混合动力车辆的制作方法

文档序号:11567534阅读:197来源:国知局
混合动力车辆的制造方法与工艺

本非临时申请基于2015年9月10日在日本特许厅提交的日本专利申请no.2015-178322,其全部内容在此通过引用并入。

本发明涉及混合动力车辆,并且更具体地涉及当在形成驱动混合动力车辆中的电动发电机的逆变器的开关元件中发生短路故障时的控制。



背景技术:

已知一种混合动力车辆的构造,该混合动力车辆包括发动机、具有三相交流电(ac)马达的第一电动发电机、被构造成与车轮的驱动轴同步旋转的第二电动发电机以及行星齿轮机构。行星齿轮机构包括联接至第一电动发电机的太阳齿轮、联接至第二电动发电机的齿圈以及联接至发动机的齿轮架。

驱动第一电动发电机的逆变器包括三相的驱动臂。这些驱动臂中的每一个都具有形成上臂的开关元件和形成下臂的开关元件。

在这种混合动力车辆中,当在形成驱动第一电动发电机的逆变器的开关元件中发生短路故障时,过量的短路电流可能流经短路部分。因此,存在采取适当措施以便防止对装置的损伤的需求。

例如,日本专利特开no.2010-12907公开了这样一种控制,其中当在驱动第一电动发电机的逆变器的一相或者两相中发生短路故障时,其余的相也被短路,以使驱动逆变器处于三相短路状态。因而,短路电流将跨多个路径分布,由此抑制在驱动逆变器及其外围装置中产生过量的热。



技术实现要素:

在具有上述构造的混合动力车辆中,当在驱动第一电动发电机的逆变器的一相中发生短路故障时,通过控制驱动逆变器使逆变器处于三相短路状态而执行跛行回家运行。当驱动逆变器被控制成处于三相短路状态时,由于驱动第一电动发电机旋转时产生的反电动势,所以在停止第一电动发电机的旋转的方向上产生扭矩(制动扭矩)。这种扭矩也被称为“拖曳扭矩”。

如果上述跛行回家运行被实施成在发动机处于停止状态下使用第二电动发电机的运行(所谓的马达运行),则第一电动发电机在负方向上旋转。此时,第一电动发电机的转速由于拖曳扭矩而在正方向(朝着零的方向)上变化。因此,发动机被驱动成在正方向上旋转,以增大发动机转速。如果例如能够通过增大发动机转速而起动处于停止状态的发动机,则能够提高跛行回家能力。

在上述混合动力车辆中,根据车速确定第二电动发电机的转速。因而,当发动机转速基本恒定(例如,当发动机处于停止状态)时,则也根据车速确定第一电动发电机的转速。通常,拖曳扭矩的大小取决于第一电动发电机的转速。因而,根据车速确定拖曳扭矩的大小。因此,期望的拖曳扭矩可能取决于车速而不固定,导致不能适当地增大发动机转速。结果,例如当发动机处于停止状态时,可能不能将发动机转速增大至能够起动发动机的转速。

已经考虑到上述问题做出了本发明,并且本发明的目标在于提供一种在混合动力车辆中当驱动第一电动发电机的逆变器被控制成处于三相短路状态时允许发动机转速适当增大的技术。

根据本发明的一方面的混合动力车辆包括:发动机;第一旋转电机,第一旋转电机包括三相ac马达;第二旋转电机,第二旋转电机被构造成向驱动轴输出动力;行星齿轮机构;逆变器;变速器;和控制器,控制器被构造成控制逆变器和变速器。行星齿轮机构包括联接至第一旋转电机的太阳齿轮、联接至第二旋转电机的齿圈和联接至发动机的齿轮架。逆变器包括三相的驱动臂,三相的驱动臂每个具有上臂和下臂,并且逆变器被构造成驱动第一旋转电机。变速器包括多个挡位,并且变速器被联接在第二旋转电机和驱动轴之间。控制器被构造成当发动机停止并且在三相的驱动臂的一相的上臂和下臂之一中发生短路故障时,执行三相短路控制,在三相短路控制中,在与具有短路故障的上臂或者下臂相同侧上,不具有短路故障的相的上臂或者下臂被短路。控制器被构造成当第一旋转电机的转速不处于特定范围内时,执行变速器的变速器控制,使得第一旋转电机的转速落入特定范围内,在特定范围中,发动机能够通过三相短路控制产生的扭矩而起动。

