物层和澄清的中间釜馏物,其中所述澄清的中间釜馏物为水相,具有少于1%(w/v)的悬浮固体;

冷却所述澄清的中间釜馏物;

将所述澄清的中间釜馏物转至藻类发酵罐;

将送入的中间釜馏物的ph从大约3.5-4.0提高至5.5-6.0;

从藻类接种系统添加藻类种子以达到1.5-3.0克/l藻类的起始浓度;

向所述藻类发酵罐中注入空气以支持好氧化学工艺;并维持温度在25-35℃的范围内;以及

在发酵期之后收获所述藻类/富油的中间釜馏物。

2.根据权利要求1所述的方法,其中,所述中间釜馏物包括13-17%(w/v)的固体。

3.根据权利要求2所述的方法,其中,还对被移除的所述轻相玉米油进行处理以生产乙醇。

4.根据权利要求3所述的方法,其中,将所述泥状物层移除并送至玉米油回收系统以生产额外的玉米油。

5.根据权利要求4所述的方法,其中,冷却所述澄清的中间釜馏物的步骤将所述澄清的中间釜馏物从60-85℃的送入温度冷却至25-35℃的温度范围内。

6.根据权利要求5所述的方法,其中,冷却所述澄清的中间釜馏物的步骤使用能量回收藻类工艺进料/产物热交换器进行。

7.根据权利要求6所述的方法,其中,所述中间釜馏物在第二冷却步骤中进一步冷却,其中所述冷却以冷却水热交换器的形式进行。

8.根据权利要求7所述的方法,其中,所述种子藻类包括选自包括以下藻类的组中的一种或多种藻类:小球藻属的藻类、原始小球藻、普通小球藻、c.sorokiniana、c.saccharofila、莱茵衣藻、绿球藻、亚心形扁藻、鱼腥藻、念珠藻、海绵状念珠蓝藻、繁育拟惠氏藻、oscillotoriamiamibg7和盐生隐杆藻。

9.根据权利要求8所述的方法,其中,所述收获工艺包括以下步骤:

加热所述藻类/富油的中间釜馏物至大约85-99℃;

其中,所述加热所述藻类/富油的中间釜馏物的步骤包括第一步为添加从送入的中间釜馏物回收的热量。

10.根据权利要求9所述的方法,其中,所述藻类/富油的中间釜馏物是通过3-相离心机回收的,所述3-相离心机产生轻相油、洁净的中间釜馏物和泥状物/固体。

11.根据权利要求10所述的方法,其中,所述轻相油被分离为植物油或生物柴油原料。

12.根据权利要求11所述的方法,其中,所述泥状物/固体被干燥并用于生产富含藻类蛋白质的动物饲料成分。

13.根据权利要求12所述的方法,其中,所述洁净的中间釜馏物被送至二次蒸发系统以进一步浓缩所述洁净的中间釜馏物;其中,所述二次蒸发产物还被回收并干燥以用作动物饲料成分。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1