一种基于聚酰胺‑胺树形分子的疏水涂料及其制备方法与流程

文档序号:12694586阅读:340来源:国知局

本发明涉及一种基于聚酰胺-胺树形分子的疏水涂料及其制备方法,属于疏水材料领域。

技术背景

疏水性是固体表面的一个重要性质,通常用液滴与固体之间的夹角进行衡量,即接触角。接触角越大,则固体表面的疏水性越好。通常将接触角小于90°的表面称为亲水表面,接触角大于90°的表面称为疏水表面。疏水表面因其具有许多优异的表面性能,如自清洁、防污、防腐蚀、防氧化等特性,在自清洁、流体减阻、生物医学材料等工农业生产、商业应用、国防建设领域中有着广阔的应用前景。

实现疏水表面的途径主要有两种:一是在粗糙表面上修饰低表面能物质,通常用于制备疏水表面的低表面能材料主要有聚硅氧烷、氟碳化合物及其他有机物(如聚乙烯、聚苯乙烯等);二是在疏水材料表面构建类似荷叶表面的粗糙结构,制备方法有无机纳米粒子(如TiO2、SiO2、ZnO等)修饰、激光/等离子体/化学刻蚀、模板法、静电纺丝法、溶胶-凝胶、自组装、电化学沉积及化学气相沉积等许多种类。但是在上述方法中,大部分都需要对所制备表面使用进行形貌修饰,或者对所用粒子(如二氧化硅、金属氧化物粒子等)预先进行表面处理,制备过程繁琐,成本与能耗相对较高,并且部分疏水涂料含有氟等对人体有毒有害元素,这对疏水涂料的制备和使用带来了很大的不便。因此开发一种制备简便,不含有毒元素的疏水涂料具有很大的意义。

聚酰胺-胺(PAMAM)树形分子是一种具有三维分子结构、高度支化且高度有序的树枝状化合物,它除了具有树枝化合物的共性外,还具有良好的热稳定性、水溶性、特殊的粘度与表面张力等特性,除了在生物医学、材料修饰等方面显示出巨大的应用前景外,在废水处理、石油开采、气体净化或分离等化工领域也已展现出良好的用途。但因为聚酰胺-胺树形分子内部含有大量亲水性的酰胺基团,整体呈现亲水性,如何屏蔽内部亲水基团是将聚酰胺-胺树形分子制备为疏水涂料的一个难点。因此还未有将聚酰胺-胺树形分子应用于疏水涂料的报道。



技术实现要素:

有鉴于此,本发明的目的之一在于提供一种基于聚酰胺-胺树形分子的疏水涂料;目的之二在于提供一种基于聚酰胺-胺树形分子的疏水涂料的制备方法,该方法操作简便、不含氟元素,无需对基底提前进行表面处理。

为实现本发明的目的,提供一下技术方案:

一种基于聚酰胺-胺树形分子的疏水涂料,所述疏水涂料的配方中各组分及其摩尔比为:树形分子:疏水表面改性剂=1:64~1:128;

所述树形分子为表面全部为氨基的聚酰胺-胺树形分子;

所述疏水表面改性剂为丙烯酸长链烷基酯,其结构式如下:

n≥6;

所述丙烯酸长链烷基酯优选丙烯酸十六酯、丙烯酸十八酯或丙烯酸二十二酯。

优选的,所述树形分子为4.0代以上的聚酰胺-胺树形分子。

一种基于聚酰胺-胺树形分子的疏水涂料的制备方法,所述方法具体步骤如下:

(1)将树形分子溶解到有机溶剂a中溶解得到浓度为3×10-3~3×10-4mol/L溶液1;

(2)将疏水表面改性剂溶解到有机溶剂b中,溶解得到浓度为0.5~0.01mol/L的溶液2;

(3)将溶液1搅拌加热至20~50℃,于氮气氛围及搅拌条件下,将溶液2以2~3s/滴的速度滴加至溶液1中,氮气气氛下恒温反应6~18h,得到溶液3;