根据上述构造,混合动力车辆设置有具有多个挡位的变速器。当这种变速器的挡位改变时,第二电动发电机的转速可以变化。因此,第一电动发电机的转速也可以变化。如上所述,上述扭矩(拖曳扭矩)的大小取决于第一电动发电机的转速。因此,在上述构造中,第一电动发电机的转速可以由变速器的变速器控制来控制,由此控制拖曳扭矩的大小。因此,能够适当地增大发动机转速。

优选地,当执行变速器控制时,控制器被构造成对多个挡位中的两个或更多个挡位中的每个挡位,计算第一旋转电机的转速的预测值,该值是当切换到所述挡位时预测出来的。控制器被构造成选择预测值处于特定范围内的挡位的低速挡位。

在列线图上,发动机转速的增大量不仅由上述扭矩的大小(换句话说,第一旋转电机的转速的增大量)确定,而且也由从第二旋转电机输出以便接收上述扭矩的反作用力的负扭矩的大小(换句话说,第二旋转电机的转速的减小量)确定。挡位的速度越低,第二旋转电机的转速越高,因而第二旋转电机的转速的减小量将更可能增大,因此,发动机转速的增大量将更可能增大。因此,根据上述构造,发动机能够更可靠地起动。

当结合附图时,通过本发明的下文详细说明将更明白本发明的上述和其它目标、特征、方面和优点。

附图说明

图1是示意性地示出根据实施例的混合动力车辆的总体构造的方框图。

图2是更详细地示出行星齿轮机构和自动变速器的构造的视图。

图3是示出自动变速器的接合操作的表的视图。

图4是示意性地示出混合动力车辆的电气系统的构造的方框图。

图5是示出当已经在驱动第一电动发电机的逆变器中发生短路故障时的问题的视图。

图6是示出驱动实施例中的驱动逆变器的控制的概要的视图。

图7是示出当执行控制以产生三相短路状态时的每个旋转元件的行为的列线图。

图8是表示拖曳扭矩和第一电动发电机的转速之间的关系的示例的视图。

图9是示出根据实施例的混合动力车辆中的自动变速器的变速器控制的列线图。

图10是示出根据实施例的混合动力车辆中的自动变速器的变速器控制的流程图。

图11是示出图10中所示的挡位选择过程的流程图。

具体实施方式

下面将参考附图详细地描述本发明的实施例,其中相同或者相应部分由相同附图标记指示,并且将不重复其说明。

<车辆构造>

图1是示意性地示出根据本实施例的混合动力车辆的总体构造的方框图。参考图1,车辆1包括发动机100、电动发电机10、20、行星齿轮机构30、自动变速器40、车轮50、电池150、系统主继电器(smr)160、电力控制单元(pcu)200和电子控制单元(ecu)300。

发动机100是内燃机,诸如汽油发动机或者柴油发动机。发动机100响应于来自ecu300的控制信号产生用于使车辆1行驶的动力。发动机100产生的动力被输出至行星齿轮机构30。

发动机100设置有发动机转速传感器410。发动机转速传感器410检测发动机100的转速(发动机转速)ne,并且将指示检测结果的信号输出至ecu300。

电动发电机10和20每个都是三相ac永磁体同步马达。在起动发动机100时,电动发电机(第一旋转电机)10使用电池150的电力来旋转发动机100的曲轴110。电动发电机10也能够使用来自发动机100的动力产生电力。电动发电机10产生的ac电力被pcu200转换为直流(dc)电力,并且充电到电池150中。马达发动机10产生的ac电力可以被供应给电动发电机20。

电动发电机(第二旋转电机)20使用从电池150供应的电力和电动发电机10产生的电力的至少一个旋转行星齿轮机构30的输出轴31。电动发电机20也能够通过再生制动产生电力。电动发电机20产生的ac电力被pcu200转换为dc电力,并且充电到电池150中。

电动发电机10设置有旋转变压器421。旋转变压器421检测电动发电机10的转速(mg1转速)nm1,并且将指示检测结果的信号输出至ecu300。同样地,电动发电机20设置有旋转变压器422。旋转变压器422检测电动发电机20的转速(mg2转速)nm2,并且将指示检测结果的信号输出至ecu300。

