本发明涉及混合动力车辆,且更特定地涉及包括发动机、第一马达、第二马达和行星齿轮机构的混合动力车辆。
背景技术:
传统上,提出有一种包括单向离合器的混合动力车辆,所述单向离合器在发动机在向前方向上旋转时放开且在发动机意图于在反向方向上旋转时锁止(例如,参见日本专利申请公开no.2002-012046(jp2002-012046a))。在此混合动力车辆中,当发动机转速为负值时,判定在单向离合器中存在故障。混合动力车辆包括行星齿轮和驱动马达。行星齿轮包括经由齿轮机构等联接到驱动轮的齿圈、连接到发电机马达的太阳齿轮和连接到发动机的输出轴的齿轮架。驱动马达连接到连接于齿圈的齿轮机构。单向离合器连接到发动机的输出轴。在此车辆中,当转矩在使发动机在反方向上旋转的方向从发电机马达输出时在发动机的运行停止的状态中,转矩通过单向离合器支承,因此可将转矩作为反作用力输出到齿圈。通过以此方式运行,车辆通过从发电机马达输出的转矩和从驱动马达输出的转矩行驶。
技术实现要素:
一般地,检测发动机的转速的传感器不能判定旋转方向是正还是负,因此,要求使用能判定旋转方向是正还是负的传感器以便如在以上所述的混合动力车辆的情形中检测发动机转速是负值。如果使用此传感器,则成本升高。
本发明提供了混合动力车辆,所述混合动力车辆进一步合适地判定例如单向离合器、行星齿轮系等的旋转限制机构中的故障。
本发明的一个方面提供了混合动力车辆。混合动力车辆包括发动机、第一马达、第二马达、行星齿轮系、旋转限制机构、电池和电子控制单元。行星齿轮系包括行星齿轮,并且行星齿轮系的旋转元件被连接到发动机、第一马达、第二马达和被联接到车轴的驱动轴。旋转限制机构被构造成限制发动机的旋转。电池被构造成与第一马达和第二马达交换电力。电子控制单元被构造成:i)在双马达驱动模式中,控制第一马达和第二马达,使得驱动轴所要求的要求转矩从第一马达和第二马达输出到驱动轴,在所述双马达驱动模式中,混合动力车辆在发动机的旋转受到限制的状态中通过使用来自第一马达和第二马达的转矩来行驶,并且ii)在双驱动模式中,在当驱动轴的第一转速和驱动轴的第二转速之间的偏差大于阈值时,判定在行星齿轮系和旋转限制机构的任一个中存在故障,驱动轴的第一转速被从发动机的旋转受到限制时从第一马达的转速计算出来,驱动轴的第二转速被从第二马达的转速计算出来。
在以上所述的混合动力车辆中,在混合动力车辆在双驱动模式(在所述双马达驱动模式中,混合动力车辆在发动机的旋转受到限制的状态中通过使用来自第一马达和第二马达的转矩来行驶)中行驶的同时,驱动轴的转速(第一转速)被从在发动机的旋转受到限制时的第一马达的转速计算出来,并且驱动轴的转速(第二转速)被从第二马达的转速计算出来。当第一转速和第二转速之间的偏差大于阈值时,判定在限制发动机的旋转的行星齿轮系和旋转限制机构的任一个中存在故障。当旋转限制机构或行星齿轮机构正常运行时,第一转速和第二转速在传感器误差等的可允许的范围内一致。因此,当第一转速和第二转速之间的偏差大于事先被设定为接近可允许范围的上限的值的阈值时,可判定在旋转限制机构或行星齿轮系中存在故障。因此,能够进一步合适地判定旋转限制机构或行星齿轮系中的故障。第一转速和第二转速之间的偏差意味着第一转速和第二转速之间的差的绝对值。
在如此构造的混合动力车辆中,行星齿轮系可包括单小齿轮式行星齿轮。单小齿轮式行星齿轮可包括联接到第一马达的太阳齿轮、联接到驱动轴的齿圈和联接到多个小齿轮并且联接到发动机的齿轮架。电子控制单元可被构造成在第一转速比第二转速高出阈值或更多时,判定在旋转限制机构或小齿轮中存在故障。
在被构造成包括单小齿轮式行星齿轮的混合动力车辆中,旋转限制机构可以是允许发动机的向前旋转但不允许发动机的反向旋转的单向离合器。电子控制单元可被构造成:在所述电子控制单元在判定在旋转限制机构和小齿轮的任一个中存在故障之后启动发动机时,i)当从第一马达的转速和第二马达的转速计算出来的转速与发动机的转速之间的差小于或等于预定的差时,判定单向离合器中存在故障,并且ii)当所述差大于预定的差时,判定小齿轮中存在故障。
