一种新型高导热导电石墨复合膜的制备方法与流程

文档序号:15395777发布日期:2018-09-08 02:09阅读:164来源:国知局

本发明涉及石墨复合膜领域技术,尤其是指一种新型高导热导电石墨复合膜的制备方法。



背景技术:

随着电子器件以及产品日益高度集成、高运算,能耗功率随之倍增,因此散热成为制约电子元器件高可靠性正常工作和使用寿命的关键因素,目前广泛应用的金属导热体已经无法满足电子行业高集成化散热的需要,柔软轻便高强度的新型的高导热导电的复合石墨膜成为高集成、高功率、高性能的电子元器件散热的迫切需要。

高导热石墨膜是一种全新的导热散热材料,应用越来越广泛,对于高导热石墨膜的制备方法也非常多,但是现有的高导热石墨膜有很多不足之处,如耐折性差,材料强度小,易撕裂等。

目前导热石墨膜材料制备方法主要有两种,一种是高分子膜经热解并石墨化后形成高定向石墨膜,另一种方法是低硫膨胀石墨碾压成膜。前一种制备方法加工性偏差且成本高,仅用作高端电子产品;后者成本低,已广泛应用于各类产品,但难以满足高功率高集成电子产品更高的散热要求。因此,能够结合两者优势,制备成本较低的新型的更轻更薄高导热导电的复合石墨膜显得尤为重要。

聚酰亚胺(pi)是一种新型的高性能的特种工程塑料,以其优异的机械性能、耐高温性能、耐辐射性能、低介电常数和高电阻率等优异性能,广泛应用于微电子行业。

石墨晶体由碳六元环组成的平行排列的平面层状结构,在层面方向具有很高的导热系数。为提高石墨的强度和导热系数,常采用掺杂其他元素的方法。在掺杂方法中,掺杂元素常以单质或化合物的形态与石墨混合,这些元素在制备高导热石墨中起着增强或催化石墨化的作用,目前大部分专利技术采用干法掺入微米级的固体粉末,这样会导致分散不够,掺杂元素并不能与所有的碳原子作用,导致石墨的整体性能提高有限;同时粉末团中心的元素没有发回作用,利用率欠佳。

例如,中国发明专利申请公布号cn104023505a公开了一种高导热石墨膜的制备方法,其方法是:

(一)将石墨烯粉末和碳化硅纳米颗粒为原料,添加分子改性剂得到聚酰亚胺膜;

(二)将膜再经炭化、石墨化,压延成膜制得高导热石墨膜。

该方法利用石墨烯的片层结构减少了炭化过程中的缺陷产生,同时利用碳化硅颗粒对石墨化的催化作用,提高了石墨化程度,进而提高石墨膜材料的品质。

上述采用添加石墨烯和碳化硅助剂制备导热石墨膜的方法存在工艺步骤复杂,过程溶剂使用过多会导致环境污染,且生产成本高不利于大规模应用。



技术实现要素:

有鉴于此,本发明针对现有技术存在之缺失,其主要目的是提供一种新型高导热导电石墨复合膜的制备方法,其能有效解决现有之高导热石墨膜存在工艺步骤复杂、污染环境、成本高的问题。

为实现上述目的,本发明采用如下之技术方案:

一种新型高导热导电石墨复合膜的制备方法,包括有以下步骤:

(1)paa制备:以预先除水的dmac为溶剂,惰性气体保护下,低温下将等摩尔的bpda和oda混合溶解在dmac中形成质量分数为15%的溶液进行缩聚反应制备paa;

(2)混合物制备:高速搅拌下将纳米氧化钛、碳纳米管、石墨烯粉末、低硫膨胀石墨和短切碳纤维按比例投入paa中,形成分散均匀的混合物;其中石墨烯粉末为0.001~2wt%、碳纳米管为0.1~10wt%、纳米氧化钛为0.01~5wt%、短切碳纤维为0.02~10wt%、低硫膨胀石墨为10~50wt%;

(3)压延成膜并亚胺化:将充分分散的混合物悬浮液均匀刮涂于载玻片上,烘干后转移至水平式真空电炉中在低于-0.85真空度下按适当的升温程序进行亚胺化升温至400℃后冷却,水浸泡脱膜后烘干,得到20~100微米的高导电导热复合石墨膜;