行星齿轮机构30将从发动机100接收的动力分为将被传递给电动发电机10的动力,以及将通过电动发电机20和自动变速器40传递给车轮50的动力。将参考图2详细地描述行星齿轮机构30的构造。

自动变速器40是具有多个挡位(该实施例中为四个挡位)的齿轮式变速器。自动变速器40响应于来自ecu300的变速器指令而在挡位之间切换。自动变速器40的输入轴43被联接至电动发电机20,并且通过行星齿轮机构30联接至发动机100和电动发电机10。自动变速器40的输出轴44被联接至传动轴60。

传动轴(驱动轴)60通过经行星齿轮机构30和自动变速器40从发动机100传递的动力,以及通过自动变速器40从电动发电机20传递的动力中的至少一个旋转。

传动轴60设置有车速传感器430。车速传感器430检测传动轴60的转速(传动轴转速)np,并且将指示检测结果的信号输出至ecu300。ecu300基于来自车速传感器430的信号计算车速v。

电池150是可再充电蓄电装置。电池150包括二次电池,二次电池的典型示例为镍金属氢化物电池或者锂离子二次电池,或者包括电容器,诸如双电层电容器。

smr160通过电力线路串联地连接在电池150和pcu200之间。smr160响应于来自ecu300的控制信号,在电池150和pcu200之间在导通状态和切断状态之间切换。

pcu200对存储在电池150内的dc电力升压,将升压电压转换为ac电压,并且将电压供应给电动发电机10和电动发电机20。pcu200也将电动发电机10和电动发电机20产生的ac电力转换为dc电力,并且将该电力供应给电池150。将参考图4详细地描述pcu200的构造。

虽然未示出,但ecu(控制器)300包括cpu(中央处理单元)、存储器、输入/输出缓冲器等等。基于来自传感器和装置的信号,以及存储在存储器内的映射和程序,ecu300控制各种装置,以便车辆1进入期望的运行状态。各种控制类型不限于由软件处理,而是可以由专用硬件(电子电路)处理。

图2是更详细地表示行星齿轮机构30和自动变速器40的构造的视图。参考图1和2,行星齿轮机构30包括太阳齿轮s、齿圈r、齿轮架ca和小齿轮p。

太阳齿轮s被联接至电动发电机10的转子11。齿圈r被联接至行星齿轮机构30的输出轴31。小齿轮p啮合太阳齿轮s和齿圈r。齿轮架ca保持小齿轮p,使得小齿轮p能够旋转并且转动,并且齿轮架ca被联接至发动机100的曲轴110。

自动变速器40包括单小齿轮式行星齿轮41、42和单向离合器f1。行星齿轮41具有太阳齿轮s1、齿圈r1、与太阳齿轮s1和齿圈r1啮合的小齿轮p1以及保持小齿轮p1使得小齿轮p1能够旋转并且转动的齿轮架ca1。行星齿轮42的构造类似于行星齿轮41,因而将不重复其说明。单向离合器f1支撑齿轮架ca1和齿圈r2,使得齿轮架ca1和齿圈r2能够在一个方向上旋转,并且不能在其它方向上旋转。

自动变速器40还包括制动器b1、b2和离合器cl1、cl2。制动器b1选择性地固定太阳齿轮s1。制动器b2选择性地固定齿轮架ca1和齿圈r2。当制动器b1和离合器cl1两者都接合时,则太阳齿轮s2被联接至行星齿轮机构30的齿圈r。当离合器cl2被接合时,则彼此联接的齿轮架ca1和齿圈r2两者都被联接至行星齿轮机构30的齿圈r。

以这种方式,自动变速器40由于每个元件的接合状态的改变而在接合状态、半接合状态和分离状态之间切换。在自动变速器40的接合状态下,在自动变速器40的输入轴43和输出轴44之间传递全部扭矩。在半接合状态下,在自动变速器40的输入轴43和输出轴44之间传递一部分扭矩。在分离状态下,自动变速器40的输入轴43和输出轴44之间的扭矩传递被中断。

