MOFs-贵金属有序复合材料及其制备方法和应用与流程

文档序号:18263853发布日期:2019-07-27 08:54阅读:665来源:国知局
MOFs-贵金属有序复合材料及其制备方法和应用与流程

本发明涉及一种复合材料基底,具体涉及一种用于痕量毒害物质检测的mofs-贵金属有序复合材料及其制备方法和应用,该mofs-贵金属有序复合材料也可称作mofs@贵金属表面增强拉曼散射基底。



背景技术:

sers技术是一种新型的痕量分析技术,它可以将待测物信号放大104-1014倍,甚至实现超痕量的单分子探测。且该技术具有样品无需预处理,检测速度快,可透过玻璃等透明器皿检测的强大能力,被圣地亚国家实验室定位为未来重点突破和持续推进的先进技术。sers的增强效应主要有物理增强和化学增强。传统的sers基底主要有金、银、铜等贵金属材料,然而,单一的贵金属材料已经不能满足sers基底的设计要求。复合材料由于其综合性能突出,近年来受到热捧。将复合材料用作sers基底也是研究热点之一,如银纳米和聚(苯乙烯-丙乙烯)复合材料,银纳米和氧化石墨烯复合材料,银纳米和氧化锌复合材料等。虽然这些复合材料可以使sers性能更加稳定,但在有机小分子的检测,如炸药的痕量检测方面仍面临巨大挑战。

金属有机框架结构(mofs)是一类由金属离子与有机配体链接形成的纳米功能材料,由于其具有可调节的孔洞结构和良好的光学性质,在化学传感领域具有非常广阔的应用前景。正因mofs具有良好的光学性能、高的比表面积和良好的吸附性能,使其在作为sers基底方面有巨大的潜力,李攻科等报道了mil-101作为sers基底用于检测对苯二胺和甲胎蛋白,王静等报道了uio-66和mof-199作为sers基底其增强效应能稳定存在40天以上。但是,目前报道的基底大都为粉末或者无规则薄膜,目前利用mofs作为有序的阵列基底材料的报道还不多见。



技术实现要素:

本发明旨在将mofs引入sers传感领域,克服现有技术的缺陷,提供一种有序生长在模板阵列上的mofs阵列基底,该有序阵列制备方法简单,工艺稳定,灵敏度高,选择性好,为有毒有害小分子的痕量sers传感探测提供一个性能优异的多孔复合材料。

为达到上述目的,本发明采用以下技术方案:

一种mofs-贵金属有序复合材料的制备方法,包括如下步骤:

步骤一、利用磁控溅射仪器,首先在模板材料上溅射均匀的金纳米层,得到镀金的基底;

步骤二,把镀金的基底浸泡在4-巯基苯甲酸(4-mba)溶液中一段时间,通过自组装形成s-金键使4-巯基苯甲酸(4-mba)原位生长在金纳米层表面,得到功能化4-mba的基底;

步骤三,将功能化4-mba的基底浸泡在醋酸铜(cuac)乙醇溶液中;

步骤四,将经步骤三处理的基底取出后浸泡在btc乙醇溶液中;

重复步骤三和步骤四可得到层层法生长的有序cubtc膜材料;

步骤五,在获得有序cubtc膜材料上通过磁控溅射银纳米颗粒,获得mofs-贵金属有序复合材料。

在步骤一中,利用磁控溅射仪器溅射金纳米层的操作中,溅射条件优选为:电流10ma,溅射时间1min-4min。

在步骤二中,把镀金的基底浸泡在4-巯基苯甲酸(4-mba)溶液中是将镀金的基底在体积5ml,浓度0.05m-0.1m的4-巯基苯甲酸乙醇溶液中浸泡3-5h,通过s-金键使4-巯基苯甲酸原位生长在金表面。

在步骤三中,将经步骤二处理的基底取出后浸泡在醋酸铜乙醇溶液中的浸泡条件优选醋酸铜乙醇溶液的浓度为10-3m,浸泡时间为20min-40min,反应温度为室温到60℃。

