利用改进的雾和雾流的雾化前体沉积设备和方法

文档序号:3765229阅读:149来源:国知局
专利名称:利用改进的雾和雾流的雾化前体沉积设备和方法
背景技术
1、发明领域本发明涉及集成电路中薄膜电元件的制作材料和方法,特别涉及在雾化沉积设备中用来沉积薄膜的液态前体溶液。
2、现有技术如所公知,集成电路中的电元件由各薄膜层构成,这些薄膜层由布线层连接、由绝缘层隔开。硅玻璃之类的简单薄膜材料和化合物使用液态沉积工艺形成。复杂化合物、即含有两种元素以上的化合物在现有技术中总是使用真空喷涂(即电子束、D.C.、R.F.、离子束等)、激光烧蚀、包括有机金属化学气相沉积(MOCVD)在内的化学反应气相沉积和使用溶胶-凝胶(醇盐)或羧酸盐的涂液法之类工艺形成。但是,这些方法中没有一种方法能生成其特性可完全满意地使用在集成电路中的金属氧化物。在喷涂除外的所有这些现有工艺中,所生成的薄膜存在重大物理缺陷,例如开裂、剥落等。
现有工艺、特别是喷涂根本无法可靠、重复生成理想配比在集成电路所要求的容差范围内的金属氧化物。某些工艺、例如MOCVD对人有害或有毒。大多数工艺需要会破坏集成电路的高温、造成待覆盖基片的很差的“阶梯覆盖”,例如现有技术造成薄膜在基片上任何不连续的边界处稍稍过度沉积。在现有液相沉积工艺中,厚度无法控制在制作集成电路所要求的精度范围内。因此,迄今为止,除了一个或两个成本较高的特殊应用场合、例如在期望寿命不长的铁电集成电路中使用喷涂的钛酸铅锆,集成电路中不使用金属氧化物或其他复杂材料。
McMillan等人的美国专利5,456,945使用超声波转换器在沉积室中生成雾或气溶胶,从而对现有技术作出重大改进。在沉积室中,在一基片支架与一挡板之间施加一DC电压,造成气溶胶粒子极化。用流率不变的载气、例如氩把气溶胶传送到集成电路基片或晶片上,以进行液态薄膜的沉积。这些液态薄膜经干燥、退火,生成集成电路的薄膜。
当在5,456,945专利所述雾化沉积设备中处理前体时,对液相前体的选择影响到阶梯覆盖、液态薄膜沉积率和最终薄膜的形态。使用某些液态前体溶液造成没有材料按要求沉积。有的溶液的阶梯覆盖很差,而有的溶液阶梯覆盖虽好,但薄膜形态很差。因此要求工作在雾化沉积设备中的液态前体溶液既能提供良好的阶梯覆盖,又能提供良好的薄膜形态。还要求确定用来设计和开发在雾化沉积设备中合适工作的前体溶液的各参数。
方案为克服上述问题、对现有技术作出改进,本发明提供一种用于雾化沉积设备的液态前体溶液中的助溶剂系统。液态前体在雾化沉积设备中经处理生成的金属氧化物薄膜具有良好阶梯覆盖和良好薄膜形态,从而可用于集成电路。此外,该助溶系统提高了薄膜沉积率。
本发明方法和设备使用一种液态前体溶液生成金属化合物。该溶液在雾化沉积设备中经处理生成具有良好阶梯覆盖和良好形态的薄膜。该液态前体包括一金属有机部份,该金属有机部份包括至少一种金属有机化合物。该金属有机部份中的金属总有效含量在液态前体溶液薄膜的退火过程中生成固体金属化合物。例如,该有金属有机部份可含有在氧退火中生成钛酸钡锶(BST)的钡、锶和钛金属。对于这些金属所得BST的与液态前体溶液对应的理想配比小于这些金属在退火过程中的任何挥发损耗。
该金属有机部份与一助溶系统混合。该助溶系统包括对所述金属有机部份增溶的第一溶剂和把液态前体溶液的表面张力减小到每厘米10-40达因的一稀释剂。表面张力的范围最好为14-34、更好为16-26。这些表面张力值为在使用环境温度下的测量值。该环境温度最好约为20℃。该金属有机部份、该第一溶剂和该稀释剂形成一均质化合物。
可用作稀释剂或表面张力减小剂的合适材料一般为低分子量极化碳氢化合物,例如叔丁基醇、正丁二胺、二乙胺、乙醚和异戊烷。甲醇特别可与2-甲氧基乙醇溶剂一起使用。甲基·乙基酮特别可与二甲苯、辛烷和其他非极化溶剂一起使用。也可使用氨气之类的无机化合物。稀释剂不得在溶液中反应,但如溶液在消耗前没有根本的改变,容许轻度反应。最好是,稀释剂在空气中的表面张力为稀释剂加入其中的液态前体溶液的表面张力的75%或以下。这一要求意味着,稀释剂在20℃下的表面张力通常小于每厘米20达因。稀释剂如要使用在雾化沉积设备中,其在大气压下的沸点应大于60℃。当稀释剂的体积百分比占溶液中所有溶剂的60%时,可用这些溶液生成形态良好的薄膜。
本发明雾或气溶胶为液体粒子在一气体中的悬浮体。该雾或气溶胶中的粒子由液体前体溶液构成。粒子的大小一般在胶态大小范围内,即,在至少一个单一维度上为1nm-1μm。在该大小范围内,粒子的表面积比体积大得多,从而表现出不寻常的现象,即粒子不因重力从溶液中沉淀出来,且常常小到足以穿过过滤膜片。胶态大小对气溶胶的形成无关紧要。这些粒子必须沉积在集成电路基片、例如硅晶片上,在基片上生成液态前体溶液薄膜。
一雾化沉积设备用来雾化液态前体。优选的雾化沉积设备包括超声波或文丘里装置,文丘里装置使用公知的汽车汽化器原理雾化该液体。这些装置需要根据粒子大小的经验测量值进行手工调节。
下述方程(1)描述由一超声波雾发生器中的超声波转换器生成的粒子的直径(1)D=12*πRa2*γρ3]]>其中,D为粒子直径,Fa为超声波转换器生成的超声波的频率,γ为液态前体溶液的表面张力,ρ为液态前体溶液的密度。超声波能量的强度对粒子直径没有影响,除非液态前体溶液因超声波能量过多、转换成热量而开始沸腾。超声波能量的强度影响到所生成的雾的体积,但一般不影响到粒子直径。
从方程(1)显然可见,如液态前体溶液的表面张力或密度落在生成胶态粒子的范围之外,会生成在胶态范围之外的粒子。主要的问题是粒子过大,因为这些粒子会形成液坑或液珠而弄湿基片,从而降低薄膜质量。