图3是示出自动变速器40的接合操作的表的视图。在图3中,“y”指示元件处于接合状态,“(y)”指示元件在发动机制动期间被接合,并且空白空间指示元件处于分离状态。

参考图2和3,在自动变速器40中,四个向前挡位(被指示为第一至第四)和向后挡位(指示为r)根据接合操作的表,通过每个元件的接合选择性地形成。在向前挡位中,第一挡位具有最低变速齿数比,并且第四挡位具有最高变速齿数比。变速齿数比指的是自动变速器40的输入轴43的转速与自动变速器40的输出轴44的转速的比。通过使所有元件处于分离状态来形成中间位置(指示为n)。图2中所示的自动变速器40的构造和图3中所示的接合操作的表仅是例证性的而不是限制性的。

<电气系统的构造>

图4是示意性地示出车辆1的电气系统的构造的方框图。参考图1和4,pcu200包括电容器c1、转换器210、电容器c2、逆变器221、222、电压传感器230和电流传感器241、242。ecu300包括hv-ecu310和mg-ecu320。

电池150设置有电压传感器440。电压传感器440检测电池150的电压vb,并且将指示检测结果的信号输出至mg-ecu320。

电容器c1与电池150并联连接。电容器c1使从电池150供应的电压vb平稳,并且将电压供应给转换器210。

响应于来自mg-ecu320的控制信号,转换器210对通过电容器c1从电池150供应的电压vb升压,并且将电压供应给逆变器221、222。另外,响应于来自mg-ecu320的控制信号,转换器210逐渐降低通过电容器c2从逆变器221和逆变器222中的一个或者两者供应的dc电压,并且对电池150充电。

更特别地,转换器210包括电抗器l1、开关元件q1、q2和二极管d1、d2。下文将描述的开关元件q1和q2以及开关元件q3至q14每个例如都为igbt(绝缘栅双极型晶体管)。开关元件q1和q2彼此串联地连接在电力线路pl和电力线路nl之间。二极管d1和d2分别反并联地连接在开关元件q1和q2的集电极和发射极之间。电抗器l1具有连接至电池150的高电势侧的一端。电抗器l1具有连接至开关元件q1和开关元件q2之间的中点(开关元件q1的发射极和开关元件q2的集电极之间的连接点)的另一端。

电容器c2被连接在电力线路pl和电力线路nl之间。电容器c2使从转换器210供应的dc电压平稳,并且将电压供应给逆变器221、222。

电压传感器230检测跨电容器c2的电压,即,转换器210的输出电压vh,并且将指示检测结果的信号输出至mg-ecu320。

当被供应来自转换器210的输出电压vh时,逆变器221响应于来自mg-ecu320的控制信号将dc电压转换为ac电压,以驱动电动发电机10。因而,驱动电动发电机10,以产生由扭矩命令值tr1指定的扭矩。

更特别地,逆变器221包括u相臂1u、v相臂1v和w相臂1w。这些相臂彼此并联地连接在电力线路pl和电力线路nl之间。u相臂1u具有彼此串联连接的开关元件q3和开关元件q4。v相臂1v具有彼此串联连接的开关元件q5和q6。w相臂具有彼此串联连接的开关元件q7和q8。二极管d3至d8分别反并联地连接在开关元件q3至q8的集电极和发射极之间。

每个相臂的中点都被连接至电动发电机10的每个相线圈。也就是说,电动发电机10的u相、v相和w相的每个线圈都具有共同连接至中间点的一端。u相线圈具有连接至开关元件q3和q4之间的中点的另一端。v相线圈具有连接至开关元件q5和q6之间的中点的另一端。w相线圈具有连接至开关元件q7和q8之间的中点的另一端。逆变器222的构造基本上等同于逆变器221,因而将不重复其说明。

电流传感器241检测流经电动发电机10的电流(马达电流)mcrt1,并且将指示检测结果的信号输出至mg-ecu320。电流传感器242检测流经电动发电机20的电流(马达电流)mcrt2,并且将指示检测结果的信号输出至mg-ecu320。

hv-ecu310产生用于电动发电机10、20的操作指令和用于转换器210的电压命令值,并且将它们输出至mg-ecu320。从hv-ecu310输出的操作指令包括用于每个电动发电机10和20的操作允许指令和操作禁止指令(栅极切断指令)、用于电动发电机10的扭矩命令值tr1、用于电动发电机20的扭矩命令值tr2、用于mg1转速mm1和mg2转速nm2的命令值等等。

mg-ecu320从hv-ecu310接收用于电动发电机10、20的操作指令,以及用于转换器210的电压命令值。mg-ecu320也从传感器接收信号。基于上述操作指令以及电压命令值以及各种信号,mg-ecu320控制转换器210,使得来自转换器210的输出电压vh遵循转换器210的电压命令值。

