一种金属离子及pH响应荧光扩链剂及其制备方法和应用与流程

文档序号:15681260发布日期:2018-10-16 20:35阅读:252来源:国知局

本发明涉及一种扩链剂及其制备方法和应用,特别是一种金属离子及ph响应荧光扩链剂及其制备方法和应用。



背景技术:

聚氨酯是由含羟基的单体与含异氰酸酯的单体通过逐步缩聚而制得,其能改变缩聚单体的结构与性能获得功能各异的聚合物。这一特性使其在胶粘剂、密封胶、合成纤维、泡沫塑料、涂料、生物医学植入物及抗菌材料领域有广泛的应用。当在聚氨体系中引入不同的功能结构时,其将形成性能各异的功能聚氨酯,如在聚氨酯中引入荧光结构/基团时,可以获得荧光聚氨酯。基于聚氨酯的荧光材料在防伪技术、油墨、生命科学、信息储存和国防等领域有大量的应用。

传统的荧光聚氨酯通常是将无机或有机荧光染料分子和聚氨酯乳液共混制备得到,其存在染料与聚合物间相容性的问题,这会导致染料与聚合物的相分离、均匀性差及耐刷洗牢度等一系列问题。中国专利201511007331.9公开了一种基于吡咯并吡咯二酮衍生物的荧光聚氨醋乳液,中国专利201310092827.5公开了一种基于二异氰酸酯中发色团的荧光型水性聚氨醋,中国专利201710283423.2公开了一种聚丙烯酸醋/聚氨酯的荧光涂料,这些荧光基团都是共价键连接到聚合物分子链上,但这些荧光聚氨酯都是不具有刺激响应发光的特性。

近年来,能够对外界刺激产生响应的刺激响应聚合物

(stimuli-responsivepolymers)引起了科研工作者的高度关注。中国专利201610147116.7公开了一种ph响应的荧光聚合物,但这种荧光聚合物能对ph的变化产生响应并发出荧光。但这类聚合物的只能对ph产生响应。非刺激响应及刺激响应的相对单一都在一定程度上限制了荧光聚合物的应用。



技术实现要素:

本发明的目的在于,提供一种金属离子及ph响应荧光扩链剂及其制备方法和应用。本发明的扩链剂具有能对铁离子进行选择的荧光响应、对ph的改变发生响应性的荧光、且响应荧光能在可见光范围内激发的特点,且荧光扩链剂结构新颖、制备工艺简单、产率高、生产成本低,适用于大规模生产。

本发明的技术方案:一种金属离子及ph响应荧光扩链剂,所述扩链剂的化学结构式为下列三种中的任意一种:

一种前述的金属离子及ph响应荧光扩链剂的制备方法,包括如下步骤:

1)以有机溶剂为反应介质,将罗丹明6g与炔丙胺进行反应,在40~70℃反应12~48小时,过滤并重结晶,随后在40~70℃下干燥12~24小时,得到中间体炔基修饰的罗丹明衍生物。

2)在惰性气体的氛围中,在催化剂与还原剂的条件下,将中间体炔基修饰的罗丹明衍生物与双羟基叠氮化物于溶剂中进行点击反应,然后纯化处理,得到基于罗丹明衍生物的铁离子及ph响应荧光扩链剂。

前述的金属离子及ph响应荧光扩链剂的制备方法,步骤1)中,所述有机溶剂为乙醇、乙酸乙酯中的任一种;所述罗丹明6g与炔丙胺的摩尔比为1:1-1:8;所述重结晶是指采用甲醇或乙醇进行重结晶。

前述的金属离子及ph响应荧光扩链剂的制备方法,步骤2)中,所述纯化处理是指反应完成后,加入去离子水,静置,过滤,将沉淀重结晶,然后再过滤,干燥即可;所述重结晶是采用甲醇或乙醇进行重结晶,所述干燥的温度为35~60℃,时间为12~48小时。

前述的金属离子及ph响应荧光扩链剂的制备方法,步骤2)中,所述惰性气体为氩气或氮气;所述催化剂为无水氯化铜、无水溴化铜或无水碘化铜;所述还原剂为抗坏血酸钠或柠檬酸钠;所述溶剂为二甲基甲酰胺、二甲基亚砜、四氢呋喃或水中的任意一种或一种以上。

