混合动力车辆的制作方法

文档序号:11683018阅读:218来源:国知局
混合动力车辆的制造方法与工艺

本发明涉及一种混合动力车辆。



背景技术:

传统上,作为这种混合动力车辆,已经提出下列混合动力车辆,其中电动发电机被连接到行星齿轮的太阳齿轮,发动机被连接到齿轮架,驱动轴被连接到齿圈,推进马达被连接到驱动轴,并且设置防止发动机逆向旋转(负旋转)的单向离合器(例如,参见日本专利申请公开no.2003-201880(jp2003-201880a))。在这种混合动力车辆中,当在发动机停止期间要求最大加速度,并且推进马达和电动发电机的估计总扭矩小于推进马达和发动机的最大总扭矩时,发动机起动。

在上述硬件构造的混合动力车辆中,能够在将发动机设定为旋转限制状态的同时选择所谓的双驱动模式,在双驱动模式中,车辆通过来自推进马达的扭矩和来自电动发电机的扭矩(电动发电机的负旋转方向的扭矩)来行驶。当发动机起动时,发动机被来自电动发电机的扭矩(电动发电机的正旋转方向的扭矩)启动,以便被起动。因此,当从双驱动模式起动发动机时,由于来自电动发电机的扭矩的方向反向,所以从电动发电机输出并且作用在驱动轴上的扭矩的方向反向,所以存在被输出至驱动轴的总扭矩可能稍微大量减小的可能性。如果在执行加速器踏板的快速踏下时发生这种现象,则驾驶员可能感觉到迟钝。



技术实现要素:

因此,考虑到上述问题,本发明提供一种在执行加速器踏板的快速踏下时抑制驾驶员感觉到迟钝的混合动力车辆。

根据本发明的一方面,提供一种混合动力车辆,包括发动机、第一马达、行星齿轮组、第二马达、旋转限制机构、电池和电子控制单元。行星齿轮组包括至少一个行星齿轮,该至少一个行星齿轮的至少部分旋转元件被连接到发动机、第一马达和驱动轴,使得第一马达、发动机和驱动轴被以这种顺序布置在列线图中,驱动轴被联接到车轴。第二马达被机械地联接到驱动轴。旋转限制机构被构造成限制发动机的旋转。电池被构造成与第一马达及第二马达交换电力。电子控制单元被构造成:(i)以包括混合动力驱动模式和电动驱动模式的多个驱动模式中的任何驱动模式控制发动机、第一马达和第二马达,以便通过使用驱动轴响应于加速器操作量而要求的要求扭矩使混合动力车辆行驶,混合动力驱动模式是在发动机置于旋转状态从而使发动机运转的同时混合动力车辆行驶的模式,并且电动驱动模式是在发动机置于旋转停止状态以使发动机不运转的同时混合动力车辆通过使用来自至少第二马达的扭矩来行驶的模式,(ii)当要求扭矩小于或者等于选择阈值时,在电动驱动模式中选择单驱动模式,并且当要求扭矩大于选择阈值时,在电动驱动模式中选择双驱动模式,所述选择阈值小于等于在单驱动模式时可输出至驱动轴的第一最大扭矩,单驱动模式是混合动力车辆通过使用来自仅仅第二马达的扭矩来行驶的模式,并且双驱动模式是混合动力车辆通过使用来自第一马达和第二马达的扭矩来行驶的模式,(iii)控制混合动力车辆,以便在电动驱动模式要求扭矩变成大于起动阈值时,通过使用来自第一马达的扭矩转动发动机的曲柄从而起动来启动待被起动的发动机,并且(iv)当作为加速器操作量的每单位时间的增加量的加速器操作速度大于预定速度时,将起动阈值设定成小于或者等于选择阈值的值。

在上述本发明的混合动力车辆中,在电动驱动模式中,当驱动轴根据加速器操作量而要求的要求扭矩小于或者等于选择阈值时,则在单驱动模式和双驱动模式之间选择单驱动模式,而当要求扭矩大于选择阈值时,选择双驱动模式,所述选择阈值小于或者等于在单驱动模式下能够输出至驱动轴的第一最大扭矩,在单驱动模式中,混合动力车辆通过使用来自仅仅第二马达的扭矩来行驶,并且在双驱动模式中,混合动力车辆通过使用来自第一马达的扭矩(负扭矩)和来自第二马达的扭矩来行驶。当在电动驱动模式(单驱动模式或者双驱动模式)中要求扭矩变得比起动阈值大时,则执行控制,使得通过来自第一马达的扭矩(正扭矩)启动发动机以便起动发动机。当作为加速器操作量的每单位时间的增加量的加速器操作速度大于预定速度(执行加速器踏板的快速踏下)时,起动阈值被设定成小于或者等于选择阈值的值。因此,在当前驱动模式为单驱动模式时,当要求扭矩变得大于起动阈值时从单驱动模式起动发动机。因此,与从双驱动模式起动发动机的情况相比,能够在起动发动机时抑制被输出至驱动轴的总扭矩的减小。结果,能够在执行加速器踏板的快速踏下时抑制驾驶员感觉到迟钝。