另外,mg-ecu320控制逆变器221、222,使得电动发电机10、20根据从hv-ecu310接收的操作指令运行。描述了对逆变器221的控制的典型示例。一旦从hv-ecu310接收到用于电动发电机10的操作允许指令,则mg-ecu320基于输出电压vh、马达电流mcrt1和扭矩命令值tr1产生用于每个开关元件q3至q8的开关操作的pwm(脉冲宽度调制)方案的控制信号pwm1,并且将信号输出至逆变器221。另一方面,一旦从hv-ecu310接收到用于电动发电机10的栅极切断指令,则mg-ecu320产生栅极切断信号sdn1以停止每个开关元件q3至q8的开关操作,并且将信号输出至逆变器221。

此外,mg-ecu320检测电动发电机10、20中的异常。关于被mg-ecu320检测出的异常的信息被输出至hv-ecu310。hv-ecu310被构造成在用于电动发电机10、20的操作指令中反映这些异常信息。

<逆变器中的短路故障>

在这种车辆1中,在运行期间,可能发生如下短路故障,即在驱动电动发电机10的逆变器221中,开关元件保持处于导通状态。

图5是示出当已经在逆变器221中发生短路故障时的问题的视图。由于当短路故障发生在三相中的任何一相时该问题是相同的,所以下文将描述的图5和图6代表性地示出其中短路故障已经发生在形成u相臂1u的上臂的开关元件q3中的情况。

参考图5,如果其它开关元件q4至q8的开关操作继续而与开关元件q3中发生的短路故障无关,则当形成u相臂1u的下臂的开关元件q4处于导通状态时,在电力线路pl和电力线路nl之间发生短路。这引起大的短路电流在从电力线路pl朝着电力线路nl的方向上流动,这也可能引起开关元件q4故障。为了防止发生这种故障,当在开关元件q3中发生短路故障时,则停止其它开关元件q4至q8的开关操作。因而,即使由被驱动成与跛行回家运行相关联地旋转的电动发电机10产生反电动势,也仅形成经过二极管d3至d8的电流路径。

例如,如箭头ar1所示,短路电流可以流经下列路径,该路径通过二极管d5和开关元件q3从电动发电机10的v相端子通往u相端子。另外,如箭头ar2所示,短路电流可以流经下列路径,该路径通过二极管d7和开关元件q3从电动发电机10的w相端子通往u相端子。因此,作为箭头ar1、ar2所示的短路电流总和的电流将流经其中已经发生短路故障的开关元件q3。

如果这种状态继续相对更长的时间段,则短路电流的连续流动可能在逆变器221的组件或者电力传输路径中引起过量发热。特别地,电动发电机10的每个相线圈、设置在短路路径上的二极管d5、d7或者将逆变器221电连接至电动发电机10的线束(未示出)等等可能由于发热而受损。因此,存在采取适当措施以便防止对这些装置的损伤的需求。

图6是示出对该实施例中的逆变器221驱动控制的概要的视图。参考图6,当车辆1在短路故障发生在开关元件q3中时运行时,箭头ar3所示的短路电流可以如关于图5所述地流动。

在该实施例中,当短路故障发生在三相中的一相的上臂和下臂中的一个时,不具有短路故障的相的上臂或者下臂在与具有短路故障的臂相同一侧上短路。也就是说,当形成上臂的开关元件q3、q5和q7中的一个开关元件被短路时,形成上臂的所有开关元件q3、q5和q7都被切换为导通状态。图5和6示出其中开关元件q5和q7由于开关元件q3已经被短路而呈现出导通的示例。另一方面,虽然未示出,但是当形成下臂的开关元件q4、q6和q8中的一个开关元件被短路时,形成下臂的所有开关元件q4、q6和q8都被切换为导通状态。下文也将这种控制称为“三相短路控制”。