前述的金属离子及ph响应荧光扩链剂的制备方法,步骤2)中,所述双羟基叠氮化物的化学结构式为下列两种中的一种:

前述的金属离子及ph响应荧光扩链剂的制备方法,步骤2)中,所述催化剂与中间体炔基修饰的罗丹明衍生物的摩尔比为1~3:15;还原剂与中间体炔基修饰的罗丹明衍生物的摩尔比为1~3:15;所述中间体炔基修饰的罗丹明衍生物与双羟基叠氮化物的摩尔比为0.5~3:1;所述反应的温度为25~70℃,反应时间为1~3小时。

一种前述的金属离子及ph响应荧光扩链剂的应用,所述基于罗丹明衍生物的铁离子及ph响应荧光扩链剂用于制备刺激响应水性聚氨酯乳液。

前述的金属离子及ph响应荧光扩链剂的应用,所述刺激响应水性聚氨酯乳液的制备方法如下:

1)将聚醚多元醇进行除水,得到除水后的聚醚多元醇;所述除水是加热至110~130℃,保温1~4小时;

2)在搅拌条件下,在30~70℃,加入多异氰酸酯及催化剂,控制温度在70~85℃保温反应2~3小时,得到预聚物;

3)将羧基单体和基于罗丹明衍生物的铁离子及ph响应双羟基荧光扩链剂溶解于有机溶剂中,然后加入步骤2)预聚物中,于80~85℃反应2~3小时;加入丙酮控制体系的粘度在200~300mpa.s,降温,加入中和剂进行中和反应,得到中和产物;

4)向中和产物中加入去离子水,高速剪切乳化,脱除溶剂,得到铁离子及ph响应水性荧光聚氨酯。

前述的金属离子及ph响应荧光扩链剂的应用,所述所述聚醚多元醇为聚氧化乙烯二醇、聚氧化丙烯二醇或三羟甲基丙烷-氧化丙烯聚醚的一种,其分子量为1000~3000;

所述多异氰酸酯为六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、甲苯二异氰酸酯、二苯基甲烷二异氰酸酯中的一种或多种;

所述催化剂为二丁基锡二月桂酸;所述羧基单体为二羟甲基丙酸或二羟甲基丁酸;所述中和剂为三乙胺或n、n-二甲基乙醇胺;其中和度为95~105%;

所述聚醚多元醇、多异氰酸酯、羧基单体与基于罗丹明衍生物的铁离子及ph响应双羟基荧光扩链剂的摩尔比为14~20:20~32:3~5:1~3;所述催化剂与羧基单体的摩尔比为0.02~0.05:3~5;所述去离子水与羧基单体的摩尔比为40~50:3~5;

所述有机溶剂为n-甲基-2-吡咯烷酮、二甲基甲酰胺(dmf)或二甲基亚砜(dmso);所述中和剂滴加的时间为20~25分钟;所述降温是指降温至35~45℃,所述中和反应的时间为30~35分钟;所述高速剪切的转速为3000~5000rpm,高速剪切乳化15~30分钟。

本发明的有益效果

(1)本发明的双羟基荧光扩链剂能对铁离子进行选择的荧光响应、对ph的改变发生响应性的荧光、且响应荧光能在可见光范围内激发。

(2)本发明双羟基荧光扩链剂结构新颖、制备工艺简单、产率高、生产成本低,适用于大规模生产。

(3)通过本发明所制备的水性荧光聚氨酯乳液固含较高,粘度低,储存稳定性好;乳胶膜耐水性、耐溶剂性能优异,且水性荧光聚氨酯能对ph的改变及铁离子产生响应性的荧光,能用于制备刺激相应性荧光涂层。

(4)采用本发明方法制备的荧光响应聚氨酯,由于荧光单体以共价键形式键合在聚氨酯侧链上,荧光物质分布均匀且荧光单体接入量可控,使得材料具有荧光响应强度及灵敏度可调的特性。

(5)本发明制得的铁离子及ph刺激响应水性荧光聚氨酯乳液固含量为49~56%,储存稳定性达9个月以上;粒径为160~210nm;成膜后吸水率4.0~6.1%,在铁离子刺激下,响应荧光薄膜在乙醇浸泡8小时后荧光强度下降0.8~1.8%;刺激响应水性荧光聚氨酯薄膜在ph<7的环境中,其发光反应时间约为10~30秒。