在以上所述的混合动力车辆中,在单向离合器中存在故障(离合器功能中的故障)的情况中,因为在双驱动模式中发动机向反向旋转侧旋转,所以第一转速增大;然而,在启动发动机时,发动机向向前旋转侧正常旋转,因此发动机转速正常地增大。为此原因,发动机转速和从第一马达的转速和第二马达的转速计算出来的发动机转速之间的差落在由于传感器误差等的可允许的范围(预定的差)内。另一方面,在小齿轮中存在故障(空转故障)的情况中,因为在双驱动模式中的小齿轮空转,所以第一转速增大,在发动机启动时,因为小齿轮空转,发动机转速也不正常地增大。为此原因,发动机转速和从第一马达的转速和第二马达的转速计算出来的发动机转速之间的差落在可允许的范围(预定的差)外侧。基于此事实,将单向离合器中的故障和小齿轮中的故障彼此区分。因此,能够进一步合适地判定单向离合器中的故障和小齿轮中的故障。
在此情况中,电子控制单元可被构造成:i)在判定单向离合器中存在故障时,允许混合动力模式和单驱动模式,所述混合动力模式是在双驱动模式被禁止的同时混合动力车辆通过使用来自发动机的动力和来自第一马达和第二马达的转矩来行驶的模式,所述单驱动模式是混合动力车辆在发动机被置于旋转停止状态中的同时通过使用来自仅仅第二马达的转矩来行驶的模式,并且ii)当判定小齿轮中存在故障时,在禁止双驱动模式和混合动力模式的同时允许单驱动模式。因此,在单向离合器中存在故障(离合器功能中的故障)或在小齿轮中存在故障(空转故障)的情况中,混合动力车辆可行驶而不损坏其他部件。
在被构造成包括单小齿轮式行星齿轮的混合动力车辆中,行星齿轮系可包括联接到第二马达和齿圈的减速齿轮。电子控制单元可被构造成:当第一转速比第二转速低出阈值或更多时,判定在减速齿轮中存在故障。因此,能够判定在设在行星齿轮系中的减速齿轮中的故障。
在此情况中,当电子控制单元判定在减速齿轮中存在故障时,电子控制单元可被构造成禁止除发动机马达驱动模式和第一马达单驱动模式之外的驱动模式。发动机马达驱动模式可以是混合动力车辆通过使用来自发动机的动力和来自第一马达的转矩来行驶的模式。第一马达单驱动模式可以是混合动力车辆通过使用来自仅仅第一马达的转矩来行驶的模式。因此,在减速齿轮中存在故障的情况中,混合动力车辆能够行驶而不损坏其他部件。
附图说明
本发明的示例性实施例的特征、优点以及技术和工业重要性将在下文中参考附图描述,其中相同的附图标记指示相同的元件,且其中:
图1是示意性地示出了根据本发明的第一实施例的混合动力车辆的构造的构造图;
图2是示出了在马达双驱动模式中执行的故障检测处理例程的示例的流程图;
图3是图示了在混合动力车辆以马达双驱动模式行驶时的列线图的示例的图;
图4是图示了在单向离合器的离合器功能中存在故障(释放故障)时的列线图的示例的图;
图5是图示了马达的负荷率相对于发动机的转速的示例的图;
图6是图示了在发动机正在启动时的列线图的示例的图;
图7是图示了在减速齿轮中存在故障时的列线图的示例的图;
图8是示意性地示出了根据第二实施例的混合动力车辆的构造的构造图;
图9是示意性地示出了根据第三实施例的混合动力车辆的构造的构造图;
图10是图示了在混合动力车辆在离合器被设定为接合状态并且制动器被设定为释放状态的状态中在马达双驱动模式中行驶时的列线图的示例的图;
图11是图示了在混合动力车辆在离合器被设定为释放状态并且制动器被设定为接合状态的状态中在马达双驱动模式中行驶时的列线图的示例的图;
图12是图示了在图10中所示的状态中单向离合器中发生故障时的列线图的示例的图;并且
图13是图示了在图11中所示的状态中单向离合器中发生故障时的列线图的示例的图。
具体实施方式
将描述本发明的实施例。
图1是示意性地示出了根据本发明的第一实施例的混合动力车辆20的构造的构造图。
如在图1中所示,根据第一实施例的混合动力车辆20包括发动机22、行星齿轮30、单向离合器cl1、马达mg1、mg2、逆变器41、42、电池50和混合动力电子控制单元(在后文中称为hv-ecu)70。
发动机22被构造成通过使用汽油、轻油等作为燃料输出动力的内燃机。发动机22受到运行控制,所述运行控制通过发动机电子控制单元(在后文中称为发动机ecu)24来执行。
虽然在图中未示出,但发动机ecu24是微处理器,所述微处理器主要包括cpu,并且除cpu外进一步包括rom、ram、输入/输出端口和通信端口。rom存储处理程序。ram临时地存储数据。
对发动机22执行运行控制所要求的来自多种传感器的信号经由输入端口输入到ecu24。从多种传感器输入的信号的一部分包括曲柄角θcr和节气门开度th。曲柄角θcr从检测发动机22的曲轴26的旋转位置的曲柄位置传感器23输入。节气门开度th从检测节气门的位置的节气门位置传感器输入。
用于对发动机22进行运行控制的多种控制信号从发动机ecu24经由输出端口输出。多种控制信号的一部分包括:输出到调整节气门的位置的节气门马达的驱动控制信号、输出到燃料喷射阀的驱动控制信号和输出到与点火器一体的点火线圈的驱动控制信号。