通过执行三相短路控制,如箭头ar3所示流动的短路电流的一部分被分支到下列路径中,如箭头ar4所示,该路径通过w相的开关元件q7通往电动发电机10的w相端子。通过以这种方式跨多条路径分配短路电流,能够防止逆变器221的组件和电力传输路径中的过量发热。因而,能够在防止对电动发电机10和逆变器221损伤的同时执行到附近的修车厂或者安全位置的跛行回家运行。

<拖曳扭矩>

当执行逆变器221的三相短路控制时,由于驱动电动发电机10从而与车辆1的跛行回家运行相关联地旋转时产生的反电动势(电磁作用),在停止电动发电机10的旋转的方向上产生拖曳扭矩。

图7是示出当执行三相短路控制时的每个旋转元件的行为的列线图。参考图2和7,通过如上所述构造的行星齿轮机构30,太阳齿轮s的转速(=mg1转速nm1)、齿轮架ca的转速(=发动机转速ne)和齿圈r的转速(=mg2转速nm2)具有与列线图上的直线关联的关系。

在该实施例中,假定发动机100处于停止状态,并且使用电动发电机20执行车辆1的跛行回家运行(所谓的马达运行)。在这种情况下,电动发电机10在直线w1所示的负方向上旋转。因而,从电动发电机10输出正方向(朝着零的方向)的拖曳扭矩tdr。因而,mg1转速nm1由于拖曳扭矩而在朝着零的方向上变化。因此,发动机100被驱动成在正方向上旋转,以增大发动机转速ne。

如果通过增大发动机转速ne,发动机转速ne超过以直线w2所示的阈值nc(例如几百rpm),则发动机100能够被起动。发动机100的起动提高了车辆1的跛行回家的能力。例如,运行距离或者车速v能够增大。

拖曳扭矩tdr的大小取决于mg1转速nm1。图8是表示拖曳扭矩tdr和mg1转速nm1之间的对应关系的示例的视图。在图8中,水平轴线代表mg1转速nm1,而竖直轴线代表拖曳扭矩tdr。

参考图8,随着mg1转速nm1在正方向上从负值增大,拖曳扭矩tdr增大。当mg1转速nm1进一步增大时,拖曳扭矩tdr相反地减小。

当还未产生足够大的拖曳扭矩tdr时,发动机转速ne可能比其期望量小。因而,存在其中发动机转速ne能够增大至阈值nc的mg1转速nm1的限制范围(参见图7),在阈值nc下,发动机100能够使用拖曳扭矩tdr而起动。下文将该范围称为“范围z”,“范围z”以对角线指示。为了起动发动机100,mg1转速nm1需要处于大于等于x1并且小于等于x2的范围z内。

这里,做出车辆1不设置有自动变速器40的假定。在这种情况下,根据车速v确定mg2转速nm2。由于发动机转速ne基本为零,所以也根据车速v确定mg1转速nm1。结果,基于图8中所示的对应关系,也根据车速v确定拖曳扭矩tdr的大小。因而,可能不能取决于车速v确保期望拖曳扭矩tdr(图8中的tc),导致不能适当地增大发动机转速ne。结果,当发动机100与该假定示例中一样处于停止状态时,则可能不能将发动机转速ne增大至能够起动发动机100的转速(阈值nc)。

因此,该实施例采用下列构造,其中通过执行对自动变速器40的变速器控制来控制mg1转速,由此控制拖曳扭矩tdr的大小。换句话说,当mg1转速nm1不在其中发动机100能够通过三相短路控制产生的拖曳扭矩tdr而起动的范围z内时,执行自动变速器40的变速器控制,以便mg1转速nm1落入范围z内。下文将详细地描述这种变速器控制。

图9是示出根据该实施例的车辆1中的自动变速器40的变速器控制的视图。在图9中,在图的右侧上示出列线图。在图的左侧上示出表示拖曳扭矩tdr和mg1转速nm1(参考图8)之间的对应关系的视图。

参考图1和9,根据车速v确定传动轴转速np。由于在该实施例中,自动变速器40被设置在电动发电机20和传动轴60之间,所以mg2转速nm2和传动轴转速np的大小的关系可以通过改变自动变速器40的挡位而变化。