在本文中,“行星齿轮组”可以包括行星齿轮,行星齿轮具有连接到第一马达的太阳齿轮、连接到发动机的齿轮架和连接到驱动轴的齿圈。“第二马达”可以被直接地连接到驱动轴。“行星齿轮组”可以包括行星齿轮和减速齿轮,行星齿轮包括连接到第一马达的太阳齿轮、连接到发动机的齿轮架和连接到驱动轴的齿圈,减速齿轮连接到齿圈。“第二马达”可以通过经减速齿轮连接到齿圈而机械地联接到驱动轴。“行星齿轮组”可以包括第一行星齿轮、第二行星齿轮、离合器和制动器,第一行星齿轮包括第一太阳齿轮、连接到驱动轴的第一齿轮架和连接到发动机的第一齿圈,第二行星齿轮包括连接到第一马达的第二太阳齿轮、连接到驱动轴和第一齿轮架的第二齿轮架以及第二齿圈,离合器用于在第一太阳齿轮和第二齿圈之间建立连接或者释放两者之间的连接,制动器用于不可旋转地固定第二齿圈和可旋转地释放第二齿圈,并且“第二马达”可以通过连接到第一太阳齿轮而机械地连接到驱动轴。

“旋转限制机构”可以是单向离合器,单向离合器允许发动机在正旋转,并且限制(阻止)发动机的负旋转,或者可以使用制动器,制动器用于不可旋转地固定发动机和可旋转地释放发动机。

在上述混合动力车辆中,电子控制单元可以被构造成在加速器操作速度小于或者等于预定速度时将起动阈值设定成大于选择阈值的值。通过这种构造,能够抑制发动机的起动。

此外,在上述混合动力车辆中,电子控制单元可以被构造成在加速器操作速度小于或者等于预定速度时,将起动阈值设定成大于在双驱动模式中被输出至驱动轴的第二最大扭矩的值。通过这种构造,能够进一步抑制发动机的起动。

附图说明

下面将参考附图描述本发明的例证性实施例的特征、优点以及技术和工业意义,其中相同参考标记指示相同元件,并且其中:

图1是示意性地示出根据作为本发明的示例的第一实施例的混合动力车辆构造的构造图;

图2是示出第一实施例中的单驱动模式中的行星齿轮的列线图的一个示例的解释图;

图3是示出第一实施例中的双驱动模式中的行星齿轮的列线图的一个示例的解释图;

图4是示出由第一实施例的混合动力电子控制单元执行的起动判定例程的一个示例的流程图;

图5是示出当起动第一实施例中的发动机时的行星齿轮的列线图的一个示例的解释图;

图6是示出在第一实施例的混合动力车辆中单驱动最大扭矩、双驱动最大扭矩、单驱动模式与双驱动模式之间的选择阈值以及起动阈值之间的关系的一个示例的解释图;

图7是示意性地示出本发明的第二实施例的混合动力车辆构造的构造图;

图8是示意性地示出本发明的第三实施例的混合动力车辆构造的构造图;

图9是示出在第三实施例中当离合器处于接合状态并且制动器处于释放状态时的单驱动模式中的两个行星齿轮的列线图的一个示例的解释图;

图10是示出在第三实施例中当离合器处于接合状态并且制动器处于释放状态时的双驱动模式中的两个行星齿轮的列线图的一个示例的解释图;并且

图11是示出在第三实施例中在离合器处于接合状态并且制动器处于释放状态的同时起动发动机时的两个行星齿轮的列线图的一个示例的解释图。

具体实施方式

现在将参考实施例描述用于执行本发明的模式。

图1是示意性地示出本发明的第一实施例的混合动力车辆20构造的构造图。如图1中所示,第一实施例的混合动力车辆20包括发动机22、用作行星齿轮组的行星齿轮30、单向离合器cl1、马达mg1和mg2、逆变器41和42、电池50、电池充电器60和混合动力电子控制单元(下文称为hv-ecu)70。

发动机22被构造成使用燃料诸如汽油或者柴油燃料以输出动力的内燃机。发动机22的运转由发动机电子控制单元(下文称为发动机ecu)24控制。

虽然未示出,但是发动机ecu24被构造成包括作为其主要元件的cpu的微处理器,并且除了cpu之外还包括存储处理程序的rom、临时地存储数据的ram、输入和输出端口以及通信端口。

控制发动机22的运转必要的来自各种传感器的信号被经由输入端口输入至发动机ecu24。作为被输入至发动机ecu24的信号,能给出下列信号:来自检测发动机22的曲轴26的旋转位置的曲柄位置传感器23的曲柄角θcr;和来自检测节气门位置的节气门位置传感器的节气门开度th。

经由输出端口从发动机ecu24输出用于控制发动机22的运转的各种控制信号。作为从发动机ecu24输出的信号,能给出下列信号:输出至节气门马达的调节节气门位置的驱动控制信号;输出至燃料喷射阀的驱动控制信号;以及输出至与点火器一体的点火线圈的驱动控制信号。

发动机ecu24经由通信端口连接到hvecu70。发动机ecu24基于来自hvecu70的控制信号控制发动机22的运转,并且视需要将关于发动机22的运转状态的数据输出至hvecu70。发动机24基于来自曲柄位置传感器23的曲柄角θcr计算曲轴26的转速,即发动机22的转速ne。

行星齿轮30被构造成单小齿轮型行星齿轮,并且包括外齿式太阳齿轮31、内齿式齿圈32、与太阳齿轮31及齿圈32啮合的多个小齿轮33以及齿轮架34,齿轮架34以允许小齿轮33在它们的轴线上旋转并且绕太阳齿轮31旋转的方式保持小齿轮33。马达mg1的转子被连接到太阳齿轮31。经由差动齿轮38和齿轮机构37联接到驱动轮39a和39b的驱动轴36被连接到齿圈32。发动机22的曲轴26被连接到齿轮架34。

单向离合器cl1附接至发动机22的曲轴26(行星齿轮30的齿轮架34)并且附接至固定至车辆本体的壳体21。单向离合器cl1允许发动机22相对于壳体21正旋转,以及限制(阻止)发动机22相对于壳体22的负旋转。