按照方程(1),通过调节液态前体溶液的表面张力γ或密度ρ可改进粒子直径D。表面张力的减小或密度的增加可形成更小粒子。碳氢化合物溶液的密度的增加一般造成粘度的增加以及表面张力的相应增加。因此,密度的增加一般为表面张力的相应增加克服或超过。另一方面,可通过加入表面张力减小剂减小粒子大小。稀释剂或表面张力减小剂的作用的一部分可被溶液密度的相应减小抵销。
(2)γ=γ1X1+γ2X2-βX1X2其中,γ为所改变的溶液表面张力(达因/厘米),γ1为第一溶液的表面张力(达因/厘米),γ2为第二溶液的表面张力(达因/厘米),X1为用在总溶液中的摩尔百分比表示的第一溶液的浓度,X2为用在总溶液中的摩尔百分比表示的第二溶液的浓度,β为根据经验得出的随温度而变的常数。
也可通过加热溶液来减小表面张力。可用超声波加热溶液。加热溶液所造成的一个问题是,加热过度会造成溶液沸腾,结果较轻溶剂和表面张力减小剂发生分馏。按照方程(2),最佳的表面张力减小剂的沸点较低。较轻溶液成分的蒸馏是十分有害的,因为这些成分会凝结在雾化沉积设备上。这一凝结由于凝结材料的滴落而造成该设备无法工作。
使用该液体前体的一雾化沉积设备中有一面积与基片大致相同的挡板。在这里,大致相同的面积的意思是,挡板在基片平面中的面积与基片面积只相差10%或以下。挡板的光洁度容差为所述挡板与所述基片之间的平均距离的5%。如使用面积和容差不在这些参数范围内的挡板,所沉积薄膜的厚度均匀性就会下降。
用来制作集成电路的该雾化沉积设备包括一沉积室;该沉积室中的一基片,该基片界定一基片平面;液体前体雾化装置;以及使该雾均匀流过该基片、在该基片上形成液体前体的薄膜的装置,其中,使雾流动的该装置包括基片上方一与基片平行、相间距的挡板,该挡板在一与基片平行的平面中的面积与该基片在基片平面中的面积大致相同。最好是,挡板的光洁度容差为所述挡板与所述基片之间的平均距离的5%。最好是,该设备还包括把沉积室保持在真空下的装置、在挡板与基片之间施加一DC偏压的装置、调节挡板以改变挡板与基片之间距离的装置。最好是,该设备包括靠近并环绕在基片一边的外围、在与基片平面平行的方向上把雾注入沉积室中的一注入喷嘴组件、靠近并环绕在基片的另一边的外围的一排气组件,该基片、该挡板、该注入喷嘴组件和该排气组件一起在该沉积室中界定一半封闭区域。最好是,该设备包括一在雾沉积在基片上时在一与基片平面平行的平面中转动该基片的装置和一对在沉积室中流动的雾进行紫外线辐射的装置。最好是,当雾在沉积室中流动时,沉积室大致保持在环境温度下。
温度变化时,表面张力和雾粒大小相应发生变化。这些变化可用已知信息、例如下列方程计算(3)γ=a-bT其中,γ为表面张力(达因/厘米),T为温度(℃),a和b为经验常数,例如见J.J.Jasper,J.Phys.Chem Ref.Data 1,841pp.5.91-5.113(1972)。超声波雾化造成对液态前体不希望有的加热,最终造成液体沸腾。液态前体的温度最好保持在造成液态前体沸腾的大小以下,该温度通常低于40℃。
从下面结合附图的详细说明中可清楚看出本发明的其他目的、优点和特征。
附图的简要说明

图1为本发明雾化沉积系统的沉积室的侧视剖面图;图2为图1系统的进气和排气喷嘴组件的平面视图;图3为图1和2系统的进气喷嘴的放大平面视图;图4为本发明雾化沉积系统的一雾发生器的侧视示意图;图5为本发明一缓冲室及其进气和排气的平面示意图;图6为本发明集成电路制作过程的流程图;图7为本发明一雾化沉积系统的俯视图;图8和9示出一挡板组件和基片处于两种不同位置,表明挡板与基片之间的关系可调节;图10为示出紫外线辐射源放置在本发明沉积室中的透视图;图11为用本发明设备和方法制作的集成电路晶片的一部分的截面侧视剖面图;图12为按本发明沉积的各种薄膜的光学(椭率计)层厚对BST摩尔浓度的曲线图;图13为厚度、介电常数和tanδ对加入用来制成各种BST薄膜的9.5ml的0.239M BST溶液中的甲醇的曲线图;以及图14为各种薄膜样本的BST摩尔浓度对阶梯覆盖比的曲线图。
对优选实施例的说明1、概要-方法和结果图6示出本发明工艺优选实施例的流程图,图11示出由该工艺制作的集成电路的一部分。在步骤P1提供基片5。在本领域中,“基片”一词的一般意义指在其上沉积所要沉积的一层1130的任一材料层或若干材料层5,其特殊意义指在其上形成集成电路1110的硅晶片1122。除非另有所指,基片一词在本文中指使用本发明工艺和设备在其上沉积一层材料的任何物体。在步骤P1中提供的基片最好包括一P型硅晶片1122。
在步骤P2,制作集成电路层1124、1126和1128,形成在其上沉积一金属氧化物层1130的一基片5。首先,用湿法形成一厚约500nm(纳米)的二氧化硅绝缘层1124。一般,在沉积钛层1126、铂层1128、介电层1130和铂层1132后把二氧化硅层蚀刻成一预定集成电路装置1112所需形状。钛金属的一薄层1126最好使用就地喷涂沉积在二氧化硅1124上,然后一厚200nm的铂电极最好使用就地喷涂沉积在钛1126上。“就地”的意思是,喷涂钛和铂时都保持真空。钛层1126可有可无。当使用钛层1126时,它扩散入二氧化硅和铂中,把铂1128粘接到二氧化硅1124上。然后使用下文所述本发明设备和方法沉积一层材料1130,例如钙钛矿的钛酸铅锆或钛酸钡锶或分层超点阵材料的钽酸锶铋或钽酸锶铋铌。另一厚200nm的铂层1132沉积在层1130上。晶片1110然后经退火、用光掩模工艺形成图案、向下蚀刻到电极层1128,生成图11剖面图所示电容集成电路装置1112,为对该装置进行测试,测试装置的一引线与铂电极层1128连接,另一电极层1132与一与测试装置另一引线连接的细探针接触。