在步骤四中,将步骤三浸泡在醋酸铜乙醇溶液中修饰好的基底取出后,重新浸泡到btc乙醇溶液中,浸泡液的浓度为10-3m,浸泡时间为20min-60min,反应温度为室温到60℃;然后取出,用乙醇淌洗去掉未成键的btc。

完成步骤三和步骤四为一个完整的循环,醋酸铜和btc摩尔浓度比为1:1。

利用上述制备方法可以制备得到mofs-贵金属有序复合材料。

本发明还提供了mofs-贵金属有序复合材料的应用,它用于痕量毒害物质检测的mofs@贵金属表面增强拉曼散射基底,检测方法是:用拉曼光谱仪测定该基底的表面附着的有机污染物r6g,或4-atp的含量,检出限达到10-10mol/l。

本发明提供的用于痕量毒害物质检测的mofs@贵金属表面增强拉曼散射基底的制备方法简单有效,工艺稳定,灵敏度高,选择性好,有一定的实际应用价值。

附图说明

图1是本发明实施例1制备得到的cubtc@ag的示意图。

图2是本发明实施例1制备得到的表征5次cubtc@ag的形貌及复合物状态的sem图。

图3是本发明实施例2制备得到的循环10次cubtc@ag的形貌及复合物状态的sem图。

图4是本发明实施例3制备得到的循环20次cubtc@ag的形貌及复合物状态的sem图。

图5是利用cubtc@ag复合基底对有机染料r6g进行sers测试的示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例1

步骤一,有序孔模板的制作:首先,在硅片上利用光刻结合深硅刻蚀的方法,制备间距为4×4微米的硅柱阵列。随后,将硅柱剥离,留下直径为5×5微米的孔阵列结构,作为生长纳米材料的模板。

步骤二,利用层层生长法自组装生长mofs膜材料:首先将基底磁控溅射一层金,条件2min,电流10ma;然后把镀金的基底浸泡在5ml,0.1m的4-mba乙醇溶液中4h,通过s-au键使4-mba原位生长在金表面;取出基底并用乙醇淌洗去掉未成键的4-mba,得到4-mba功能化的基底,将4-mba功能化的基底浸泡在60℃,5ml,10-3m的cuac乙醇溶液中30min,然后取出,用乙醇淌洗去掉成键的cuac;再将基底浸泡在60℃,5ml,10-3m的btc乙醇溶液中1h,然后取出,用乙醇趟洗去掉成键的btc;(完成步骤4和5为一个完整的循环,cuac和btc浓度比为1:1);由此得到一个循环的cubtc膜材料。重复上述步骤5次,得到循环5次生长的cubtc;如扫描电镜图1,图2所示。

实施例2

步骤一和步骤二与实施例1基本相同,利用层层生长法自组装生长mofs膜材料;重复循环生长步骤15次,得到循环15次生长的cubtc膜材料;如扫描电镜图3所示。

实施例3

步骤一和步骤二与实施例1基本相同,利用层层生长法自组装生长mofs膜材料;重复循环生长步骤20次,得到循环20次生长的cubtc;如扫描电镜图4所示。

实施例4

利用上述实施例1所得的cubtc膜材料,利用磁控溅射仪分别溅射银纳米颗粒,获得cubtc-ag复合结构材料,并用于r6g的检测。如图5所示,实施例2和实施例3取得了与实施例1相当的效果。

从图5可以看出,利用该mofs-ag纳米复合基底作为sers基底对有机污染物罗丹明6g(r6g)进行检测,检出限达到10-10mol/l。

尽管这里参照本发明的解释性实施例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开的范围内,可以对主题组合布局的组成部件和/或布局进行多种变型和改进。除了对组成部件和/或布局进行的变型和改进外,对于本领域技术人员来说,其他的用途也将是明显的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1