在图9中所示的示例中,第三挡位是直接联接位置。因而,当第三挡位形成时,mg2转速nm2和传动轴转速np变得彼此相等。另一方面,当第一挡位或者第二挡位形成时,mg2转速nm2变得大于传动轴转速np。当第四挡位形成时,mg2转速nm2变得小于传动轴转速np。随着mg2转速nm2以该方式变化,mg1转速nm1也变化。也就是说,通过自动变速器40的变速器控制能够控制mg1转速nm1。

当在自动变速器40中形成第一挡位时,mg1转速nm1达到ng1。ng1处于图9中所示的示例中的范围z之外。因而,当第一挡位形成时,拖曳扭矩tdr的大小相对小,所以发动机转速ne不能增大至处于停止状态的发动机100能够起动的阈值nc。另一方面,当第二至第四挡位形成时,mg1转速nm1分别达到ng2至ng4。ng2至ng4都在范围z内。因而,当第二至第四挡位形成时,发动机转速ne能够增大至阈值nc,由此起动发动机100。

以这种方式,根据该实施例,能够通过由自动变速器40的变速器控制而控制mg1转速nm1来改变拖曳扭矩tdr的大小。通过确保期望的拖曳扭矩tdr,发动机转速ne能够适当地增大。

另外,当存在与该实施例中一样能够起动发动机100的多个挡位时,期望选择较低速挡位(图9中所示示例中的第二挡位)。执行三相短路控制期间的发动机转速ne的增大量不是仅由拖曳扭矩的大小确定。在列线图上,发动机转速的增大量也由电动发电机20输出以便接收拖曳扭矩tdr的反作用力的负扭矩的大小确定,换句话说,也由mg2转速nm2的减小量确定。挡位的速度越低,则mg2转速nm2越高,因而将越可能发生mg2转速nm2的减小量增大,因此,将越可能发生发动机转速ne的增大量增大。因而,能够通过选择较低速挡位更可靠地起动发动机100。

图10是示出根据该实施例的车辆1中的自动变速器40的变速器控制的流程图。当满足预定条件时,或者以规律的时间间隔从主例程调用并且执行该流程图。虽然基本上由ecu300通过软件处理实施该流程图的每个步骤(下文缩写为s),但是可以使用制造在ecu300中的电子电路通过硬件处理实施这些步骤。

参考图1、2、4和10,在s10中,ecu300确定在电动发电机10中是否存在异常。本文使用的电动发电机10中的异常共同涉及电动发电机10和逆变器221的组件,以及电动发电机10和逆变器221之间的电力传输路径中的异常。

更特别地,能够通过比较逆变器221的每一相的开关元件q3至q8的控制模式和来自电流传感器241的马达电流mcrt1的检测模式来确定电动发电机10中存在或者缺乏异常。可替选地,能够通过参考关于设置在电动发电机10和逆变器221上的传感器(旋转变压器421、电压传感器230和电流传感器241)的故障信息做出确定。当不能正常地执行驱动电动发电机10旋转的控制时,ecu300确定电动发电机10中存在异常。当电动发电机10中不存在异常时(s20中为否),则ecu300跳过后续处理,并且引起过程返回至主例程。

当在电动发电机10中存在异常时(s20中为是),则ecu300使过程前进至s30,并且确定发动机100是否处于停止状态。当发动机转速ne低于规定值时,则ecu300确定发动机100处于停止状态。当发动机100处于停止状态时(s30中为是),则ecu300使过程前进至s40。当发动机100不处于停止状态时(s30中为否),则ecu300跳过后续处理,并且使过程返回至主例程。

在s40中,ecu300执行对逆变器221的三相短路控制。已经参考图5和6详细地描述了这种控制,因而将不重复其说明。

在s50中,ecu300获得mg1转速nm1的当前值。此外,ecu300确定发动机转速ne是否能够使用与mg1转速nm1的当前值对应的拖曳扭矩tdr而增大至能够起动发动机100的速度(阈值nc)(s60)。更特别地,图8中所示的对应关系作为映射或者关系表达式提前存储在ecu300的存储器(未示出)中。ecu300确定mg1转速nm1的当前值是否在范围z内。