(4)焙烧和石墨化:将20~100μm的高导电导热复合石墨膜放置真空炉中,氮气保护下以2℃/min速率由常温升温至1200℃,保温3小时后降温至100℃,出炉得焙烧品,在无氧气氛下于2800-3000℃下进行石墨化24h。

作为一种优选方案,所述石墨烯粉末为多层石墨烯粉末。

作为一种优选方案,所述短切碳纤维为短切微米碳纤维。

作为一种优选方案,所述步骤(2)中搅拌速度为8000rpm/min,搅拌时间为2h。

本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知:

本发明利用石墨烯和碳纳米管协同作用增强膜的导热导电性能,利用碳纤维增强膜的强度从而提高膜的抗撕裂能力,提高膜的使用范围和使用寿命,较大比例使用低硫膨胀石墨能较大程度增加膜的柔韧性并降低材料成本,通过各添加材料的协同作用,极大增加导热膜的散热性、导电性和柔韧性,同时提高材料的机械强度和使用期限。

具体实施方式

本发明揭示了一种新型高导热导电石墨复合膜的制备方法,包括有以下步骤:

(1)paa制备:以预先除水的dmac(n,n-二甲基乙酰胺)为溶剂,惰性气体保护下,低温下将等摩尔的bpda(联苯四甲酸二酐)和oda(二氨基二苯醚)混合溶解在dmac中形成质量分数为15%的溶液进行缩聚反应制备paa(聚酰亚胺(pi)预聚体—聚酰胺酸)。

(2)混合物制备:高速搅拌下将纳米氧化钛、碳纳米管、石墨烯粉末、低硫膨胀石墨和短切碳纤维按比例投入paa中,形成分散均匀的混合物;其中石墨烯粉末为0.001~2wt%、碳纳米管为0.1~10wt%、纳米氧化钛为0.01~5wt%、短切碳纤维为0.02~10wt%、低硫膨胀石墨为10~50wt%。所述石墨烯粉末为多层石墨烯粉末,所述短切碳纤维为短切微米碳纤维,搅拌速度为8000rpm/min,搅拌时间为2h。

(3)压延成膜并亚胺化:将充分分散的混合物悬浮液均匀刮涂于载玻片上,烘干后转移至水平式真空电炉中在低于-0.85真空度下按适当的升温程序进行亚胺化升温至400℃后冷却,水浸泡脱膜后烘干,得到20~100微米的高导电导热复合石墨膜。

(4)焙烧和石墨化:将20~100μm的高导电导热复合石墨膜放置真空炉中,氮气保护下以2℃/min速率由常温升温至1200℃,保温3小时后降温至100℃,出炉得焙烧品,在无氧气氛下于2800-3000℃下进行石墨化24h。

下面以多个实施例对本发明作进一步详细说明:

实施例1:

(1)paa制备:量取310ml除水后的dmac溶液加入圆底烧瓶中,惰性气体保护下,低温下(5-8℃)搅拌下依次加入29.863gbpda和20.024goda,6000rpm/min的搅拌速度搅拌6h,静置10h,得到固含量为15%的聚酰亚胺预聚体paa。

(2)混合物制备:在搅拌下往paa中加入0.1g多层石墨烯干粉、1.84g多壁碳纳米管、1.28g纳米氧化钛、0.23gφ=7μm短切碳纤维和14.80g低硫膨胀石墨,8000rpm/min的搅拌速度搅拌2h后形成悬浮液。

(3)压延成膜并亚胺化:将粘稠的悬浮液倒在光滑洁净的玻璃上,流延法均匀刮涂成膜,放入水平式真空电炉中在低于-0.85真空度下开始以适当的升温曲线从室温升温到400℃,进行加热脱水亚胺化,冷却后水浸泡脱膜后烘干,得到30μm的聚酰亚胺复合膜。

(4)焙烧和石墨化:将该复合膜放置真空炉中,氮气保护下以2℃/min速率由常温升温至1200℃,保温3小时后降温至100℃后得焙烧品,在无氧气氛下于2800℃下进行石墨化24h,自然冷却后得到高导热导电复合石墨膜。