马达mg1例如被构造为同步电动发电机,并且如上所述,马达mg1的转子被连接到行星齿轮30的太阳齿轮31。马达mg2例如被构造为同步电动发电机,并且马达mg2的转子经由减速齿轮35连接到驱动轴36。逆变器41和42经由电力线54连接到电池50。平滑电容器57连接到电力线54。当逆变器41和42的多个切换元件(未示出)由马达电子控制单元(下文称为“马达ecu”)40切换控制时,马达mg1和mg2分别被逆变器41和42可旋转地驱动。

虽然未示出,但是马达ecu40被构造成包括作为其主要元件的cpu的微处理器,并且除了cpu之外还包括存储处理程序的rom、临时地存储数据的ram、输入和输出端口以及通信端口。

驱动控制马达mg1和mg2必需的来自各种传感器的信号经由输入端口输入至马达ecu40。作为被输入马达ecu40的信号,能够给出下列信号:来自分别检测马达mg1和mg2的转子的旋转位置的旋转位置检测传感器43和44的旋转位置θm1和θm2;和来自检测流过马达mg1和mg2的相应相的电流的电流传感器的相电流。

经由输出端口从马达ecu40输出的逆变器41和42的切换元件(未示出)的切换控制信号等。

马达ecu40经由通信端口连接到hvecu70。马达ecu40基于来自hvecu70的控制信号驱动地控制马达mg1和mg2,并且在必要时向hvecu70输出关于马达mg1和mg2的驱动状态的数据。马达ecu40基于来自旋转位置检测传感器43和44的马达mg1和mg2的转子的旋转位置θm1和θm2来计算马达mg1和mg2的转速nm1和nm2。

电池50例如被构造为锂离子二次电池或者镍氢二次电池,并且如上所述,经由电力线54连接到逆变器41和42。电池50由电池电子控制单元(下文称为“电池ecu”)52管理。

虽然图中未示出,但是电池ecu52被构造成包括作为其主要元件的cpu的微处理器,并且除了cpu之外还包括存储处理程序的rom、临时地存储数据的ram、输入和输出端口以及通信端口。

管理电池50必需的来自各种传感器的信号经由输入端口输入至电池ecu52。作为被输入电池ecu52的信号,能给出下列信号:来自被布置在电池50的端子之间的电压传感器51a的电池电压vb;来自附接至电池50的输出端子的电流传感器51b的电池电流ib(当从电池50放电时为正值);以及来自附接至电池50的温度传感器51c的电池温度tb。

电池ecu52经由通信端口连接到hvecu70,并且视需要向hvecu70输出关于电池50的状态的数据。电池ecu52基于来自电流传感器51b的电池电流ib的积分值计算荷电状态soc。荷电状态soc是能够从电池50放电的电力的容量对电池50的总容量的比。此外,电池ecu52基于计算出的荷电状态soc和来自温度传感器51c的电池温度tb计算输入和输出限值win和wout。输入限值win是能够被充给电池50的可允许充电电力,而输出限值wout是能够从电池50放电的可允许放电电力。

电池充电器60被连接到电力线54,并且包括ac/dc变换器和dc/dc变换器。ac/dc变换器将经由电源插头61从外部电源供应的ac电力变换为dc电力。dc/dc变换器变换来自ac/dc变换器的dc电力的电压,并且将具有变换后的电压的dc电力供应至电池50侧。当电源插头61连接到外部电源,诸如商用电源时,电池充电器60的ac/dc变换器和dc/dc变换器由hvecu70控制,使得来自外部电源的电力被供应给电池50。

虽然未示出,但是hvecu70被构造成包括作为其主要元件的cpu的微处理器,并且除了cpu之外还包括存储处理程序的rom、临时地存储数据的ram、输入和输出端口以及通信端口。

经由输入端口将来自各种传感器的信号输入至hvecu70。作为被输入hvecu70的信号,能给出下列信号:来自点火开关80的点火信号;来自检测换挡杆81的操作位置的档位传感器82的档位sp;来自检测加速器踏板83的踏下量的加速器踏板位置传感器84的加速器开度acc;来自检测制动踏板85的踏下量的制动踏板位置传感器86的制动踏板位置bp;和来自车速传感器88的车速v。

经由输出端口从hvecu70输出用于电池充电器60的控制信号等。

如上所述,hvecu70经由通信端口连接到发动机ecu24、马达ecu40和电池ecu52,并且与发动机ecu24、马达ecu40和电池ecu52交换各种控制信号和数据。

在按上文所述构造的第一实施例的混合动力车辆20中,发动机22以及马达mg1和mg2被控制成使得在cd(电量耗尽)模式或者cs(电量维持)模式中,车辆在包括混合动力驱动(hv驱动)模式和电动驱动(ev驱动)模式的多种驱动模式中的一种模式中,使用基于加速器开度acc和车速v的驱动轴36的要求扭矩tp*来行驶。

在本文中,cd模式是与cs模式相比,在hv驱动模式和hv驱动模式之间向ev驱动模式赋予更高优先级的模式。在第一实施例中,当电池50的荷电状态soc大于系统起动时的阈值shv1(例如,45%、50%、55%等)时,车辆以cd模式行驶,直到电池50的荷电状态soc达到阈值shv2(例如,25%、30%、35%等)或者更低为止,而在电池50的荷电状态soc达到等于阈值shv2或者更低时,车辆以cs模式行驶,直到系统停止为止。另一方面,当电池50的荷电状态soc低于或者等于系统起动时的阈值shv1时,车辆以cs模式行驶,直到系统停止为止。顺便提及,当电源插头61在系统停止在充电点诸如家中的同时连接到外部电源时,电池充电器60被控制成使用来自外部电源的电力对电池50充电。

hv驱动模式是在行星齿轮30的齿轮架34(发动机22)被设定在可旋转状态的同时车辆通过使发动机22运转而行驶的模式。ev驱动模式是在行星齿轮30的齿轮架34(发动机22)被设定成旋转限制状态的同时车辆20通过使用来自至少马达mg2的扭矩来行驶而不使发动机22运转的模式。ev驱动模式包括单驱动模式和双驱动模式,在单驱动模式中,车辆通过来自仅仅马达mg2的扭矩来行驶,并且在双驱动模式中,车辆通过来自马达mg1和马达mg2的扭矩来行驶。