(4)在50℃~55℃,0.098~0.1MPa真空度下,将溶液3旋蒸除去溶剂,得到一种基于聚酰胺-胺树形分子的疏水涂料;

步骤(1)所述有机溶剂a优选为甲醇、乙醇或异丙醇;

步骤(2)所述有机溶剂b优选为正己烷或环己烷;

有益效果

1.本发明的疏水涂料涂覆于复合材料基底表面后,不仅疏水性能良好,而且无需使用低表面能物质进行表面修饰或预先对所使用粒子进行修饰,可用于疏水表面的大面积制备和长期使用。

2.本发明所述树形分子疏水涂料不含氟元素,对环境友好,对人体无毒。

3.本发明的制备方法具有简单易行,无需大型仪器设备,无需后续处理的特点。

附图说明

图1是实施例1制备的疏水定性滤纸的水静态接触角图。

具体实施方式

下面结合具体实施例来详述本发明,但并不因此而限制本发明的保护范围。

接触角测量仪:采用Dataphysics OCA20型接触角测试仪测量水滴在实施例制备的疏水定性滤纸表面上的接触角,水滴体积为5毫升。通过测量同一疏水定性滤纸表面至少5个不同位置对水的接触角,获得疏水定性滤纸表面的平均水接触角。

对于无疏水涂料修饰的定性滤纸,测试其疏水性:

实施例1

(1)在50ml三口烧瓶中加入4.0代聚酰胺-胺树形分子0.5000g,加入甲醇25g,搅拌充分溶解,得到溶液1。

(2)将1.52g丙烯酸十八酯溶解于20g环己烷,搅拌充分溶解,得到溶液2。

(3)将溶液1搅拌加热至20℃,于氮气氛围及搅拌条件下,将溶液2以2~3s/滴的速度滴加至溶液1中,氮气氛围下20℃反应6h,得到溶液3。

(4)在50℃,0.099MPa真空度下将溶液3旋蒸除去溶剂,得到一种基于聚酰胺-胺树形分子的疏水涂料。

以定性滤纸(平均孔径为19微米)为基底,并将其浸没于质量分数为2%的实施例1制备的疏水涂料的环己烷溶液中,沉积5分钟。将所述定性滤纸取出,放入60℃的真空干燥箱中真空干燥30min,取出自然晾干,得到覆有一种基于聚酰胺-胺树形分子的疏水涂料的定性滤纸(以下简称疏水定性滤纸),使用接触角测量仪测试疏水定性滤纸对水的接触角为128.0°,如图1所示。

实施例2

(1)在50ml三口烧瓶中加入4.0代聚酰胺-胺树形分子0.5000g,加入乙醇25g,搅拌充分溶解,得到溶液1。

(2)将2.26g丙烯酸十六酯溶解于20g环己烷,搅拌充分溶解,得到溶液2。

(3)将溶液1搅拌加热至30℃,于氮气氛围及搅拌条件下,将溶液2以2~3s/滴的速度滴加至溶液1中,氮气氛围下30℃反应18h,得到溶液3。

(4)在50℃,0.099MPa真空度下将溶液3旋蒸除去溶剂,得到一种基于聚酰胺-胺树形分子的疏水涂料。

以定性滤纸(平均孔径为19微米)为基底,并将其浸没于质量分数为2%的实施例2制备的疏水涂料的环己烷溶液中,沉积5分钟。将所述定性滤纸取出,放入60℃的真空干燥箱中真空干燥30min,取出自然晾干,得到疏水定性滤纸,使用接触角测量仪测试疏水定性滤纸对水的接触角为130.1°。