经测试,本实施例制备得到的高导热导电复合石墨膜,其厚度为23μm,导热率为1860w/m.k,导电率为1.8×10-5ohm.cm。

实施例2:

(1)paa制备:量取300ml除水后的dmac溶液加入圆底烧瓶中,惰性气体保护下,低温下(5-8℃)搅拌下依次加入28.443gbpda和18.024goda,6000rpm/min的搅拌速度搅拌6h,静置10h,得到固含量为15%的聚酰亚胺预聚体paa。

(2)混合物制备:在搅拌下往paa中加入0.12g多层石墨烯干粉、1.44g多壁碳纳米管、1.18g纳米氧化钛、0.21gφ=6μm短切碳纤维和12.46g低硫膨胀石墨,8000rpm/min的搅拌速度搅拌2h后形成悬浮液。

(3)压延成膜并亚胺化:将粘稠的悬浮液倒在光滑洁净的玻璃上,流延法均匀刮涂成膜,放入水平式真空电炉中在低于-0.85真空度下开始以适当的升温曲线从室温升温到400℃,进行加热脱水亚胺化,冷却后水浸泡脱膜后烘干,得到20μm的聚酰亚胺复合膜。

(4)焙烧和石墨化:将该复合膜放置真空炉中,氮气保护下以2℃/min速率由常温升温至1200℃,保温3小时后降温至100℃后得焙烧品,在无氧气氛下于3000℃下进行石墨化24h,自然冷却后得到高导热导电复合石墨膜。

经测试,本实施例制备得到的高导热导电复合石墨膜,其厚度为25μm,导热率为1760w/m.k,导电率为1.5×10-5ohm.cm。

实施例3:

(1)paa制备:量取315ml除水后的dmac溶液加入圆底烧瓶中,惰性气体保护下,低温下(5-8℃)搅拌下依次加入30.663gbpda和18.011goda,6000rpm/min的搅拌速度搅拌6h,静置10h,得到固含量为15%的聚酰亚胺预聚体paa。

(2)混合物制备:在搅拌下往paa中加入0.08g多层石墨烯干粉、1.45g多壁碳纳米管、1.04g纳米氧化钛、0.18gφ=12μm短切碳纤维和12.40g低硫膨胀石墨,8000rpm/min的搅拌速度搅拌2h后形成悬浮液。

(3)压延成膜并亚胺化:将粘稠的悬浮液倒在光滑洁净的玻璃上,流延法均匀刮涂成膜,放入水平式真空电炉中在低于-0.85真空度下开始以适当的升温曲线从室温升温到400℃,进行加热脱水亚胺化,冷却后水浸泡脱膜后烘干,得到100μm的聚酰亚胺复合膜。

(4)焙烧和石墨化:将该复合膜放置真空炉中,氮气保护下以2℃/min速率由常温升温至1200℃,保温3小时后降温至100℃后得焙烧品,在无氧气氛下于2900℃下进行石墨化24h,自然冷却后得到高导热导电复合石墨膜。

经测试,本实施例制备得到的高导热导电复合石墨膜,其厚度为26μm,导热率为1780w/m.k,导电率为1.7×10-5ohm.cm。

实施例4:

(1)paa制备:量取306ml除水后的dmac溶液加入圆底烧瓶中,惰性气体保护下,低温下(5-8℃)搅拌下依次加入26.853gbpda和19.024goda,6000rpm/min的搅拌速度搅拌6h,静置10h,得到固含量为15%的聚酰亚胺预聚体paa。

(2)混合物制备:在搅拌下往paa中加入0.09g多层石墨烯干粉、1.55g多壁碳纳米管、1.18g纳米氧化钛、0.18gφ=7μm短切碳纤维和12.80g低硫膨胀石墨,8000rpm/min的搅拌速度搅拌2h后形成悬浮液。