发动机ecu24经由通信端口连接到hv-ecu70。发动机ecu24响应于来自hv-ecu70的控制信号执行对发动机22的控制。发动机ecu24在需要时将关于发动机22的运行状态的数据输出到hv-ecu70。发动机ecu24基于来自曲柄位置传感器23的曲柄角度θcr计算曲轴26的角速度和转速,即发动机22的角速度ωne和转速ne。
行星齿轮30是单小齿轮式行星齿轮机构。行星齿轮30包括太阳齿轮31、齿圈32、多个小齿轮33和齿轮架34。太阳齿轮31是外齿轮。齿圈32是内齿轮。多个小齿轮33与太阳齿轮31和齿圈32啮合。齿轮架34支承多个小齿轮33使得每个小齿轮33可自转并且可公转。马达mg1的转子连接到太阳齿轮31。驱动轴36连接到齿圈32。驱动轴36经由差速齿轮38和齿轮机构37联接到驱动轮39a、39b。发动机22的曲轴26经由阻尼器28连接到齿轮架34。润滑油通过机油泵(未示出)被提供到行星齿轮30。润滑油也通过齿轮架34等的旋转被供给到小齿轮33。
单向离合器cl1连接到齿轮架34,并且也连接到固定到车身的外壳21。单向离合器cl1仅允许齿轮架34在发动机22的向前旋转方向上的相对于外壳21的旋转。
马达mg1例如是同步发电-电动机。如上所述,马达mg1的转子连接到行星齿轮30的太阳齿轮31。马达mg2例如是同步发电-电动机。马达mg2的转子经由减速齿轮35连接到驱动轴36。逆变器41、42与电池50一起连接到电线54。平滑电容器57连接到电线54。马达mg1、mg2中的每个马达被驱动以在对逆变器41、42中的对应的一个逆变器的多个开关元件(未示出)的开关控制下旋转,所述开关控制通过马达电子控制单元(后文中称为马达ecu)40执行。
虽然在图中未示出,但马达ecu40是微处理器,所述微处理器主要包括cpu并且除cpu外进一步包括rom、ram、输入/输出端口和通信端口。rom存储处理程序。ram临时地存储数据。
执行对马达mg1、mg2的驱动控制所要求的来自多种传感器的信号经由输入端口被输入到马达ecu40。来自多种传感器的信号的一部分包括:旋转位置θm1、θm2和相电流。旋转位置θm1从检测马达mg1的转子的旋转位置的旋转位置检测传感器43输入。旋转位置θm2从检测马达mg2的转子的旋转位置的旋转位置检测传感器44输入。相电流从分别检测流过马达mg1、mg2中的每个马达的相的电流的电流传感器输入。
开关控制信号等从马达ecu40输出到逆变器41、42的开关元件(未示出)。
马达ecu40经由通信端口连接到hv-ecu70。马达ecu40响应于来自hv-ecu70的控制信号执行对马达mg1、mg2的驱动控制。马达ecu40在需要时将关于马达mg1、mg2的驱动状态的数据输出到hv-ecu70。马达ecu40基于来自旋转位置检测传感器43的马达mg1的转子的旋转位置θm1计算马达mg1的转速nm1,且基于来自旋转位置检测传感器44的马达mg2的转子的旋转位置θm2计算马达mg2的转速nm2。
电池50例如是锂离子蓄电池或镍金属氢化物蓄电池。如上所述,电池50与逆变器41、42一起连接到电线54。电池50通过电池电子控制单元(后文中称为电池ecu)52管理。
虽然在图中未示出,但电池ecu52是微处理器,所述微处理器主要包括cpu并且除cpu外进一步包括rom、ram、输入/输出端口和通信端口。rom存储处理程序。ram临时地存储数据。
管理电池50所要求的来自多种传感器的信号经由输入端口输入到电池ecu52。来自多种传感器的信号的一部分包括:电池电压vb,电池电流ib(电池电流ib在电池50放电时具有正值)和电池温度tb。电池电压vb从安装在电池50的端子之间的电压传感器51a输出。电池电流ib从连接到电池50的输出端子的电流传感器51b输出。电池温度tb从连接到电池50的温度传感器51c输出。
电池ecu52经由通信端口连接到hv-ecu70。电池ecu52在需要时将关于电池50的状态的数据输出到hv-ecu70。电池ecu52将充电和放电功率pb计算为来自电压传感器51a的电池电压vb和来自电流传感器51b的电池电流ib的乘积。电池ecu52基于来自电流传感器51b的电池电流ib的累计值计算荷电状态soc。荷电状态soc是从电池50可放电的电力的容量与电池50的总容量的百分比。