在步骤P6制备一底剂。在该优选实施例中,该步骤包括提供一定数量的单一溶剂,例如2-甲氧基乙醇、二甲苯或己酸丁酯,虽然也可把上述三种溶剂之类的若干溶剂组合在一起。该溶剂、不管是单一溶剂还是若干溶剂的组合,为前体的最终溶剂,即,在步骤P22沉积前体的溶剂,这在下文交代。下面例示出可用作底剂的溶剂及其沸点醇,例如1-丁醇(117℃)、1-戊醇(117℃)、2-戊醇(119℃)、1-己醇(157℃)、2-己醇(136℃)、3-己醇(135℃)、2-乙基-1-丁醇(146℃)、2-甲氧基乙醇(124℃)、2-乙氧基乙醇(135℃)和2-甲基-1-戊醇(148℃);酮,例如2-己酮(甲基乙基酮)(127℃)、4-甲基-2-戊醇(甲基异丁酮)(118℃)、3-庚酮(丁基乙基酮)(123℃)和环己酮(156℃);酯,例如乙酸丁酯(127℃)、2-甲氧乙基乙酸酯(145℃)和2-乙氧乙基乙酸酯(156℃);醚,例如2-甲氧乙基醚(162℃)和2-乙氧乙基醚(190℃);以及芳香碳氢化合物,例如二甲苯(138℃-143℃)、甲苯(111℃)和乙基苯(136℃)。
在步骤P8把底剂沉积到基片5上。在该优选实施例中,如下详述,该底剂经雾化、经-滤网33筛选后在一沉积室12中沉积到基片5上。“雾”一词在本文中定义为一气体携带的细液滴。“雾”包括气溶胶,气溶胶一般定义为固态或液态粒子在一气体中的胶态悬浮体。雾还包括蒸汽、烟雾以及前体溶液在一气体中的其他雾化悬浮体。由于上述各词为流行用法,因此其定义并不精确、相互重叠、不同作者使用不同的词。在本文中,气溶胶一词包括Aerosol Science andTechnology,(Parker C.Reist,McGraw-Hill,Inc.,New York,1983)中的所有悬浮体。“雾”在本文中的意义比气溶胶更宽泛,包括气溶胶所不包括的悬浮体、蒸汽或烟雾。如虚线P11和P12所示,可在前体雾流入或流经沉积室12时、也可在前体雾沉积在基片5上后对前体雾进行紫外线(UV)辐射。但是,在优选实施例中,跳过步骤P11和P12。
我们发现,在沉积前体前使用底剂较之不使用底剂,所生成的薄膜的形态更好、漏电量小。
在步骤20制备前体溶液。该前体最好为按美国专利申请08/132,744所述制备的烷氧基羧酸金属盐。溶液制备的一详细例子见下文。通常在步骤20制备、储存一定量的前体备用。紧在沉积前体前,进行溶剂交换步骤和浓度调节步骤或此两者,以提供用于沉积的最佳前体。溶剂交换步骤的详情见美国专利申请08/165,082。该最终前体溶液最好用作在沉积底剂后整个沉积过程的唯一前体源。但是,本发明也可使用并联或串联的多个前体源。特别是,可并联使用其他前体源对最终所需化合物进行掺杂或改良。
本发明所使用前体溶液为稳定溶液。在这里,“稳定”的意思是,在前体形成过程中形成所需最终化合物的关键氧-金属键,这些键在形成后是稳定的。这有两个方面的意思。首先,溶液在较长储存期中不发生反应或质量不下降。其次,前体形成时所形成的键在整个沉积过程中保持稳定,构成所需最终化合物中的至少一部分键。即,前体中的金属-氧键保持稳定,在沉积过程后成为最终所需金属氧化物的金属-氧键。
本发明原理在步骤P21中实施。稀释剂或表面张力减小剂加入已在步骤P20制备的前体溶液中。或者,也可在步骤P20中制备表面张力减小剂已到位的前体溶液;但是,典型表面张力减小剂的低沸点在这种情况下常常防止溶液蒸馏而除去水和低沸点醚。溶液中的水和低沸点醚转而温和反应,在若干月中降低溶液稳定性。
在步骤P22中,经筛选的前体溶液雾在环境温度下均匀流过和流到基片5上。在这里,环境温度指周围温度。即,除了来自周围的热量没有其他热量加到基片上。使用UV辐射时,周围温度比室温稍高,不使用UV辐射时,在真空下处理基片,环境温度可稍低于室温。因此,环境温度一般为-50℃-100℃。环境温度最好为15℃-40℃。
如下所述,该流动过程的关键一点是,雾从多个进气孔流过基片5后从多个排气孔流出基片5上方区域,这些孔环绕分布在基片5周边旁,在基片5上生成一均匀分布的雾流。
在沉积过程中、沉积过程后或在沉积过程中和后,前体溶液经处理在基片5上生成一固体材料薄膜。在这里,“处理”指下列处理的任一处理或组合受真空作用、紫外线辐射、电极化、干燥、加热和退火。在该优选实施例中,在沉积过程中在步骤P24中对前体溶液进行紫外线辐射。最好在步骤P28中还在沉积后进行紫外线辐射。在沉积后,在该优选实施例中沉积在基片5上的液体材料最好还在真空下保持一段时间,然后加热、退火。UV固化过程的化学机理尚不完全清楚。据说,UV有助于构成所需最终化合物的金属氧化物分子或其他元素与溶剂和有机物或前体化合物的其他生成物离解。
在步骤P26中进行干燥,除去基片上溶液薄膜中的易挥发有机部分。前体最好在一干燥大气中、温度为约200℃-500℃的热板上干燥足够除去液态薄膜中的所有有机材料的时间后留下金属氧化物。这一时间最好为约1-30分钟。最好在空气中以400℃温度干燥约2-10分钟。如基片5周围的大气抽成真空,上述温度可相应降低。也可在干燥步骤中使用快速热处理,例如使用卤素灯。
干燥后的前体在步骤30中经退火生成所需金属氧化物层1130(见图11)。该退火步骤称为第一退火,以与其后退火步骤相区别。第一退火最好在氧气中在500℃-1000℃温度下进行30分钟-2小时。一般在700℃-800℃的温度下进行步骤30约80分钟,最优选的退火温度为750℃。最好在氧气中以推/拉过程进行步骤30,该推/拉过程包括“推”入炉子中10分钟,从炉子中“拉”出10分钟。所述退火时间包括热蔓延进出炉子所花时间。