(3)压延成膜并亚胺化:将粘稠的悬浮液倒在光滑洁净的玻璃上,流延法均匀刮涂成膜,放入水平式真空电炉中在低于-0.85真空度下开始以适当的升温曲线从室温升温到400℃,进行加热脱水亚胺化,冷却后水浸泡脱膜后烘干,得到50μm的聚酰亚胺复合膜。

(4)焙烧和石墨化:将该复合膜放置真空炉中,氮气保护下以2℃/min速率由常温升温至1200℃,保温3小时后降温至100℃后得焙烧品,在无氧气氛下于2880℃下进行石墨化24h,自然冷却后得到高导热导电复合石墨膜。

经测试,本实施例制备得到的高导热导电复合石墨膜,其厚度为27μm,导热率为1800w/m.k,导电率为1.5×10-5ohm.cm。

实施例5:

(1)paa制备:量取304ml除水后的dmac溶液加入圆底烧瓶中,惰性气体保护下,低温下(5-8℃)搅拌下依次加入25.863gbpda和21.024goda,6000rpm/min的搅拌速度搅拌6h,静置10h,得到固含量为15%的聚酰亚胺预聚体paa。

(2)混合物制备:在搅拌下往paa中加入0.13g多层石墨烯干粉、1.54g多壁碳纳米管、1.18g纳米氧化钛、0.22gφ=7μm短切碳纤维和13.80g低硫膨胀石墨,8000rpm/min的搅拌速度搅拌2h后形成悬浮液。

(3)压延成膜并亚胺化:将粘稠的悬浮液倒在光滑洁净的玻璃上,流延法均匀刮涂成膜,放入水平式真空电炉中在低于-0.85真空度下开始以适当的升温曲线从室温升温到400℃,进行加热脱水亚胺化,冷却后水浸泡脱膜后烘干,得到80μm的聚酰亚胺复合膜。

(4)焙烧和石墨化:将该复合膜放置真空炉中,氮气保护下以2℃/min速率由常温升温至1200℃,保温3小时后降温至100℃后得焙烧品,在无氧气氛下于2900℃下进行石墨化24h,自然冷却后得到高导热导电复合石墨膜。

经测试,本实施例制备得到的高导热导电复合石墨膜,其厚度为30μm,导热率为1660w/m.k,导电率为1.7×10-5ohm.cm。

实施例6:

(1)paa制备:量取307ml除水后的dmac溶液加入圆底烧瓶中,惰性气体保护下,低温下(5-8℃)搅拌下依次加入26.863gbpda和18.024goda,6000rpm/min的搅拌速度搅拌6h,静置10h,得到固含量为15%的聚酰亚胺预聚体paa。

(2)混合物制备:在搅拌下往paa中加入0.14g多层石墨烯干粉、1.74g多壁碳纳米管、1.18g纳米氧化钛、0.19gφ=7μm短切碳纤维和12.80g低硫膨胀石墨,8000rpm/min的搅拌速度搅拌2h后形成悬浮液。

(3)压延成膜并亚胺化:将粘稠的悬浮液倒在光滑洁净的玻璃上,流延法均匀刮涂成膜,放入水平式真空电炉中在低于-0.85真空度下开始以适当的升温曲线从室温升温到400℃,进行加热脱水亚胺化,冷却后水浸泡脱膜后烘干,得到85μm的聚酰亚胺复合膜。

(4)焙烧和石墨化:将该复合膜放置真空炉中,氮气保护下以2℃/min速率由常温升温至1200℃,保温3小时后降温至100℃后得焙烧品,在无氧气氛下于2950℃下进行石墨化24h,自然冷却后得到高导热导电复合石墨膜。

经测试,本实施例制备得到的高导热导电复合石墨膜,其厚度为31μm,导热率为1690w/m.k,导电率为1.68×10-5ohm.cm。

本发明的设计重点在于:本发明利用石墨烯和碳纳米管协同作用增强膜的导热导电性能,利用碳纤维增强膜的强度从而提高膜的抗撕裂能力,提高膜的使用范围和使用寿命,较大比例使用低硫膨胀石墨能较大程度增加膜的柔韧性并降低材料成本,通过各添加材料的协同作用,极大增加导热膜的散热性、导电性和柔韧性,同时提高材料的机械强度和使用期限。

以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1