附图说明

图1为实施例1中间体炔基修饰的罗丹明衍生物的核磁共振氢谱;

图2为实施例3中铁离子及ph响应双羟基荧光扩链剂(式ii)的核磁共振氢谱;

图3为实施例4中铁离子及ph响应双羟基荧光扩链剂(式iii)的核磁共振氢谱;

图4为铁离子及ph响应双羟基荧光扩链剂的合成路线及其荧光刺激响应原理。

具体实施方式

下面结合实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。

本发明的实施例

实施例1

将6g罗丹明6g(12.5mmol)、3.5g炔丙胺(63.5mmol)及120ml的乙酸乙酯加入到250ml的反应瓶中,常温搅拌约5分钟至固体溶解,升温65℃,保温反应36小时。加入去离子水,过滤,滤饼用乙醇重结晶,得到浅红色固体,在50℃的鼓风干燥箱中干燥18小时,得到中间体炔基修饰的罗丹明衍生物,收率为80%。本实施例中中间体炔基修饰的罗丹明衍生物的核磁共振氢谱如图1所示。

实施例1制备的中间体炔基修饰的罗丹明衍生物用于实施例2~4中基于罗丹明衍生物的铁离子及ph响应双羟基荧光扩链剂的制备。

实施例2

将6g中间体炔基修饰的罗丹明衍生物(13.3mmol)、2.12g双羟基叠氮化物(式i的双羟基叠氮化合物,13.3mmol)、0.11g无水氯化铜(0.88mmol)和0.17g抗坏血酸钠(0.88mmol)溶于120ml的二甲基甲酰胺(dmf)中,用氮气置换空气三次,在氮气的氛围下,室温反应1小时。

反应结束后加入去离子水,有浅红色固体析出,过滤,用去离子水冲洗滤饼三次,滤饼于乙醇中重结晶,在35℃鼓风干燥箱中干燥48小时,得到铁离子及ph响应双羟基荧光扩链剂(式i),收率为80%。

实施例3

将6g中间体炔基修饰的罗丹明衍生物(13.3mmol)、2.47g双羟基叠氮化物(式ii的双羟基叠氮化合物,13.3mmol)、0.59g无水溴化铜(2.66mmol)和0.78g二水柠檬酸钠(2.66mmol)溶于120ml的四氢呋喃(thf)中,用氮气置换空气三次,在氮气的氛围下,室温反应1小时。

反应结束后加入去离子水,有浅红色固体析出,过滤,用去离子水冲洗滤饼三次,滤饼于乙醇中重结晶,在60℃鼓风干燥箱中干燥12小时,得到铁离子及ph响应双羟基荧光扩链剂(式ii),收率为81%。本实施例中铁离子及ph响应双羟基荧光扩链剂(式ii)的核磁共振氢谱如图2。

实施例4

将6g中间体炔基修饰的罗丹明衍生物(13.3mmol)、0.82g双羟基叠氮化物(式ii的双羟基叠氮化合物,4.43mmol)、0.56g无水碘化铜(1.77mmol)和0.52g柠檬酸钠(1.77mmol)溶于120ml的二甲基亚砜(dmso)中,用氩气置换空气三次,在氮气的氛围下,室温反应1小时。

反应结束后加入去离子水,有浅红色固体析出,过滤,用去离子水冲洗滤饼三次,滤饼于甲醇中重结晶,在50℃鼓风干燥箱中干燥24小时,得到铁离子及ph响应双羟基荧光扩链剂(式iii),收率为79%。本实施例中铁离子及ph响应双羟基荧光扩链剂(式iii)的核磁共振氢谱如图3。

实施例5

将14摩尔份聚醚多元醇(ppg)(1000)加热至130℃,保温除水1小时,得到去水的ppg(1000)。在搅拌下(200rmp)降温至30℃,向除水的ppg中滴加0.02摩尔份的二丁基锡二月桂酸及20摩尔份异佛尔酮二异氰酸酯,调整温度至70℃,保温反应1小时后升温至80℃反应2小时,得到预聚物。

将3摩尔份二羟甲基丙酸和1摩尔份实施例2制备的铁离子及ph响应双羟基荧光扩链剂溶解于10ml的n-甲基-2-吡咯烷酮,滴加到预聚物中(预聚物体系温度为80℃),控制滴加时间为20分钟,滴加完毕后,保温继续反应2小时,期间体系粘度会上升,适时加入丙酮调节体系黏度为300mpa.s。在400rmp的转速下,降温至45℃,加入三乙胺(中和度为95%)中和30分钟,得到中和产物。