铁电薄膜之类许多复杂薄膜的一个重要参数是其厚度必须十分薄(例如20nm-500nm)。用本发明工艺和设备很容易获得如此薄的薄膜。需要时,也可用本发明生成厚得多的薄膜。
本发明非常适合于沉积高质量的化合物薄膜,例如铁电体、超导体、具有高介电常数的材料和宝石等。例如可用本发明沉积其一般组成为ABO3的铁电材料薄膜,包括PbTiO3、PbxZryTiO3、PbxLayZrzTiO3和YMnO3,其中,Y代表任何稀土元素。此外,也可用本发明沉积钛酸钡锶[(Ba,Sr)TiO3]、钛酸锶(SrTiO3)以及其他多元素化合物薄膜,这些多元素化合物例如见申请日为1992年10月23日、题为“LayeredSuperlattice Materials for Ferroelectric,High DielectricConstant,and Integrated Circuit Fabrication.”的美国专利申请965,190。
2、沉积设备图1示出本发明一优选实施例的薄膜沉积设备1。设备1包括一沉积室2,该沉积室中有一基片支架4、一挡板6、一进气喷嘴组件8、一排气喷嘴组件10和一紫外线辐射源16。沉积室2包括一主体12,一可牢牢盖住主体12的盖14,从而在沉积室2中界定一封闭空间。盖14用铰链15可枢转地连接在主体12上。工作时,雾和惰性载气以方向43用管45从进气喷嘴组件8输入,从而雾沉积在基片5上。多余的雾和载气从排气喷嘴10排出沉积室2。
基片支架4由两块不锈钢之类导电材料圆板3、3’构成,顶板3与底板(场板)3’用一绝缘材料、例如Delrin之类的乙缩醛绝缘。在一实施例中,使用一5英寸直径基片5,直径一般为6英寸的基片支架支撑在一转轴20上,该转轴与一电动机18连接,因此支架4和基片5在沉积过程中可转动。一绝缘轴22电绝缘基片支架4和支撑其上的基片5与加到沉积室主体12上的DC偏压,从而在基片支架4与挡板6之间(经主体12)生成DC偏压。这一DC偏压可比方说用来场极化在基片5上沉积的薄膜。绝缘轴22用联轴节21与转轴20连接。电源102用引线106在接头108处与沉积室2的主体12连接,用引线104经馈入装置23与铜套25连接,从而在场板3’与挡板6之间形成一DC偏压。
挡板6用不锈钢之类导电材料制成,其大小足以平行地伸展在基片5上方,从而迫使经管26和喷嘴组件8注入的气化源或雾在挡板6与基片支架4之间基片5上方流动。挡板6的直径最好与基片5相同。我们发现,如挡板6在一与基片平行的平面中的面积与基片面积之差为10%或以下,可获得最佳结果。即,挡板6的面积不比基片5面积大或小10%。如图1所示,挡板6最好用若干杆24与盖14连接,从而每当打开盖时挡板6离开基片5。
图8和9示出挡板6与基片支架4的距离不同。各杆24一般为与沉积室盖14连接的不锈钢杆。每一杆24有一孔,孔中有一螺栓35(图1)把该杆24与挡板6连接在一起。每一杆24中攻有丝口,该丝口中的一定位螺丝36把螺栓35牢牢固定在杆24上。旋松定位螺丝36、重新调整杆24与螺栓25的相对位置后旋紧定位螺丝36,无需从盖14上取下杆24即可把每一杆的有效长度调节达1/2英寸。各杆24可卸下,换上长度L、L’不同的杆24组,以根据源材料、流率等粗调挡板6与基片支架4(和基片5)之间的相应间距S、S’。例如,可调节杆长L使间距S为0.10-2.00英寸。一旦完成粗调,还可如上所述调节杆24。因此,杆24、螺栓35和定位螺丝35构成一调节挡板36的调节装置。当沉积如下制备的钛酸钡锶前体溶液时,基片5与挡板6之间的间距最好为约0.34英寸-0.4英寸。最好是,挡板6的光洁度容差为挡板6与基片5之间距离的5%。即,基片5与挡板6之间的距离在任何一点上与任何另一点上的差别为基片5与挡板6之间的平均距离的5%或以下。例如,如基片5与挡板6之间的平均距离为0.38英寸,则基片上任一点离开挡板的距离不大于0.40英寸或不小于036英寸。
我们发现,在上述容差内的挡板、即其面积与基片大致相同、光洁度容差为5%或以下的挡板比上述容差范围外的挡板提供更佳厚度均匀性和更高沉积率。
图7为本发明一实施例的设备的俯视图。如图7所示,一0-1000托温度补偿电容压力计710监测沉积室2中的压力,其信号控制一下游控制阀(未示出)以保持沉积室2中的精确压力。打开阀713可把沉积室2抽成不到5.0×10-6托的高度真空。沉积室2的高度真空便于在沉积操作前吸收室壁上和该室内一基片5上的潮气。
沉积操作过程中沉积室的真空压力为约100-800托。沉积室排气系统包括一经阀726与沉积室2连接的液氮冷阱709。沉积室2可经一气动开槽阀703与一外部室(未示出)连通。沉积操作过程中可用视孔718观察沉积室2的内部情况。
供应前体溶液时,用质量流控制器708和VCR阀725-3调节从惰性气体源736流入雾发生器46-1的氩(或氮)之类惰性气体的流率来控制前体经缓冲室42扩散入沉积室2的速率。另一质量流控制器748和阀725-4与雾发生器46-2连接,雾发生器46-2经阀725-5与缓冲室42连接,从而通过调节从惰性气体源736流入雾发生器46-2的氩之类惰性气体的流率来控制底剂经缓冲室42扩散入沉积室2的速率。用一独立的质量流控制器758把源738中的氧气和/或其他惰性气体或反应-活性气体经VCR阀725-7引入缓冲室42。