在hv驱动模式和ev驱动模式(单驱动模式、双驱动模式)中,发动机22以及马达mg1和mg2由hvecu70、发动机ecu24和马达ecu40之间的协同控制而控制。下面将以这种顺序描述ev驱动模式(单驱动模式、双驱动模式)和hv驱动模式。

图2和3是分别示出单驱动模式和双驱动模式中的行星齿轮30的列线图的示例的解释图。在图2和3中,s轴线代表也为太阳齿轮31的转速的马达mg1的转速nm1,c轴线代表也为齿轮架34的转速的发动机22的转速ne,r轴线代表也为齿圈32的转速的驱动轴36的转速np,并且m轴线代表也为减速齿轮35的转速降低之前的齿轮的转速的马达mg2的转速nm2。“ρ”代表行星齿轮30的传动比(太阳齿轮31的齿数/齿圈32的齿数),并且“gr”代表减速齿轮35的减速比。在图2中,m轴线上的粗线箭头表示从马达mg2输出的扭矩tm2,并且r轴线上的粗线箭头指示在从马达mg2输出扭矩tm2时作用在驱动轴36上的扭矩(tm2×gr)。在图3中,s轴线上的粗线箭头表示从马达mg1输出的扭矩tm1,并且m轴线上的粗线箭头表示从马达mg2输出的扭矩tm2,并且r轴线上的两个粗线箭头表示在从马达mg1和mg2输出扭矩tm1和tm2时作用在驱动轴36上的扭矩(-tm1/ρ+tm2×gr)。

下面,在列线图中,假定关于转速,图2和图3中值0上方的一侧代表正旋转,而图2和图3中值0下方的一侧代表负旋转,并且关于扭矩,图2和3中的向上方向代表正扭矩,而图2和3中的向下方向代表负扭矩。在这种情况下,由于马达mg2的转速nm2和驱动轴36的转速np的符号彼此相反,所以减速齿轮35的减速比gr采取负值。

在单驱动模式中,hv-ecu70首先基于加速器开度acc和车速v设定行驶要求的要求扭矩tp*。然后,马达mg1的扭矩指令值tm1*被设为零,并且马达mg2的扭矩指令值tm2*被设定成使得在电池50的输入和输出限值win、wout范围以及马达mg2的负侧(图2中的向下侧)上额定扭矩tm2rt1范围内将要求扭矩tp*输出至驱动轴36。这里,马达mg2的负侧额定扭矩tm2rt1的绝对值随着马达mg2的转速nm2的绝对值增大而减小。然后,hvecu70将马达mg1和mg2的扭矩指令值tm1*和tm2*发送至马达ecu40。马达ecu40执行逆变器41和42的切换元件的切换控制,使得以扭矩指令值tm1*和tm2*驱动马达mg1和mg2。

因此,如图2中所示,车辆能够通过从马达mg2输出负扭矩tm2以使正扭矩(tm2×gr)作用在驱动轴36上来行驶。能够在单驱动模式中输出至驱动轴36的单驱动最大扭矩tpmax1等于通过将马达mg2的负侧额定扭矩tm2rt1乘以减速齿轮35的减速比gr获得的值(tm2rt1×gr)。这易于从图2的列线图导出。随着驱动轴36的转速np增大,单驱动最大扭矩tpmax1减小。

在双驱动模式中,hv-ecu70首先基于加速器开度acc和车速v设定行驶要求的要求扭矩tp*。然后,马达mg1、mg2的扭矩指令值tm1*、tm2*被设定成使得在电池50的输入和输出限值win、wout的范围以及马达mg1和mg2的负侧(图3中的向下侧)上的额定扭矩tm1rt1和tm2rt1的范围中将要求扭矩tp*输出至驱动轴36。这里,马达mg1的负侧额定扭矩tm1rt1的绝对值随着马达mg1的转速nm1的绝对值增大而减小。然后,hvecu70将马达mg1和mg2的扭矩指令值tm1*和tm2*发送至马达ecu40。马达ecu40以上述方式执行逆变器41、42的切换元件的切换控制。

因此,如图3中所示,车辆能够通过从马达mg1和mg2输出负扭矩tm1和tm2以使正扭矩(-tm1/ρ+tm2×gr)作用在驱动轴36上来行驶。能够在双驱动模式中输出至驱动轴36的双驱动最大扭矩tpmax2等于通过将马达mg1的负侧额定扭矩tm1rt1乘以行星齿轮30的传动比ρ的倒数和(-1)获得的值与通过将马达mg2的负侧额定扭矩tm2rt1乘以减速齿轮35的减速比gr获得的值的和(-tm1rt1/ρ+tm2rt1×gr)。这易于从图3的列线图导出。双驱动最大扭矩tpmax2随着驱动轴36的转速np增大而减小。