虽然在图中未示出,但hv-ecu70是微处理器,所述微处理器主要包括cpu并且除cpu外进一步包括rom、ram、输入/输出端口和通信端口。rom存储处理程序。ram临时地存储数据。
来自多种传感器的信号经由输入端口输入到hv-ecu70。来自多种传感器的信号的一部分包括:点火信号、档位sp、加速器操作量acc、制动踏板位置bp和车速v。点火信号从点火开关80输出。档位sp从检测换档杆81的操作位置的档位传感器82输出。加速器操作量acc从检测加速器踏板83的压下量的加速器踏板位置传感器84输出。制动踏板位置bp从检测制动踏板85的压下量的制动踏板位置传感器86输出。车速v从车速传感器88输出。
如上所述,hv-ecu70经由通信端口连接到发动机ecu24、马达ecu40和电池ecu52。hv-ecu70与发动机ecu24、马达ecu40和电池ecu52交换多种控制信号和数据。
根据第一实施例的如此构造的混合动力车辆20在混合动力驱动模式(hv驱动模式)或电驱动模式(ev驱动模式)中行驶。hv驱动模式是混合动力车辆20通过使用来自发动机22、马达mg1和马达mg2的动力来行驶的模式。ev驱动模式是发动机22的运行停止并且混合动力车辆20通过使用来自马达mg1和马达mg2的动力来行驶的模式。ev驱动模式包括马达单驱动模式和马达双驱动模式。在马达单驱动模式中,不从马达mg1输出转矩,并且混合动力车辆20通过使用来自仅仅马达mg2的转矩行驶。在马达双驱动模式中,混合动力车辆20通过使用来自马达mg1的转矩和来自马达mg2的转矩来行驶。
然后,将描述根据第一实施例的如此构造的混合动力车辆20的运行,特别是在混合动力车辆20在马达双起动模式中行驶的同时判定在单向离合器cl1、小齿轮33或减速齿轮35中是否存在故障的运行。图2是示出了根据第一实施例的通过hv-ecu70执行的故障检测处理例程的示例的流程图。此例程在将马达双起动模式被设定为驱动模式并且判定发动机22的运行停止时执行。
当执行故障检测处理例程时,hv-ecu70最初输入马达mg1、mg2的转速nm1、nm2(步骤s100)。基于来自旋转位置检测传感器43的马达mg1的转子的旋转位置θm1计算出来的值被允许从马达ecu40经由通信输入。基于来自旋转位置检测传感器44的马达mg2的转子的旋转位置θm2计算出来的值被允许从马达ecu40经由通信输入。
随后,假定发动机22的转速ne为零,则从马达mg1的转速nm1计算出作为驱动轴36的转速的第一转速np1,并且从马达mg2的转速nm2计算出作为驱动轴36的转速的第二转速np2(步骤s110)。图3示出了在混合动力车辆20以马达双驱动模式行驶时的列线图的示例。在图中,左侧s轴线代表太阳齿轮31的转速和马达mg1的转速nm1,c轴线代表齿轮架34的转速和发动机22的转速ne,r轴线代表齿圈32的转速和驱动轴36的转速np,且右端m轴线代表减速齿轮35处减速之前齿轮的转速和马达mg2的转速nm2。s轴线上的宽线箭头指示从马达mg1输出的转矩,m轴线上的宽线箭头指示从马达mg2输出的转矩,并且r轴线上的两个宽线箭头分别指示了从马达mg1输出到驱动轴36的转矩和从马达mg2输出到驱动轴36的转矩。ρ指示行星齿轮30的传动比(太阳齿轮31的齿数/齿圈32的齿数)。gr指示减速齿轮35的传动比。如从列线图中显见,第一转速np1被允许计算为马达mg1的转速nm1和传动比ρ的乘积(nm1×ρ),且第二转速np2被允许计算为马达mg2的转速nm2和传动比gr的倒数的乘积(nm2/gr)。在单向离合器cl1、行星齿轮30或减速齿轮35中不存在故障时,如此计算的第一转速np1和第二转速np2在传感器误差等的可允许范围内彼此一致。
随后,判定发动机22的运行是否停止(步骤s120)。当发动机22的运行不停止时(发动机22在运行中),判定驱动模式已从马达双驱动模式改变为另一个驱动模式(例如,hv驱动模式),在此之后例程结束。当发动机22的运行停止时,判定马达双驱动模式正在继续,并且将计算出的第一转速np1和第二转速np2相互比较(步骤s130)。