图2特别示出进气喷嘴组件8和排气喷嘴组件10。进气喷嘴组件8包括一接受来自下文结合图5所述缓冲室42的雾化溶液的输入管26。输入管26与弧形管28连接,弧形管28内圆周面上有孔心相距1/4英寸的多个小孔或输入孔31,孔中有可卸下螺丝30和可卸下输入喷嘴33。
图3为一输入喷嘴33的平面视图。它包括一螺丝33和一滤网310,该螺丝包括具有边缘303的扩大、空心头部301和空心杆部39(图2)。滤网310最好在把头部301装在杆部39之前靠摩擦紧套在头部301中,但也可钎焊在边缘303表面上。最好是,喷嘴33的所有部分、包括滤网310用不锈钢制成。滤网310最好为一不锈钢织造滤网,网丝之间的间距315约为一平方微米。我们发现,如其他条件相同,这种滤网的使用会造成沉积率稍稍下降,但只须增加孔31的数量和/或孔的大小这一问题很容易解决。滤网准直雾,使得基片上方的雾流更均匀、更少涡流,从而雾流发生异常的机会减小,这些异常会造成非均匀性。
排雾喷嘴组件10包括一弧形排雾管29,其上有多个小孔或排雾孔31,孔31中有可卸下螺丝30。排雾喷嘴组件10的结构与进气喷嘴组件8大致相同,只是不包括输入喷嘴33,一管34与一真空/排雾源(未示出)连通。管28和29的端帽可卸下,以便清扫。进气喷嘴组件8的弧形管28和排雾喷嘴组件10的相应弧形管29分别环绕基片支架4两边的圆周部4-1、4-2。
在沉积BST薄膜的一实施例中,管28和29中的孔31、31’的中心通常位于基片支架4上方0.375英寸。但是,如图8和9所示,这一距离可根据具体沉积过程调节。
管28、29一般为外径为1/4″、内径约为3/16″的不锈钢管。管28、29的内表面最好电抛光。管28、29中的孔31、31’的孔心之间的距离约为1/4″,孔31、31’攻丝,以旋入4-40个(1/8″)凹头螺丝。
使用这一结构,在弧形管28中的螺丝30位置上选择性地插入喷嘴33而调节喷嘴33的位置以及选择性地除去弧形管29中的螺丝30而调节打开的排雾孔的位置,即可对各种溶液和流率等等良好地控制基片5上方的雾化溶液流或雾流,从而在基片5上均匀沉积薄膜。
如图1和2所示,基片支架4、挡板6、进气喷嘴组件8和排雾喷嘴组件10相配合而界定一环绕基片5顶面的较小、半封闭沉积区17,在整个沉积过程中气化溶液被限制在该区中。尽管以上示出、说明了基片支架4、挡板6、进气喷嘴组件8和排雾喷嘴组件10的实施例,但应指出,在本发明范围内这些结构可变动。例如,弧形进气和排雾管28和29可代之以其他结构的管,例如V形或U形管、或开槽管、或基片支架上方的喷头形装置、或只是多个独立的喷嘴和独立的排雾孔。
图5为本发明一集流组件40的剖面图。该集流组件40向进气喷嘴组件8供应气化溶液(雾或气溶胶),一般包括一缓冲室42、多个经阀725-2、725-5、725-7与相应雾发生器连接的进口44、一调节缓冲室42到喷嘴组件8的流体的沉积阀725-1和一排气阀725-6。本发明的一个特征是,来自阀725-2、725-5、725-7的进口44与到沉积阀725-1的出口49成90°。缓冲室42足够大,使雾在该室中滞留约1-5分钟、最好约2.5分钟。这一时间滞留和进口44与出口49之间的90°角使得雾中会造成表面形态问题的任何大液滴即大于约2微米的液滴发生沉降。当同时使用不止一雾时、例如一起引入底剂和前体时(见下文),它可使这些雾混合成一单一、均质雾。在该优选实施例中,缓冲室42最好为一内径(图5垂直方向上)为约3英寸、长(图5中水平方向上)约5英寸的不锈钢圆筒。
使用时,在一个或多个雾发生器46-1、46-2、46-n中生成的一雾或多个不同雾经阀725-2、725-5、725-7及其进口44流入缓冲室42中。
流入缓冲室42中的各雾混合成单一、均匀雾化溶液后以合适流率经阀725-1和输入管26流入沉积室2中。阀725-1可关闭,从而需要时沉积室2可抽真空,或必要时可清洗和冲洗该集流系统。同样,排气阀725-6的出口与一真空源(未示出)连接,从而当需要排空/清洗一个或多个雾发生器46时,可关闭阀725-1,打开阀725-6和一个或多个阀725-*,缓冲室42可用泵(未示出)或使用标准负压型排气装置抽真空而清洗雾发生器46和缓冲室42。
用超声波搅动稳定前体溶液,使溶液雾化,生成稳定前体溶液的雾,然后把雾引入沉积室2。图4为本发明所使用雾发生设备一实施例的侧视示意图。雾发生器46包括一密封容器54、一液密和真空密封在容器54底壁中的TDK TU-26B之类超声波转换器56和一频率和振幅可调的电源72。容器54为一内部没有过滤盒的改良MilliporeWaferguard T-Line滤气装置(产品号YY50 005 00)。箭头420和422所示气流方向与该过滤器正常操作时相反。转换器56装在雾发生器46底部一凹孔中。雾发生器46还包括供载气通过容器54的进气孔60和排气孔62。电源72包括一频率控制装置,即一可调节转换器56的频率的频率控制转盘73,和一振幅控制装置,即一可调节转换器56的振幅的振幅控制转盘75。调节转换器的频率和振幅即可控制雾的粒子大小。调节粒子大小即可调节表面形态、阶梯覆盖和沉降过程的沉积率。
工作前,把一定量的前体溶液64引入容器54中。工作时,接通电源,开动转换器56,生成前体溶液的雾66,惰性载气从孔60流入雾66中后被雾湿化和饱和,然后湿化的载气从排气孔62流入集流组件40。该载气通常为氩、氦或氮之类惰性气体,但在合适情况下也可使用反应气体。
图4所示雾发生器46特别管用,因为它生成可有效流入或注入沉积室2的气化溶液而不发生凝固之类复杂现象。