实施例3

(1)在50ml三口烧瓶中加入4.0代聚酰胺-胺树形分子0.5000g,加入异丙醇25g,搅拌充分溶解,得到溶液1。

(2)将2.02g丙烯酸二十二酯溶解于20g环己烷,搅拌充分溶解,得到溶液2。

(3)将溶液1搅拌加热至50℃,于氮气氛围及搅拌条件下,将溶液2以2~3s/滴的速度滴加至溶液1中,氮气氛围下50℃反应6h,得到溶液3。

(4)在50℃,0.099MPa真空度下将溶液3旋蒸除去溶剂,得到一种基于聚酰胺-胺树形分子的疏水涂料。

以定性滤纸(平均孔径为19微米)为基底,并将其浸没于质量分数为2%的实施例3制备的疏水涂料的环己烷溶液中,沉积5分钟。将所述定性滤纸取出,放入60℃的真空干燥箱中真空干燥30min,取出自然晾干,得到疏水定性滤纸,使用接触角测量仪测试疏水定性滤纸对水的接触角为132.0°。

实施例4

(1)在50ml三口烧瓶中加入4.0代聚酰胺-胺树形分子0.5000g,加入异丙醇25g,搅拌充分溶解,得到溶液1。

(2)将1.33g丙烯酸十八酯溶解于20g环己烷,搅拌充分溶解,得到溶液2。

(3)将溶液1搅拌加热至35℃,于氮气氛围及搅拌条件下,将溶液2以2~3s/滴的速度滴加至溶液1中,氮气氛围下35℃反应12h,得到溶液3。

(4)在50℃,0.099MPa真空度下将溶液3旋蒸除去溶剂,得到一种基于聚酰胺-胺树形分子的疏水涂料。

以定性滤纸(平均孔径为19微米)为基底,并将其浸没于质量分数为2%的实施例4制备的疏水涂料的环己烷溶液中,沉积5分钟。将所述定性滤纸取出,放入60℃的真空干燥箱中真空干燥30min,取出自然晾干,得疏水定性滤纸,使用接触角测量仪测试疏水定性滤纸对水的接触角为133.6°。

实施例5

(1)在50ml三口烧瓶中加入4.0代聚酰胺-胺树形分子0.5000g,加入异丙醇25g,搅拌充分溶解,得到溶液1。

(2)将1.33g丙烯酸十八酯溶解于20g正己烷,搅拌充分溶解,得到溶液2。

(3)将溶液1搅拌加热至20℃,于氮气氛围及搅拌条件下,将溶液2以2~3s/滴的速度滴加至溶液1中,氮气氛围下20℃反应6h,得到溶液3。

(4)在50℃,0.099MPa真空度下将溶液3旋蒸除去溶剂,得到一种基于聚酰胺-胺树形分子的疏水涂料。

以定性滤纸(平均孔径为19微米)为基底,并将其浸没于质量分数为2%的实施例5制备的疏水涂料的环己烷溶液中,沉积5分钟。将所述定性滤纸取出,放入60℃的真空干燥箱中真空干燥30min,取出自然晾干,得到疏水定性滤纸,使用接触角测量仪测试疏水定性滤纸对水的接触角为125.1°。

实施例6

(1)在50ml三口烧瓶中加入4.0代聚酰胺-胺树形分子0.5000g,加入异丙醇25g,搅拌充分溶解,得到溶液1。

(2)将1.33g丙烯酸十八酯溶解于20g正己烷,搅拌充分溶解,得到溶液2。

(3)将溶液1搅拌加热至20℃,于氮气氛围及搅拌条件下,将溶液2以2~3s/滴的速度滴加至溶液1中,氮气氛围下20℃反应6h,得到溶液3。

(4)在50℃,0.099MPa真空度下将溶液3旋蒸除去溶剂,得到一种基于聚酰胺-胺树形分子的疏水涂料。

以定性滤纸(平均孔径为19微米)为基底,并将其浸没于质量分数为2%的实施例6制备的疏水涂料的环己烷溶液中,沉积5分钟。将所述定性滤纸取出,放入60℃的真空干燥箱中真空干燥30min,取出自然晾干,得到疏水定性滤纸,使用接触角测量仪测试疏水定性滤纸对水的接触角为122.9°。

本发明包括但不限于以上实施例,凡是在本发明精神的原则之下进行的任何等同替换或局部改进,都将视为在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1