在第一实施例中,在ev驱动模式下,当要求扭矩tp*小于或者等于比单驱动最大扭矩tpmax1小的选择阈值tpref时,选择单驱动模式,而当要求扭矩tp*大于选择阈值tpref时,选择双驱动模式。选择阈值tpref随着驱动轴36的转速np增大而减小。

在第一实施例中,在双驱动模式中,在被输出至驱动轴36的总扭矩中,从马达mg1输出的作用在驱动轴36上的扭矩和从马达mg2输出的作用在驱动轴36上的扭矩的分配比被调节成使得来自马达mg2的扭矩变得接近值(tpref/gr)或负侧额定扭矩tm2rt1,值(tpref/gr)是通过将单驱动模式和双驱动模式之间的选择阈值tpref除以减速齿轮35的减速比gr获得的。

在hv驱动模式中,hv-ecu70首先基于加速器开度acc和车速v设定车辆行驶要求的要求扭矩tp*。然后,通过将设定的要求扭矩tp*乘以驱动轴36的转速np来计算行驶要求的要求功率pp*。这里,作为驱动轴36的转速np,能使用通过将马达mg2的转速nm2除以减速齿轮35的减速比gr获得的转速,或者是通过将车速v乘以换算系数获得的转速。然后,通过从要求功率pp*减去电池50的充电/放电要求功率pb*(当从电池50放电时为正值)计算车辆要求的要求功率pe*。然后,发动机22的目标转速ne*和目标扭矩te*以及马达mg1和mg2的扭矩指令值tm1*和tm2*被设定成使得从发动机22输出要求功率pe*,并且使得在电池50的输入和输出限值win和wout的范围以及马达mg1和mg2的负侧额定扭矩tm1rt1和tm2rt1的范围中将要求扭矩tp*输出至驱动轴36。然后,hvecu70将发动机22的目标转速ne*和目标扭矩te*发送至发动机ecu24,并且将马达mg1和mg2的扭矩指令值tm1*和tm2*发送至马达ecu40。响应于从hvecu70接收目标转速ne*和目标扭矩te*,发动机ecu24对发动机22执行进气量控制、燃料喷射控制、点火控制等,使得发动机22基于目标转速ne*和目标扭矩te*运转。响应于从hvecu70接收扭矩指令值tm1*和tm2*,马达ecu40以上述方式执行逆变器41、42的切换元件的切换控制。

接下来,将描述按上文所述构造的第一实施例的混合动力车辆20的操作,特别是判定是否以cd模式中的ev驱动模式起动发动机22的操作。图4是示出由第一实施例的hvecu70执行的起动判定例程的一个示例的流程图。在ev驱动模式中重复地执行这个例程(当未做出发动机22的起动判定时)。

当执行图4的起动判定例程时,hvecu70首先接收数据,诸如加速器开度acc、车速v、电池50的输出限值wout以及要求扭矩tp*(步骤s100)。这里,由加速器踏板位置传感器84检测到的值被作为加速器开度acc输入,由车速传感器88检测到的值被作为车速v输入,由电池ecu52计算出的值被作为电池50的输出限值wout输入,并且通过上述控制设定的值被作为要求扭矩tp*输入。

在按上文所述地输入数据之后,基于输入的车速v和输入的电池50的输出限值wout设定针对加速器开度acc的发动机22的起动阈值ast(步骤s110)。这里,在第一实施例中,起动阈值ast关于车速v和电池50的输出限值wout的关系被提前确定并且作为映射存储,使得当给出车速v和电池50的输出限值wout时,从映射和设定导出相应的起动阈值ast。起动阈值ast被设定成当车速v高时比车速v低时小,并且被设定成当电池50的输出限值wout小时比电池50的输出限值wout大时小。特别地,起动阈值ast被设定成使得其趋向于随着车速v增大而减小,并且随着电池50的输出限值wout减小而减小。也能够使用例如约60%至80%的值作为起动阈值ast。

然后,加速器开度acc和起动阈值ast被彼此比较(步骤s120),并且当加速器开度acc大于起动阈值ast时,判定起动发动机22(步骤s190),并且该例程终止。

当判定起动发动机22时,通过hvecu70、发动机ecu24和马达ecu40之间的协同控制起动发动机22。图5是示出当起动发动机22时的行星齿轮30的列线图的一个示例的解释图。如图5中所示,当启动发动机22时,在电池50的输入和输出限值win和wout的范围以及马达mg1的正侧额定扭矩tm1rt2和马达mg2的负侧额定扭矩tm2rt1的范围内将用于启动发动机22的正扭矩tm1从马达mg1输出,并且通过将作为用于抵消从马达mg1输出并且作用在驱动轴36上的扭矩(-tm1/ρ)的抵消扭矩tcr和要求扭矩tp*的和的正扭矩(tcr+tp*)除以减速齿轮35的减速比gr获得的扭矩被从马达mg2输出。当发动机22被以这种方式启动使得发动机22的转速ne变得大于预定转速(例如,800rpm或者1000rpm)时,则开始发动机22的操作控制(燃料喷射控制、点火控制等)。然后,当发动机22的起动完成时,驱动模式变为hv驱动模式。

当在步骤s120加速器开度acc小于或者等于起动阈值ast时,通过从加速器开度acc减去前次加速器开度(前次acc)获得的值除以该例程的执行间隔δt,由此计算加速器操作速度δacc作为每单位时间的加速器开度acc增加量(步骤s130)。