图10为一透视图,示出一紫外线辐射源16位于沉积室2中。在沉积过程中和沉积过程后用紫外光增强本过程,该紫外线辐射据说可促进溶剂和有机物与前体的离解,从而加速干燥过程。此外,在沉积过程前使用紫外线辐射有利于除去(退吸)沉积室2和基片5上的潮气。紫外线光源16在沉积室中的位置无关紧要,因为紫外线辐射可经沉积室2的不锈钢壁向输入喷嘴8与排气喷嘴10之间的空间反射以及反射到基片5上,从而该辐射可提供上述光增强效应。
UV源16包括至少一个位于沉积室2中、在其中施加紫外线辐射浴的UV灯。可使用的光谱源包括UV灯和准分子激光器。无论哪种情况,由UV源16施加的辐射浴调节到使所需化合物与溶剂和有机物或其他生成物的离解最佳。在第一种情况下,按照离解或断裂溶剂键、前体化合物键和/或在沉积过程中形成的、在给定前体溶液中保持所需化合物的任何中间有机复合键所需能量“调节”由准分子激光器发出的紫外线辐射频谱。或者,如UV源16为一UV灯(或多个灯),则通过一个(或一组)UV灯与另一个(或一组)频谱更符合要求的UV灯的交换实施该“调节”。
当用气化环氧基羧酸盐源沉积铁电薄膜、例如当如下所述沉积一前体生成钛酸钡锶(BST)时,最好使用一Danielson Phototron PSM-275UV辐射源16发射其波长约为180nm-260nm的UV光。在该波长范围内的UV辐射可特别有效地调谐、离解在气化环氧基羧酸盐、溶胶-凝胶、MOD或其他液态化学源中保持BST的键。
图1所示设备1包括在沉积过程中在沉积室2中施加一DC偏压的电装置102。电装置102包括DC输入104和输出106。施加在输入套筒25与沉积室主体12之间的DC电位一般为350v。DC偏压实现铁电薄膜的就地极性调整,提高薄膜质量。常常希望沿晶体c-轴(主极化轴)偶极有序化,该有序化降低会造成疲劳和剩磁问题的错位密度。也可用大于或小于350v的DC偏压获得上述结果。此外,在沉积过程中,可在沉积室2中同时或先后使用紫外线辐射和DC偏压以及反复使用它们。
可用热板(未示出)之类的辅助加热装置对已沉积在基片上的前体溶液薄膜进行烘烤和/或退火,烘烤和退火最好在另一室中进行,尽管如结合图6步骤P11和P12所述也可在沉积室2中进行烘烤/退火过程。退火最好在一氧气炉中进行。也可用比方说从漫射准分子激光源发出的高能量密度紫外线辐射进行退火。
3、工作例例1钛酸钡锶溶液的制作下面为钛酸钡锶(BST)前体制备和把BST用作电容电介质制作一电容的过程的一详细例子。表1Ba0.7Sr0.3TiO3
在表1中,“FW”表示分子量,“grams”表示以克为单位的重量,“mmole”表示毫摩尔,“Equiv.”表示溶液中的当量摩尔数。计量表1所示各材料的数量后开始步骤P20(图6)。把钡加入100ml的2-甲氧基乙醇中起反应。把第一数量的2-乙基己醇酸加入该混合物中后搅拌。然后在混合物中加入锶。反应一旦完成,在该混合物中加入第二数量的2-乙基己醇酸。然后把该混合物加热到115℃最大温度后搅拌,蒸馏掉所有水。然后冷却该混合物。在该混合物中加入异丙醇钛,然后再用2-甲氧基乙醇稀释到220ml。然后把该混合物加热到116℃最大温度后搅拌。然后蒸馏掉所有异戊烷和水,步骤P20完成。在步骤21,该混合物然后再用2-甲氧基乙醇精确稀释到410ml。所得混合物的浓度为0.239M,钡与锶之比为0.69986比0.30014。
***生成由2-乙基己醇酸钡、2-乙基己醇酸锶和2-甲氧基乙醇钛组成的前体溶液的化学反应如下例Ⅰ,2-乙基己醇酸钡(4)(金属钡)+(2-乙基己醇酸)→(2-乙基己醇酸钡)+(氢气)
例Ⅱ,2-乙基己醇酸锶(5)(金属锶)+(2-乙基已醇酸)→(2-乙基己醇酸锶)+(氢气)Sr+2HO2C8H15→Sr(O2C8H15)2+H2例Ⅲ,2-甲氧基乙醇钛(6)(2-异丙醇钛)+(2-甲氧基乙醇)→(2-甲氧基乙醇钛)+(异丙醇)Ti(OCH(CH3)2)4+4HOCH2CH2OCH3→Ti(OCH2CH2OCH3)4+4HOCH(CH3)2把2-甲氧基乙醇用作溶剂可用蒸馏除去所有水,由于2-甲氧基乙醇的沸点较高,因此水蒸发后留下2-甲氧基乙醇。因此,所得前体基本无水。之所以使用2-乙基乙醇酸锶和钡,是因为使用这些前体中那样的中等链长羧酸盐形成的薄膜较之使用较长链长羧酸盐形成的薄膜在烘烤时不易开裂、起泡或剥落。试用过2-甲氧基乙醇钡和锶,但证明对空气和水过分敏感。使用2-甲氧基乙醇钛生成的薄膜比使用对空气不敏感的2-乙基已醇酸钛好,但是,尽管2-甲氧基乙醇钛对空气敏感,但它对空气的敏感程度比异丙醇钛低。
2-甲氧基乙醇还与过渡金属元素反应生成中间金属醇盐、例如上例中的2-甲氧基乙醇钡。该中间金属醇盐的醇盐配位体在放热反应中被羧化物配位体、例如上例中2-乙基己醇酸取代,生成金属羧酸盐或取代不完全的烷氧基羧酸金属盐。
按照一般反应理论,如把金属醇盐加入烷氧基羧酸金属盐中后加热该溶液,则发生如下反应(7)(8)其中,M和M’为金属;R、R’和R″为碳原子数最好为0-16的烷基;a和b为表示相应取代基的相对数量的整数。由于金属醇盐比金属羧酸盐更容易反应,因此一般先发生方程(7)的反应。因此,一般形成低沸点醚。这些醚从前体中蒸发,留下有机含量减少的最终前体并局部形成最终所需金属氧化物的金属-氧-金属键。如加热充分,还发生一定程度的反应(8),生成金属-氧-金属键和酯。酯的沸点一般较高而留在溶液中。这些高沸点有机物在最终前体沉积在基片上后减慢干燥过程,从而减小开裂和缺陷,因此,不管何种情况,形成金属-氧-金属键,最终前体的性能提高。
如把金属羧酸盐加入烷氧基羧酸金属盐中后加热该混合物,则发生如下反应(9)
其中,R-COOOC-R’为酸酐,各项如上所述。该反应所需热量比上述反应(7)和(8)多得多,速率慢得多。