当第一转速np1高于或等于第二转速np2时,判定通过从第一转速np1减去第二转速np2所获得的值(np1-np2)是否大于阈值npref(步骤s140)。阈值npref事先确定为可允许范围的上限值,在所述可允许范围内第一转速np1和第二转速np2之间的差被允许,例如由于在单向离合器cl1、行星齿轮30或减速齿轮35中无故障时的正常运行期间的传感器误差所导致,或阈值npref可确定为接近上限值的值,并且例如可设定为400rpm、500rpm、600rpm等。因此,在单向离合器cl1、行星齿轮30或减速齿轮35中无故障时的正常运行期间,通过从第一转速np1减去第二转速np2所获得的值(np1-np2)小于等于阈值npref。在此情况中,将单向离合器cl1或小齿轮33的故障计数器cw清零(步骤s150),并且然后处理返回到步骤s100。另一方面,当在步骤s130中判定第一转速np1低于第二转速np2时,判定通过从第一转速np1减去第二转速np2所获得的值(np1-np2)是否小于阈值-npref(步骤s280)。阈值-npref通过将以上所述的阈值npref与-1相乘得到。在单向离合器cl1、行星齿轮30或减速齿轮35中无故障时的正常运行期间,通过从第一转速np1减去第二转速np2所获得的值(np1-np2)大于或等于阈值-npref((np1-np2)的绝对值小于或等于npref)。在此情况中,将用于减速齿轮35的故障计数器cr清零(步骤s290),并且处理返回到步骤s100。因此,在单向离合器cl1、行星齿轮30或减速齿轮35中无故障时的正常运行期间,在马达双驱动模式正继续的同时,步骤s100至步骤s150、步骤s280和步骤s290重复地执行。
当在步骤s140中判定通过从第一转速np1减去第二转速np2所获得的值(np1-np2)大于阈值npref时,将用于单向离合器cl1或小齿轮33的故障计数器cw计数加1(步骤s160)。然后,判定故障计数器cw是否大于阈值cwref(步骤s170)。当故障计数器cw小于或等于阈值cwref时,处理返回到步骤s100。因此,当通过从第一转速np1减去第二转速np2所获得的值(np1-np2)大于阈值npref的状态继续时,步骤s100至步骤s170被重复,直至故障计数器cw变成大于阈值cwref。阈值cwref取决于以上所述的步骤s100至s170的重复的频率(时间间隔)变化,并且与两秒、三秒等对应的计数器值用作经过的时间。图4示出了在单向离合器cl1的离合器功能中存在故障(释放故障)时的列线图的示例。在图中虚线示出如下状态,即假定发动机22的转速ne为零而从马达mg1的转速nm1将第一转速np1计算为驱动轴36的转速。在图4中,因为在单向离合器cl1的离合器功能中存在故障(释放故障),所以发动机22的转速为负转速;然而,假定发动机22的转速ne为零而基于马达mg1的转速nm1计算驱动轴36的转速,所以第一转速np1高于从驱动轴36的实际转速或马达mg2的转速nm2计算出来的第二转速np2。在第一实施例中,当判定通过从第一转速np1减去第二转速np2所获得的值(np1-np2)大于阈值npref时,将马达mg1的负荷率km1设定为在发动机22的转速降低(转速ne的绝对值增大)时降低,以防止发动机22在反向方向上高速旋转。图5示出了马达mg1的负荷率km1相对于发动机22的转速ne的示例。负荷率km1用于与马达mg1的转矩指令tm1*相乘。在图5中的示例中,因为负荷率km1设定为在发动机22的在反向旋转侧的-500rpm至-1000rom的范围内从1.0至0线性地变化,所以发动机22不以高于1000rpm的转速在反向旋转侧上旋转。
当判定故障计数器cw大于阈值cwref时,判定在单向离合器cl1或行星齿轮30的小齿轮33中存在故障(步骤s180),并且禁止马达双驱动模式(步骤s190)。如在图4中所示,如果在单向离合器cl1中存在故障时混合动力车辆20以马达双驱动模式行驶,则关心发动机22在反向方向旋转且由于发动机22的反向旋转导致部件损坏。为此原因,禁止混合动力车辆20在马达双驱动模式中行驶。当图4中的虚线指示了小齿轮33中存在故障(小齿轮33空转的故障)的情况中,图4示出了在小齿轮33中出现故障(小齿轮33空转的故障)时的列线图的示例。在小齿轮33空转时,马达mg1的转速nm1的绝对值增大,因此第一转速np1变得高于第二转速np2。以此方式,当在小齿轮33中存在故障时混合动力车辆20在马达双驱动模式中行驶时,由于小齿轮33的空转,来自马达mg1的转矩不能传递到驱动轴36。为此原因,禁止混合动力车辆20在马达双驱动模式中行驶。