然后,基于车速v和电池50的输出限值wout设定用于判定是否发生加速器踏板83的快速踏下的快速踏下阈值δaref(步骤s140)。这里,在第一实施例中,快速踏下阈值δaref关于车速v和电池50的输出限值wout的关系被提前确定,并且作为映射存储在rom(未示出)中,使得当给出车速v和电池50的输出限值wout时,从映射和设定导出相应的快速踏下阈值δaref。快速踏下阈值δaref被设定成当车速v高时比车速v低时小,并且被设定成当电池50的输出限值wout小时比电池50的输出限值wout大时小。特别地,快速踏下阈值δaref被设定成使得其趋向于随着车速v增大而减小,并且随着电池50的输出限值wout减小而减小。例如能够使用例如约0.5%/10msec至1.5%/10msec的值作为快速踏下阈值δaref。

在按上文所述地设定加速器操作速度δacc和快速踏下阈值δaref之后,加速器操作速度δacc和快速踏下阈值δaref被彼此比较(步骤s150)。当加速器操作速度δacc小于或者等于快速踏下阈值δaref时,判定未发生加速器踏板83的快速踏下,并且发动机22的用于要求扭矩tp*的起动阈值tst被设为值tst1(步骤s160)。这里,在第一实施例中,稍微大于双驱动最大扭矩tpmax2的值被用作值tst1。值tst1随着驱动轴36的转速np增大而减小。

然后,要求扭矩tp*被与起动阈值tst比较(步骤s180),并且当要求扭矩tp*小于或者等于起动阈值tst时,判定继续ev驱动模式,并且例程终止,而当要求扭矩tp*变得大于起动阈值tst时,判定起动发动机22(步骤s190),并且例程终止。由于现在正在考虑其中起动阈值tst被设为值tst的情况,所以当在双驱动模式中要求扭矩tp*变得大于起动阈值tst(=tst1)时,发动机22起动,使得驱动模式变为hv驱动模式。

当在步骤s150中加速器操作速度δacc大于快速踏下阈值δaref时,则判定发生加速器踏板83的快速踏下,并且起动阈值tst被设为值tst2(步骤s170)。然后,执行步骤s180和之后的处理。这里,在第一实施例中,稍微小于单驱动模式和双驱动模式之间的选择阈值tpref的值被用作值tst2。与值tst1相同,值tst2随着驱动轴36的转速np增大而减小。因此,当在单驱动模式中要求扭矩tp*变得大于起动阈值tst(=tst2)时,发动机22起动,使得驱动模式变为hv驱动模式。

在本文中,将描述当加速器操作速度δacc小于或者等于快速踏下阈值δaref时将起动阈值tst设定为大于双驱动最大扭矩tpmax2的原因,以及当加速器操作速度δacc大于快速踏下阈值δaref时将起动阈值tst设定为小于单驱动模式和双驱动模式之间的选择阈值tpref的值tst2的原因。

图6是示出单驱动最大扭矩tpmax1、双驱动最大扭矩tpmax2、单驱动模式和双驱动模式之间的选择阈值tpref以及起动阈值tst(值tst1或者值tst2)之间的关系的一个示例的解释图。如图6中所示,从更大值侧开始的值的顺序为值tst1、双驱动最大扭矩tpmax2、单驱动最大扭矩tpmax1、选择阈值tpref以及值tst2。

由于现在考虑cd模式中的ev驱动模式的情况,所以与cs模式中相比,需要赋予ev驱动模式更高优先级。当加速器操作速度δacc小于或者等于快速踏下阈值δaref时,由于大于双驱动最大扭矩tpmax2的值tst1被设定为起动阈值tst,所以能够抑制发动机22的起动,即抑制从ev驱动模式至hv驱动模式的转变。

然而,当值tst1被用作起动阈值tst时,从双驱动模式起动发动机22。如图3和5所示,当从双驱动模式起动发动机22时,由于来自马达mg1的扭矩从负变为正,所以从马达mg1输出并且作用在驱动轴36上的扭矩从正变为负,使得存在被输出至驱动轴36的总正扭矩可能稍微大量降低的可能性。如果当执行加速器踏板83的快速踏下时发生这种现象,则驾驶员可能感觉迟钝。此外,在双驱动模式下,由于来自马达mg2的扭矩接近于通过将单驱动模式和双驱动模式之间的选择阈值tpref除以减速齿轮35的减速比gr获得的值(tpref/gr),或者接近于负侧额定扭矩tm2rt1,所以存在不可能使抵消扭矩tcr从马达mg2作用在驱动轴36上的情况。在这种情况下,存在使驾驶员更多地感觉到迟钝(使驾驶员感觉到迟钝更长时间)的可能性。

在第一实施例中,当加速器操作速度δacc大于快速踏下阈值δaref时,判定发生加速器踏板83的快速踏下,并且起动阈值tst被设定为值tst2。因此,在当前驱动模式为单驱动模式时,发动机22在要求扭矩tp*变得大于起动阈值tst时从单驱动模式起动。如图2和5中所示,当从单驱动模式起动发动机22时,来自马达mg1的扭矩从值0变为正。因而,与来自马达mg1的扭矩从负变为正的情况相比,能够在起动发动机22时抑制被输出至驱动轴36的总正扭矩的减小。结果,能够在执行加速器踏板83的快速踏下时抑制使驾驶员感觉到迟钝。如果值tst2被设定为小于单驱动最大扭矩tpmax1达到能够引使抵消扭矩tcr从马达mg2作用在驱动轴36上的程度,则能够更充分地抑制被输出至驱动轴36的总正扭矩的减小,因而能够进一步抑制使驾驶员感觉到迟钝。

在上述第一实施例的混合动力车辆20中,当加速器操作速度δacc在cd模式中的ev驱动模式中大于快速踏下阈值δaref时,起动阈值tst被设定成比单驱动模式和双驱动模式之间的选择阈值tpref小的值tst2。因此,在当前驱动模式为单驱动模式时,发动机22在要求扭矩tp*变得大于起动阈值tst时从单驱动模式起动。结果,与从双驱动模式起动发动机22的情况相比,能够在执行加速器踏板83的快速踏下时抑制使驾驶员感觉到迟钝。