除了上述生成烷氧基羧酸金属盐的反应,还发生比方说如下反应(10)其中,各项如上所述。该反应使中间烷氧基羧酸金属盐的醇盐部分全由羧酸金属盐取代;但是,据说,在本文所述参数下,羧酸盐并不完全取代醇盐。羧酸盐的完全取代需要多得多的热量,即使热量多得多也不容易发生。
例2加入表面张力减小剂从例1的0.239M溶液中取出9.5ml。加入5.0ml醇用作表面张力减小剂把溶液浓度稀释到0.156M。
例3薄膜电容器的制作用例2所述BST溶液以图6所示本发明方法、图1-5和7-10所示本发明设备制作图11所示电容器。
把BST前体放入雾发生器46-1(图7)的容器54中,把2-畅氧基乙醇溶剂放入雾发生器46-2的容器54中。一基片、包括由二氧化硅层和铂沉积层构成的硅晶片在一炉子中在大气压、180℃下烘烤15分钟。把该基片放到沉积室中基片支架4上。沉积室用一与阀726连接的泵(未示出)抽真空成0.4托。然后用基片转动电动机18转动基片支架4。沉积室然后用惰性前体源经阀727和707慢慢增压到约595托。然后,打开真空管道702,使沉积室压力稳定在约595托上。在基片支架与挡板之间施加350vDC偏压。
使用氩载气在DC偏压下、但不用紫外线辐射把底剂沉积到基片上。关闭阀725-6后打开注入阀725-1和沉积阀725-4和725-5,使100SCCM的氩气流从源736流过超声波雾发生器46-2,然后开动该雾发生器一分钟,使得约厚100埃的底剂在环境温度下沉积到基片上。然后关闭沉积阀725-1后打开阀725-6,关掉雾发生器46-2的超声波转换器56,缓冲室42经放气孔705排气,直到雾发生器46-2达到环境温度。然后用源736的氩气经放气孔705冲洗缓冲室42。然后关闭阀725-4和725-5.。
使用氩载气在DC偏压下、但不用紫外线辐射沉积液态前体溶液。重新打开沉积阀725-1并打开阀725-3和725-2,使氩气流从源736流过超声波雾发生器46-1,然后开动该雾发生器20分钟,使得约厚800埃的薄膜在环境温度下沉积到基片上。该沉积过程使用氩载气使得底剂雾和BST前体雾在基片5上方流动。在足够数量的BST前体沉积在基片上生成薄膜后,关掉雾发生器46-1和基片转动电动机。然后关闭沉积阀725-1后打开阀725-6,缓冲室42经放气孔705排气,直到雾发生器46-1达到环境温度。然后用源736的氩气经放气孔705冲洗缓冲室42。晶片保留在沉积室中,慢慢把该室抽真空成0.4托。然后,关闭阀713,沉积室放气到大气压。然后从沉积室中取出晶片在400℃下烘烤2分钟。该晶片然后在氧气中在800℃下退火80分钟。然后使用公知光刻工艺蚀刻该晶片,生成多个电子装置1112。
对各样本重复进行上述过程。其结果总结在下表2中。对氩气流率、BST溶液摩尔浓度和退火温度的变动对结果的影响进行考察。
图12为以埃为单位的光学(椭率计)层厚对BST摩尔浓度的曲线图。曲线A描述样本3、4和6的结果。曲线B描述样本18、19和20的结果。从图12可知,测量20分钟中沉积所生成薄膜的厚度得出的沉积率随着BST摩尔浓度的增加因甲醇的减少而减小。沉积率随着摩尔浓度的增加而减小与人们的通常预期相反,人们通常认为摩尔浓度的增加应该造成沉积率增加。上述方程(1)可用来解释沉积率随摩尔浓度的增加而减小,气溶胶粒子的胶态流体物理过程减小了粒子直径。
图13为以nm为单位的厚度、介电常数和tanδ相对加入样本3、4和6的9.5ml的0.239M BST溶液中的甲醇的曲线图。因此,BST摩尔浓度向图13右边减小。如上所述,厚度随着摩尔浓度的减小而增加。介电常数随着摩尔浓度的减小而减小,tanδ随着摩尔浓度的减小先减小后增加。介电常数的减小和假想介电损耗(tanδ)的变动表明,薄膜形态随着甲醇的增加而恶化。因此,薄膜厚度增加的优点在一定程度上被薄膜质量的下降所抵销。
图14为样本3、4和6的BST摩尔浓度对阶梯覆盖率的曲线图。用该阶梯上方一水平部上的层厚除以该阶梯下方一水平部上的层厚算出该比。点C代表不进行退火的样本19。
本发明不限于沉积用超声波生成的雾。也可用文丘里、喷射或其他雾化方法生成气溶胶雾。尽管方程(1)不直接适用于这些其他的雾化方法,但前体溶液的表面张力仍遵从其他方程生成胶态粒子。
本发明特别适用于沉积铁电材料、超导材料、高介电常数材料、宝石等的复杂薄膜,但不限于这类复杂薄膜。尽管以上说明了本发明当前来说是优选的各实施例,但应指出,在本发明精神或基本特征内也可用其他具体形式实施本发明。因此上述各实施例在所有方面都应看出是例示性的而非限制性的。本发明的范围由后附权利要求而非由上述说明限定。
权利要求
1.一种通过使用雾化沉积设备(1)形成金属氧化物的液态前体溶液(64),所述液态前体溶液包括一金属有机部份,该金属有机部份包括至少一种金属有机化合物,所述金属有机部份中的金属总有效含量在所述液态前体溶液的薄膜的退火过程中生成一固体合成物;以及用来溶解所述金属有机部份的第一溶剂;所述液态前体溶液的特征在于把所述液态前体溶液的表面张力减小到每厘米10-40达因的一稀释剂,所述金属有机部份、所述第一溶剂和所述稀释剂形成一均质混合物。
2.按权利要求1所述的液态前体溶液,其特征在于,所述表面张力的值为每厘米14-34达因。
3.按权利要求1所述的液态前体溶液,其特征在于,所述表面张力的值为每厘米16-26达因。
4.按权利要求1所述的液态前体溶液,其特征在于,所述稀释剂是从包含沸点大于64℃的有机化合物的组中选取的。
5.按权利要求1所述的液态前体溶液,其特征在于,所述稀释剂是从包含在20℃下粘度小于0.7厘泊的有机化合物的组中选取的。