向中和产物中缓慢加入40摩尔份去离子水,3000rpm高速剪切乳化15分钟,用旋蒸仪脱除乳液中的溶剂,得到铁离子及ph响应水性荧光聚氨酯乳液产品,固含量为49%,并在聚四氟乙烯板中成膜。

实施例6

将20摩尔份peg(3000)加热至110℃,保温除水3小时,得到去水的peg(3000)。在搅拌下(200rmp)降温至70℃,向除水的peg中滴加0.05摩尔份的二丁基锡二月桂酸及32摩尔份异佛尔酮二异氰酸酯,继续保温反应1小时后升温至85℃反应3小时,得到预聚物。

将5摩尔份二羟甲基丁酸和3摩尔份实施例3制备的铁离子及ph响应双羟基荧光扩链剂溶解于10ml的二甲基甲酰胺(dmf),滴加到预聚物中(预聚物体系温度为80℃),控制滴加时间为25分钟,滴加完毕后,保温继续反应3小时,期间体系粘度会上升,适时加入丙酮调节体系黏度为300mpa.s。在400rmp的转速下,降温至35℃,加入n、n-二甲基乙醇胺(中和度为105%)中和35分钟,得到中和产物。

向中和产物中缓慢加入50摩尔份去离子水,5000rpm高速剪切乳化30分钟,用旋蒸仪脱除乳液中的溶剂,得到铁离子及ph响应水性荧光聚氨酯乳液产品,固含量为56%,并在聚四氟乙烯板中成膜。

实施例7

将16摩尔份三羟甲基丙烷-氧化丙烯聚醚(2000)加热至120℃,保温除水2小时,得到去水的三羟甲基丙烷-氧化丙烯聚醚(2000)。在搅拌下(200rmp)降温至50℃,向除水的三羟甲基丙烷-氧化丙烯聚醚中滴加0.03摩尔份的二丁基锡二月桂酸及28摩尔份异佛尔酮二异氰酸酯,继续保温反应1小时后升温至82℃反应2.5小时,得到预聚物。

将5摩尔份二羟甲基丁酸和2摩尔份实施例4制备的铁离子及ph响应双羟基荧光扩链剂溶解于10ml的二甲基亚砜(dmso),滴加到预聚物中(预聚物体系温度为80℃),控制滴加时间为22分钟,滴加完毕后,保温继续反应2.5小时,期间体系粘度会上升,适时加入丙酮调节体系黏度为250mpa.s。在400rmp的转速下,降温至40℃,加入n、n-二甲基乙醇胺(中和度为100%)中和35分钟,得到中和产物。

向中和产物中缓慢加入48摩尔份去离子水,4000rpm高速剪切乳化20分钟,用旋蒸仪脱除乳液中的溶剂,得到铁离子及ph响应水性荧光聚氨酯乳液产品,固含量为50%,并在聚四氟乙烯板中成膜。

取2mg铁离子及ph响应双羟基荧光扩链剂溶于二甲基亚砜(dmso)中,加入盐酸水溶液,把ph值调至5,在可见光下立刻发出荧光;当把ph值调至大于7时,荧光立即消失。

取2mg铁离子及ph响应双羟基荧光扩链剂溶于二甲基亚砜(dmso)中,加入0.02mol/l的fecl3水溶液10微升,震荡,在可见光下立刻发出荧光。

分别取实施例5、实施例6及实施例7所得聚氨酯膜样品2g置于ph<7的水溶液中12秒后,在可见光下即可观察到该聚氨酯膜发出的荧光;取该发荧光聚氨酯膜在三个装满去离子水的烧杯中分别浸泡30秒,其荧光消失。

分别取实施例5、实施例6及实施例7所得聚氨酯膜样品2g,置于0.01mol/l的fecl3水溶液10秒,在可见光下,聚氨酯膜样品发出荧光;取该发荧光聚氨酯膜在50ml乙醇中浸泡8小时,取出烘干,并配置成相同浓度的dmf溶液分别测其荧光强度,测试结果如表1所示。

表1刺激响应荧光聚氨酯材料的耐溶剂性能对比

*注:荧光光谱测定的激发波长为520nm。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1