在第一实施例的混合动力车辆20中,已经给出了对当判定是否以cd模式中的ev驱动模式起动发动机22的操作的说明。在起动发动机22以变为hv驱动模式之后,可以构造成例如当要求扭矩tp*变得小于或者等于值tst2时,发动机22停止以变为ev驱动模式。通过这种构造,取决于之后加速器操作速度δacc是否大于快速踏下阈值δaref,能够通过切换起动阈值tst来应对。

在第一实施例的混合动力车辆20中,已经给出对在判定是否以cd模式中的ev驱动模式起动发动机22的操作的说明。在cs模式中的ev驱动模式中,可以构造成例如起动阈值tst被与加速器操作速度δacc和快速踏下阈值δaref之间的大小关系无关地设定成值tst2,并且当要求扭矩tp*变得大于起动阈值tst时,则发动机22起动以变为hv驱动模式。电池50的荷电状态soc通常在cs模式中比cd模式中低。因此,通过以这种方式设定起动阈值tst,能够抑制电池50的荷电状态soc的降低。

在第一实施例的混合动力车辆20中,已经给出对在判定是否以cd模式中的ev驱动模式起动发动机22的操作的说明。在不存在cd模式和cs模式之间的选择的情况下(例如,混合动力车辆不包括电池充电器60),可以构造成与第一实施例中相同,在ev驱动模式中持续地判定是否起动发动机22。

在第一实施例的混合动力车辆20中,单驱动模式和双驱动模式之间的选择阈值tpref被设订为比单驱动最大扭矩tpmax1小的值。然而,选择阈值tpref可以被设定成等于单驱动最大扭矩tpmax1的值。

在第一实施例的混合动力车辆20中,基于车速v和电池50的输出限值wout设定起动阈值ast。然而,起动阈值ast可以仅基于车速v设定,或者可以仅基于电池50的输出限值wout设定,或者固定值可以被用作起动阈值ast。

在第一实施例的混合动力车辆20中,在ev驱动模式中,当加速器开度acc大于起动阈值ast时,判定起动发动机22,而在加速器开度acc小于或者等于起动阈值ast时,根据加速器操作速度δacc和快速踏下阈值δaref之间的大小关系设定起动阈值tst,并且当要求扭矩tp*大于起动阈值tst时,判定起动发动机22。然而,可以与加速器开度acc无关地,根据加速器操作速度δacc和快速踏下阈值δaref之间的大小关系设定起动阈值tst(甚至在加速器开度acc大于起动阈值tst时),并且可以在要求扭矩tp*大于起动阈值tst时,判定起动发动机22。

在第一实施例的混合动力车辆20中,基于车速v和电池50的输出限值wout设定快速踏下阈值δaref。然而,快速踏下阈值δaref可以仅基于车速设定,或者可以仅基于电池50的输出限值wout设定,或者固定值可以被用作快速踏下阈值δaref。

在第一实施例的混合动力车辆20中,当加速器操作速度δacc小于或者等于快速踏下阈值δaref时,起动阈值tst被设定为大于双驱动最大扭矩tpmax2的值tst1。然而,当加速器操作速度δacc小于或者等于快速踏下阈值δaref时,起动阈值tst可以被设定为等于双驱动最大扭矩tpmax2的值,或者可以被设定为小于双驱动最大扭矩tpmax2并且大于单驱动模式和双驱动模式之间的选择阈值tpref的值。

在第一实施例的混合动力车辆20中,当加速器操作速度δacc大于快速踏下阈值δaref时,起动阈值tst被设定为小于单驱动模式和双驱动模式之间的选择阈值tpref的值。然而,当加速器操作速度δacc大于快速踏下阈值δaref时,起动阈值tst可以被设定为等于选择阈值tpref的值。

在第一实施例的混合动力车辆20中,单向离合器cl1附接至发动机22的曲轴26(行星齿轮30的齿轮架34)。然而,如图7的第二实施例的混合动力车辆120中所示,可以设置制动器br1,制动器br1用于相对于壳体21不可旋转地固定发动机22的曲轴26,以及相对于壳体21可旋转地释放发动机22的曲轴26。在这种情况下,在ev驱动模式中,制动器br1可以被置于接合状态,以将发动机22设定在旋转限制状态中。另一方面,在hv驱动模式中,制动器br1可以被置于释放状态,以将发动机22设定在可旋转状态中。

在第一实施例的混合动力车辆20中,马达mg2经由减速齿轮35连接到驱动轴36。然而,马达mg2可以直接连接到驱动轴36。可替选地,马达mg2可以经由变速箱连接到驱动轴36。

在第一实施例的混合动力车辆20中,行星齿轮组包括单行星齿轮30。然而,行星齿轮组可以包括多个行星齿轮。在这种情况下,可以采用图8的第三实施例的混合动力车辆220中所示的构造。

图8的第三实施例的混合动力车辆220包括行星齿轮230和240(作为行星齿轮组代替混合动力车辆20的行星齿轮30)、离合器cl2和制动器br2。

行星齿轮230被构造成单小齿轮型行星齿轮,并且包括外齿式太阳齿轮231、内齿式齿圈232、与太阳齿轮231和齿圈232啮合的多个小齿轮233以及齿轮架234,齿轮架234以允许小齿轮233在它们的轴线上旋转并且绕太阳齿轮231旋转的方式保持小齿轮233。马达mg2的转子连接到太阳齿轮231。发动机22的曲轴26连接到齿圈232。经由差动齿轮38和齿轮机构37联接到驱动轮39a和39b的驱动轴236被连接到齿轮架234。