6.按权利要求5所述的液态前体溶液,其特征在于,所述稀释剂是从包含在20℃下比重大于0.7的有机化合物的组中选取的。
7.按权利要求1所述的液态前体溶液,其特征在于,所述稀释剂包含甲醇。
8.按权利要求1所述的液态前体溶液,其特征在于,所述稀释剂为甲基乙基酮。
9.按权利要求1所述的液态前体溶液,其特征在于,所述固体合成物是从包含钙钛矿和分层超点阵材料的组中选取的。
10.按权利要求1所述的液态前体溶液,其特征在于,所述金属部的所述有效含量按照由所述液态前体溶液得到的所述金属化合物的摩尔数提供摩尔浓度为每升0.1-0.2摩尔的所述液态前体溶液。
11.一种在雾化沉积金属有机液态前体中使用的设备(1),包括液槽(54);所述液槽中的液态前体溶液(64),所述液态前体溶液包括一金属有机部份,该金属有机部份包括至少一种金属有机化合物,所述金属有机部份中的金属总有效含量在所述液态前体溶液的薄膜的退火过程中生成一固体合成物;以及用来溶解所述金属有机部份的第一溶剂,所述设备的特征在于把所述液态前体溶液的表面张力减小到每厘米10-40达因的一稀释剂,所述金属有机部份、所述第一溶剂和所述稀释剂形成一均质混合物;生成所述液态前体溶液的雾的装置;以及在一集成电路基片上沉积所述雾、用所述雾生成所述液态前体溶液的相应薄膜的装置。
12.按权利要求11所述的设备,其特征在于,所述表面张力的值为每厘米14-34达因。
13.按权利要求11所述的设备,其特征在于,所述表面张力的值为每厘米16-26达因。
14.按权利要求11所述的设备,其特征在于,所述稀释剂是从包含沸点大于64℃的有机化合物的组中选取的。
15.按权利要求11所述的设备,其特征在于,所述稀释剂是从包含在20℃下粘度小于0.7厘泊的有机化合物的组中选取的。
16.按权利要求15所述的设备,其特征在于,所述稀释剂是从包含在20℃下比重大于0.7的有机化合物的组中选取的。
17.按权利要求11所述的设备,其特征在于,所述稀释剂包含甲醇。
18.按权利要求11所述的设备,其特征在于,所述稀释剂为甲基乙基酮。
19.按权利要求11所述的设备,其特征在于,所述金属化合物是从包含金属、钙钛矿和分层超点阵材料的组中选取的。
20.按权利要求11所述的设备,其特征在于,所述金属有机部份的所述有效含量按照由所述液态前体溶液得到的所述金属化合物的摩尔数提供摩尔浓度为每升0.1-0.2摩尔的所述液态前体溶液。
21.按权利要求11所述的设备,其特征在于,所述稀释剂为极性化合物。
22.按权利要求21所述的设备,其特征在于,沉积所述雾的所述装置包括引起所述极性化合物极化状态的装置。
23.一种制作其质量足以用于集成电路中的薄膜的方法,所述方法的特征在于生成一液态前体溶液的雾(66),该液态前体溶液包括一金属有机部份,该金属有机部份包括至少一种金属有机化合物,所述金属有机部份中的金属总有效含量在所述液态前体溶液的薄膜的退火过程中生成一固体合成物;以及用来溶解所述金属有机部份的第一溶剂,以及把所述液态前体溶液的表面张力减小到每厘米10-40达因的一稀释剂,所述金属有机部份、所述第一溶剂和所述稀释剂形成一均质混合物;把所述雾(P22)施加到基片(1122、1124)上,从而所述雾在该基片上形成一薄膜;干燥(P26)所述薄膜,除去所述薄膜中易挥发有机部分;以及在所述干燥步骤后对所述薄膜进行退火(P30),生成固体薄膜。
24.按权利要求23所述的方法,其特征在于,所述表面张力值为每厘米14-34达因。
25.按权利要求23所述的方法,其特征在于,所述表面张力的值为每厘米16-26达因。
26.按权利要求23所述的方法,其特征在于,使用在所述雾生成步骤中的所述稀释剂是从包含沸点大于64℃的有机化合物的组中选取的。
27.按权利要求23所述的方法,其特征在于,使用在所述雾生成步骤中的所述稀释剂是从包含在20℃下粘度小于0.7厘泊的有机化合物的组中选取的。
28.按权利要求27所述的方法,其特征在于,使用在所述雾生成步骤中的所述稀释剂是从包含在20℃下比重大于0.7的有机化合物的组中选取的。
29.按权利要求23所述的方法,其特征在于,使用在所述雾生成步骤中的所述稀释剂包含甲醇。
30.按权利要求23所述的方法,其特征在于,使用在所述雾生成步骤中的所述稀释剂为甲基乙基酮。
31.按权利要求23所述的方法,其特征在于,由所述薄膜的所述退火步骤获得的所述固体薄膜为钙钛矿和分层超点阵材料。
32.按权利要求23所述的方法,其特征在于,使用在所述雾生成步骤中的所述金属部的所述有效含量按照由所述液态前体溶液得到的所述金属化合物的摩尔数提供摩尔浓度为每升0.1-0.2摩尔的所述液态前体溶液。
全文摘要
一基片(5)位于一沉积室(2)中,该基片界定一基片平面。用超声波或文丘里设备把一包含稀释剂的液态前体(64)雾化成胶态雾,该稀释剂把所述液态前体溶液的表面张力减小到每厘米10-40达因。该雾生成后安置在一缓冲室中,经一系统过滤成0.01μm,然后流入在该基片与挡板之间的沉积室中,在该基片上沉积成一液态层。该液体经干燥在该基片上形成一金属氧化物固态薄膜,该薄膜然后制成集成电路中的一电元件。
文档编号B05D7/24GK1311897SQ99809280
公开日2001年9月5日 申请日期1999年7月7日 优先权日1998年8月3日
发明者林慎一郎, 拉里·D·麦克米伦, 卡洛斯·A·帕兹德阿罗 申请人:塞姆特里克斯公司, 松下电子工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1