当因为在单向离合器cl1或小齿轮33中存在故障而禁止马达双驱动模式时,等待发动机22的启动(步骤s200)。当发动机22启动时,在发动机启动时马达mg1、mg2的转速nm1、nm2和发动机22的转速ne被输入(步骤s210)。发动机22的转速ne可基于来自曲柄位置传感器23的曲柄角度θcr计算出来,并且可从发动机ecu24经由通信输入。基于马达mg1、mg2的输入转速nm1、nm2计算出的计算转速nec作为发动机22的转速(步骤s220)。图6示出了在发动机22正在启动时的列线图的示例。允许通过使用马达mg1的转速nm1、第二转速np2和行星齿轮30的传动比ρ以比例计算{(np2+ρ×nm1)/(1+ρ)}来获得计算转速nec。因为第二转速np2是马达mg2的转速nm2和减速齿轮35的传动比gr的倒数的沉积(nm2/gr),所以计算转速nec为{(nm2/gr+ρ×nm1)/(1+ρ)}。
判定发动机22的转速ne和计算转速nec之间的差的绝对值是否小于或等于阈值neref(步骤s230)。阈值neref事先确定为由于传感器误差等的可允许范围的上限值,或事先确定为接近上限值的值。当发动机22的转速ne和计算转速nec之间的差的绝对值小于或等于阈值neref时,判定发动机22的转速ne正在正常地增大,并且判定单向离合器cl1中存在故障(步骤s240)。在单向离合器cl1中存在故障(离合器功能中的故障)的情况中,仅发动机22的反向旋转侧的限制不能执行;然而,不干涉发动机22的向前旋转侧上的运行。因此,混合动力车辆可在马达单驱动模式或hv驱动模式中行驶,允许所述马达单驱动模式或hv驱动模式(步骤s250),在此之后例程结束。
另一方面,当发动机22的转速ne和计算转速nec之间的差的绝对值大于阈值neref时,判定发动机22的转速ne不正常地增大,并且判定小齿轮33中存在故障(步骤s260)。在小齿轮33中存在故障(空转故障)的情况中,因为小齿轮33空转所以发动机22的转速ne不增大,其结果是转速ne和计算转速nec之间的差增大。在此情况中,不能够传递马达mg1的转矩,因此不能够启动发动机22。因此,混合动力车辆20能够仅在马达单驱动模式中行驶,因此仅允许马达单驱动模式(步骤s270),在此之后例程结束。
当在步骤s280中判定通过从第一转速np1减去第二转速np2所获得的值(np1-np2)小于阈值(-npref)((np1-np2)的绝对值大于npref)时,用于减速齿轮35的故障计数器cr被计数加1(步骤s300)。判定故障计数器cr是否大于阈值crref(步骤s310)。当故障计数器cr小于或等于阈值crref时,处理返回到步骤s100。因此,当通过从第一转速np1减去第二转速np2所获得的值(np1-np2)小于阈值(-npref)(绝对值较大)的状态继续时,步骤s100至步骤s130、步骤s280和步骤s300被重复,直至故障计数器cr变成大于阈值crref。阈值crref取决于以上所述的步骤s100至s130、s280和s300的重复的频率(时间间隔)变化,且与两秒、三秒等对应的计数器值用作经过的时间。图7示出了在减速齿轮35中存在故障时的列线图的示例。在图中,虚线示出如下状态,即假定减速齿轮35正常而从马达mg2的转速nm2计算作为驱动轴36的转速的第二转速np2。在图7中,因为减速齿轮35中存在故障,所以第二转速np2高于驱动轴36的实际转速或从马达mg1的转速nm1计算出的第一转速np1。
当判定故障计数器cr大于阈值crref时,判定在减速齿轮35中存在故障(步骤s320),仅允许其中混合动力车辆20通过使用来自发动机22的动力和来自马达mg1的转矩来行驶的发动机马达驱动模式和其中混合动力车辆20通过使用来自仅仅马达mg1的转矩来行驶的mg1单驱动模式(步骤s330),在此之后例程结束。当减速齿轮35中存在故障时,不能从马达mg2将转矩传递到驱动轴36,因此要求禁止马达双驱动模式、hv驱动模式和通过使用马达mg2的马达单驱动模式。另一方面,在通过使用单向离合器cl1获得反作用力时,能够从马达mg1向驱动轴36输出转矩,并且在通过使用马达mg1获得反作用力时,能够从发动机22向驱动轴36输出动力。为此原因,仅允许其中混合动力车辆20通过使用来自发动机22的动力和来自马达mg1的转矩来行驶的发动机马达驱动模式。