当发动机转速ne能够被增大至能够起动发动机100的阈值nc,即当mg1转速nm1的当前值在范围z内时(s60中为是),ecu300确定不特别有必要执行自动变速器40的变速器控制,跳过后续过程并且使过程返回至主例程。另一方面,当发动机转速ne不能通过逆变器221的三相短路控制产生的拖曳扭矩tdr增大至阈值nc,即当mg1转速nm1的当前值不在范围z内(s60中为否)时,ecu300使过程前进至s70,并且执行对自动变速器40的变速器控制。

在s70中,ecu300计算第一至第四挡位中的每个挡位的mg1转速nm1的预测值(=ng1至ng4)。能够通过从传动轴转速np和该挡位的变速齿数比计算mg2转速nm2,并且进一步通过使用图9中所示的列线图中的线性关系来计算每个挡位的mg1转速nm1。

在s80中,基于已经在s70中计算的每个挡位处的mg1转速nm1的预测值,ecu300执行用于选择自动变速器40的挡位的过程(挡位选择过程)。

在s90中,ecu300向自动变速器40输出指示已经通过挡位选择过程选择挡位的变速器指令at。因而,在自动变速器40中形成所选挡位。

图11是示出图10中所示的挡位选择过程(s80)的流程图。在该挡位选择过程中,如下文将详细描述的,ecu300执行自动变速器40的变速器控制,使得mg1转速nm1落入范围z内。参考图1、2、4和11,在s111中,ecu300确定第一挡位处的mg1转速nm1的预测值ng1是否在范围z内。当预测值ng1在范围z内时(s111中为是),则ecu300将第一挡位选为挡位变化后的挡位(s112)。

当预测值ng1在范围z之外(s111中为否)时,则ecu300确定第二挡位处的mg1转速nm1的预测值ng2是否在范围z内(s121)。当预测值ng2在范围z内时(s121中为是),则ecu300将第二挡位选为挡位变化后的挡位(s122)。

之后,以类似于第一挡位的方式,当第二挡位处的mg1转速nm1的预测值ng2在范围z之外(s121中为否)时,则ecu300确定第三挡位处的mg1转速nm1的预测值ng3是否在范围z内(s131)。当预测值ng3在范围z内时(s131中为是),则ecu300将第三挡位选为挡位变化后的挡位(s132)。

当预测值ng3在范围z之外(s131中为否)时,则ecu300确定第四挡位处的mg1转速nm1的预测值ng4是否在范围z内(s141)。当预测值ng4在范围z内时(s141中为是),则ecu300将第四挡位选为挡位变化后的挡位(s142)。

当预测值ng4在范围z之外(s141中为否)时,则ecu300确定发动机转速ne不能通过形成任何挡位而增大至能够起动发动机100的阈值nc,并且保持当前挡位(s150)。当s112、s122、s132、s142和s150中的任何一个过程终止时,则过程返回至图10中所示的流程图。

如上所述,根据该实施例,当对驱动电动发电机10的逆变器221执行三相短路控制时,能够通过执行对自动变速器40的变速器控制而改变mg2转速nm2和mg1转速nm1。因而,能够由电动发电机10产生期望的拖曳扭矩tdr,因而允许发动机转速ne适当地增大。

虽然本实施例已经通过示例描述了其中处于停止状态的发动机100通过对自动变速器40的变速器控制而起动的情况,但是在执行这种变速器控制期间,发动机100不需要处于停止状态。如果mg1转速nm1在马达运行期间为负,则即使发动机100处于被驱动状态,也能够通过对自动变速器40的变速器控制而增大发动机速度ne。

另外,虽然已经在图10中所示的流程图中解释了当发动机转速ne不能通过对逆变器221的三相短路控制产生的拖曳扭矩tdr而增大至能够起动发动机100的阈值nc时执行对自动变速器40的变速器控制(参见s50、s60),但是s50、s60中的过程不是要求。可以与mg1转速nm1的当前值无关地执行对自动变速器40的变速器控制。

此外,虽然图11中所示的流程图已经描述了下列示例,其中对于自动变速器40的所有挡位都确定预测值是否等于或者大于所需值,但是可以仅对一些预定挡位(两个或更多个挡位)做出确定。

虽然已经描述了本发明的实施例,但是应理解,本文公开的实施例在每一方面都是例示性的而非限制性的。本发明的范围由权利要求的条款限定,并且意在包括等效于权利要求的条款的范围和意义内的任何变型。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1