行星齿轮240被构造成单小齿轮型行星齿轮,并且包括外齿式太阳齿轮241、内齿式齿圈242、与太阳齿轮241和齿圈242啮合的多个小齿轮243以及齿轮架24,齿轮架24以允许小齿轮243在它们的轴线上旋转并且绕太阳齿轮241旋转的方式保持小齿轮2434。马达mg1的转子连接到太阳齿轮241。驱动轴236连接到齿轮架244。

离合器cl2用于在行星齿轮230的太阳齿轮231/马达mg2的转子与行星齿轮240的齿圈242之间建立连接,以及释放它们之间的连接。制动器br2用于相对于壳体21不可旋转地固定(连接)行星齿轮240的齿圈242,以及相对于壳体21可旋转地释放齿圈242。

图9至11是分别示出在第三实施例的混合动力车辆220中处于单驱动模式、双驱动模式的行星齿轮230和240的列线图示例的解释图以及当在离合器cl2置于接合状态并且制动器br2置于释放状态的同时起动发动机22时的行星齿轮230和240的列线图示例的解释图。

在图9至图11中,s1-r2轴线代表也为行星齿轮230的太阳齿轮231的转速以及行星齿轮240的齿圈242的转速的马达mg2的转速nm2,c1-c2轴线代表也为行星齿轮230和240的齿轮架234和244的转速的驱动轴236的转速np,r1轴线代表也为行星齿轮230的齿圈232的转速的发动机22的转速ne,并且s2轴线代表也为行星齿轮240的太阳齿轮241的转速的马达mg1的转速nm1。

在图9中,s1-r2轴线上的粗线箭头代表从马达mg2输出的扭矩tm2,并且c1-c2轴线上的粗线箭头代表从马达mg2输出并且作用在驱动轴236上的扭矩(tm2×k2)。换算系数k2是用于将马达mg2的扭矩tm2变换为驱动轴236的扭矩的系数。在图10和图11中,s2轴线上的粗线箭头代表从马达mg1输出的扭矩tm1,s1-r2轴线上的粗线箭头代表从马达mg2输出的扭矩tm2,并且c1-c2轴线上的两个粗线箭头代表从马达mg1和mg2输出并且作用在驱动轴236上的扭矩(tm1×k1+tm2×k2)。换算系数k1是用于将马达mg1的扭矩tm1变换为驱动轴236的扭矩的系数。

在图9至图11的情况下,由于离合器cl2置于接合状态,所以行星齿轮230的太阳齿轮231的转速、马达mg2的转速nm2与行星齿轮240的齿圈242的转速彼此相等。因此,行星齿轮230、240起所谓的四元件行星齿轮组的作用。

在单驱动模式中,如图9中所示,车辆能够通过从马达mg2输出正扭矩tm2以使正扭矩(tm2×k2)作用在驱动轴236上来行驶。单驱动最大扭矩tpmax1等于通过将马达mg2的正侧额定扭矩tm2rt2乘以换算系数k2获得的值(tm2rt2×k2)。这易于从图9的列线图导出。

在双驱动模式中,如图10中所示,车辆能够通过从马达mg1输出负扭矩tm1并且从马达mg2输出正扭矩tm2以使正扭矩(tm1×k1+tm2×k2)作用在驱动轴236上来行驶。双驱动最大扭矩tpmax2等于通过将马达mg1的负侧额定扭矩tm1rt1乘以换算系数k1获得的值与通过将马达mg2的正侧额定扭矩tm2rt2乘以换算系数k2获得的值的和(tm1rt1×k1+tm2rt2×k2)。这易于从图10的列线图导出。

在起动发动机22时,如图11中所示,从马达mg1输出正扭矩tm1以启动发动机22。通过图10和图11应明白,在从双驱动模式起动发动机22时,来自马达mg1的扭矩从负扭矩变为正扭矩,并且从马达mg1输出并且作用在驱动轴236上的扭矩从正变为负。因此,存在被输出至驱动轴236的总正扭矩稍微大量地降低的可能性。因此,与第一实施例的情况相同,通过在加速器操作速度δacc大于快速踏下阈值δaref时执行图4的判定例程,以将起动阈值tst设定为小于单驱动模式和双驱动模式之间的选择阈值tpref的值tst2,能够获得与第一实施例类似的有利效果。

将描述实施例的主要元件和发明内容中所述的本发明的主要元件之间的对应关系。在第一实施例中,发动机22是“发动机”的一个示例。马达mg1是“第一马达”的一个示例。行星齿轮30是“行星齿轮组”的一个示例。马达mg2是“第二马达”的一个示例。单向离合器cl1是“旋转限制机构”的一个示例。电池50是“电池”的一个示例。hvecu70、发动机ecu24和马达ecu40是“电子控制单元”的一个示例。此外,执行图4中的起动判定例程的hvecu70也是“电子控制单元”的一个示例。

第一实施例的主要元件和发明内容中所述的本发明的主要元件之间的对应关系仅是特别解释用于执行发明内容中所述的本发明的第一实施例的模式的一个实例,无意限制发明内容中所述的本发明的元件。也就是说,应基于发明内容中的说明解释发明内容中所述的本发明,并且第一实施例仅是发明内容中所述的本发明的一个特定示例。

虽然已经参考实施例描述了用于执行本发明的模式,但是本发明决不限于那些实施例,并且在不偏离本发明的范围内当然能够被以各种模式执行。

本发明适用于混合动力车辆20的制造行业等。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1