使用根据第一实施例的以上所述的混合动力车辆20,在马达双驱动模式中,假定发动机22的转速ne为零,则从马达mg1的转速nm1计算第一转速np1作为驱动轴36的转速,且从马达mg2的转速nm2计算第二转速np2作为驱动轴36的转速。通过从第一转速np1减去第二转速np2所获得的值(np1-np2)大于阈值npref的状态继续,并且当故障计数器cw变成大于阈值cwref时,判定单向离合器cl1或行星齿轮30的小齿轮33中存在故障。当以此方式进行判定时,在发动机22下次启动时,在发动机22的转速ne正常增大时判定在单向离合器cl1中存在故障,并且在发动机22的转速ne不正常增大时,判定小齿轮33中存在故障。通过从第一转速np1减去第二转速np2所获得的值(np1-np2)小于阈值(-npref)(绝对值较大)的状态继续,并且在故障计数器cr变成大于阈值crref时,判定减速齿轮35中存在故障。以此方式,能够合适地判定单向离合器cl1中的故障、小齿轮33中的故障或减速齿轮35中的故障。
利用根据第一实施例的混合动力车辆20,当判定在单向离合器cl1或小齿轮33中存在故障时,禁止马达双驱动模式。当判定在单向离合器cl1中存在故障时,允许马达单驱动模式和hv驱动模式。当判定在小齿轮33中存在故障时,仅允许马达单驱动模式。当判定在减速齿轮35中存在故障时,仅允许混合动力车辆20通过使用来自发动机22的动力和来自马达mg1的转矩来行驶的发动机马达驱动模式。以此方式,通过禁止或允许驱动模式,即使在单向离合器cl1、小齿轮33或减速齿轮35中存在故障时也可保证行驶。
在根据第一实施例的混合动力车辆20中,提供了减速齿轮35。替代地,马达mg2可直接连接到驱动轴36而不提供减速齿轮35。在此情况中,步骤s280至步骤s330的处理在图2中所示的故障检测处理例程中是不需要的。
在根据第一实施例的混合动力车辆20中,单向离合器cl1连接到齿轮架34。替代地,如在根据图8中所示的第二实施例的混合动力车辆20中所图示,制动器br1可连接到齿轮架34。制动器br1将齿轮架34固定(连接)到外壳21使得齿轮架34不可旋转,或从外壳21释放齿轮架34使得齿轮架34可旋转。在此情况中,在马达双驱动模式中,基本地,在齿轮架34通过制动器br1的接合而被固定的同时混合动力车辆220行驶。为此原因,在图2中所示的故障检测处理例程中,单向离合器cl1中的故障可视作制动器br1中的故障。
在根据第一实施例的混合动力车辆20中,单行星齿轮30和减速齿轮35被设置作为行星齿轮系。替代地,可设置两个或更多个行星齿轮作为行星齿轮系。在此情况中,可采用根据图9中所示的第三实施例的混合动力车辆320。
根据图9中所示的第三实施例的混合动力车辆320包括行星齿轮330、340作为混合动力车辆20的行星齿轮30的替代而作为行星齿轮系,并且也包括离合器cl2和制动器br2。
行星齿轮330是单小齿轮式行星齿轮。行星齿轮330包括太阳齿轮331、齿圈332、多个小齿轮333和齿轮架334。太阳齿轮331是外齿轮。齿圈332是内齿轮。多个小齿轮333与太阳齿轮331和齿圈332啮合。齿轮架334支承多个小齿轮333使得每个小齿轮333可自转并且可公转。马达mg2的转子连接到太阳齿轮331。发动机22的曲轴26连接到齿圈332。驱动轴336经由差速齿轮38联接到驱动轮39a、39b并且齿轮机构37连接到齿轮架334。
行星齿轮340是单小齿轮式行星齿轮。行星齿轮340包括太阳齿轮341、齿圈342、多个小齿轮343和齿轮架344。太阳齿轮341是外齿轮。齿圈342是内齿轮。多个小齿轮343与太阳齿轮341和齿圈342啮合。齿轮架344支承多个小齿轮343使得每个小齿轮343可自转并且可公转。马达mg1的转子连接到太阳齿轮341。驱动轴336连接到齿轮架344。
离合器cl2将行星齿轮330的太阳齿轮331和马达mg2的转子连接到行星齿轮340的齿圈342或释放它们之间的连接。制动器br2将行星齿轮340的齿圈342固定(连接)到外壳21使得齿圈342不可旋转,或从外壳21释放齿圈342使得齿圈342可旋转。
图10是示出了在混合动力车辆320在离合器cl2被设定到接合状态并且制动器br2被设定到释放状态中的状态中在马达双驱动模式中行驶时的行星齿轮330、340的列线图的示例的图。图11是示出了在混合动力车辆320在离合器cl2被设定到释放状态并且制动器br2被设定到接合状态的状态中在马达双驱动模式中行驶时的行星齿轮330、340的列线图的示例的图。在图10和图11中,s1和r2轴线代表行星齿轮330的太阳齿轮331的转速、行星齿轮340的齿圈342的转速和马达mg2的转速nm2。c1和c2轴线代表行星齿轮330、340的齿轮架334、344的转速和驱动轴336的转速。r1轴线代表行星齿轮330的齿圈332的转速和发动机22的转速ne。s2轴线代表行星齿轮340的太阳齿轮341的转速和马达mg1的转速nm1。在图10和图11中,c1和c2轴线中的两个宽线箭头分别指示了在转矩tm1从马达mg1输出时的输出到驱动轴336的转矩(tm1×k1)和在转矩tm2从马达mg2输出时的输出到驱动轴336的转矩(tm2×k2)。转换系数k1是用于将马达mg1的转矩转换为驱动轴336的转矩的系数。转换系数k2是用于将马达mg2的转矩转换为驱动轴336的转矩的系数。
在图10的情况中,离合器cl2被设定为接合状态,因此作为马达mg2的转速nm2的行星齿轮330的太阳齿轮331的转速与行星齿轮340的齿圈342的转速相同。因此,行星齿轮330、340作为所谓的四元件行星齿轮系工作。在此情况中,在马达双驱动模式中,在马达mg1的转速nm1向负侧增大的方向(图中向下的方向)上的转矩tm1从马达mg1输出到行星齿轮340的太阳齿轮341,并且在马达mg2的转速nm2向正侧增大的方向(图中向上的方向)上的转矩tm2从马达mg2输出到行星齿轮330的太阳齿轮331和行星齿轮340的齿圈342。因此,在行星齿轮330的齿圈332(发动机22)被置于旋转停止状态的同时,混合动力车辆320能够通过使用来自马达mg1和马达mg2的转矩来行驶。
在图11的情况中,在马达双驱动模式中,在马达mg1的转速nm1向正侧增大的方向(图中向上的方向)上的转矩tm1从马达mg1输出到行星齿轮340的太阳齿轮341,并且在马达mg2的转速nm2向正侧增大的方向(图中向上的方向)上的转矩tm2从马达mg2输出到行星齿轮330的太阳齿轮331和行星齿轮340的齿圈342。因此,在行星齿轮330的齿圈332(发动机22)被置于旋转停止状态的同时,混合动力车辆320能够通过使用来自马达mg1和马达mg2的转矩来行驶。
图12是图示了在混合动力车辆320在离合器cl2被设定为接合状态并且制动器br2被设定为释放状态的同时在马达双驱动模式中行驶的状态(图10中示出的状态)中在单向离合器cl1中发生故障时的列线图的实例的图。在图中,连续线示出在单向离合器cl1中存在故障的状态。虚线示出假定发动机22的转速ne为零而从马达mg1的转速nm1计算出第一转速np1作为驱动轴336的转速的状态。点划线示出假定发动机22的转速ne为零而从马达mg2的转速nm2计算出第二转速np2作为驱动轴336的转速的状态。如在图中所示,当单向离合器cl1中存在故障时,第一转速np1高于第二转速np2。为此原因,在根据第三实施例的混合动力车辆320中的在图10中所示的状态中的马达双驱动模式中,也能够通过使用图2中所示的故障检测处理例程中的步骤s100至步骤s190判定单向离合器cl1中是否存在故障。
图13是图示了在混合动力车辆320在离合器cl2被设定为释放状态并且制动器br2被设定为接合状态的同时在马达双驱动模式中行驶的状态(图11中示出的状态)中在单向离合器cl1中发生故障时的列线图的实例的图。在图中,连续线示出在单向离合器cl1中存在故障的状态。虚线示出假定发动机22的转速ne为零而从马达mg2的转速nm2计算出第二转速np2作为驱动轴336的转速的状态。如在图中所示,当单向离合器cl1中存在故障时,第一转速np1低于第二转速np2。为此原因,在根据替代施例的混合动力车辆320中的在图11中所示的状态中的马达双驱动模式中,能够通过将图2中所示的故障检测处理例程中的步骤s100至步骤s190中的第一转速np1和第二转速np2互换来判定单向离合器cl1中是否存在故障。
将描述实施例的主要元件和在发明内容中描述的本发明的主要元件之间的对应关系。在每个实施例中,发动机22对应于发动机,马达mg1对应于第一马达,马达mg2对应于第二马达,行星齿轮30和减速齿轮35对应于行星齿轮系,单向离合器cl1对应于旋转限制机构,电池50对应于电池,发动机ecu24、马达ecu40和hv-ecu70的组合对应于电子控制单元,并且执行图2中所示的故障检测处理例程的hv-ecu70对应于电子控制单元。
对于实施例的主要元件和在发明内容中描述的本发明的主要元件之间的对应关系,每个实施例是用于特别地阐述执行在发明内容中描述的本发明的模式的示例。每个实施例不意图于限制在发明内容中描述的元件。即,在发明内容中描述的本发明应基于发明内容中的描述解释,并且每个实施例仅是发明内容中描述的本发明的具体示例。
以上描述了本发明的实施例;然而,本发明不限制于这些实施例。当然,本发明可以以多种方式实施而不偏离本发明的范围。
本发明可应用于混合动力车辆等的制造工业中。