一种用于重型混合动力车辆的储能装置及其控制方法与流程

文档序号:12630388阅读:306来源:国知局
一种用于重型混合动力车辆的储能装置及其控制方法与流程

本发明涉及混合动力车辆能量存储系统,具体涉及一种用于重型混合动力车辆的储能装置及其控制方法。



背景技术:

飞轮在混合动力的设计中越来越受欢迎,特别是重型混合动力客运汽车,这是由于以下几点原因:第一,对电池功率的要求和能量的要求可以分开,可以得到最优的电池能量密度和循环寿命;第二,由于飞轮负载水平的的影响,高功率需求和大电流放电都极大地减小,可用能量、耐久性和电池循环寿命都得到了增加;第三,飞轮可以在低功率要求或再生制动期间,进行高效迅速的临时性充电。由于主要能源的负载均衡和再生制动期间能量回收的综合效应,车辆的运行范围显著扩大,能量密度主要与飞轮的转速有关,增加转速可以增大能量密度,但是也增加了潜在的安全隐患,同时由于需要图书轴承和高强度材料,成本也将会增加,电动汽车可以完全由超高速飞轮提供动力,而不需要电池或燃料电池。相比于电池,飞轮能够提供更高的比能量和比功率,所以在电动汽车的应用上有相应的潜在长期效益,飞轮的比功率可能比内燃机更高,所以通过在混合动力装置中使用飞轮可以进行更好的能量存储及能量利用。



技术实现要素:

本发明设计开发了一种用于重型混合动力车辆的储能装置。本发明目的是将飞轮设计在混合动力的储能装置中,能够使燃料电池及蓄电池合理分配能源供电方式,动力系统的性能得到改善。

本发明还设计开发了一种用于重型混合动力车辆的储能装置的控制方法。本发明具有实时在线采集数据并且对数据能够做出分析,确定重型混合动力车辆是否处于平稳的正常行驶及在处于正常的平稳行驶过程中对能源的合理分配利用能够得到有效控制,并且操作简单,减少能耗过大的问题。

本发明具有可控性强、能源分配合理、增加蓄电池循环寿命等特点。

本发明提供的技术方案为:

一种用于重型混合动力车辆的储能装置,包括:

发动机,其输出旋转动力驱动行星齿轮系的太阳轮;

电机,其具有贯穿式的输出轴,其一端连接所述行星齿轮系的齿圈,并且所述行星齿轮系具有行星架,其将动力输出至车辆的前桥,所述输出轴的另一端连接变速箱,变速箱连接车辆的后桥;

飞轮电机,其具有动力输出轴;

飞轮,其具有贯穿式的飞轮轴,其一端通过飞轮离合器与所述电机的输出轴选择性的接合,所述飞轮能够与所述电机的输出轴选择性的同步转动,另一端连接所述飞轮电机的动力输出轴;

能源装置,其包括燃料电池及蓄电池;其中,所述燃料电池能够单独或与所述蓄电池组合同时为车辆的电机供电,所述燃料电池与所述蓄电池相连,并且所述飞轮电机同时与所述蓄电池连接;

数据采集模块,其能够用于采集车速数据、油门开度数据、飞轮转速数据及所述蓄电池荷电状态;

控制器,其同时与所述能源装置及所述数据采集模块相连,能够通过车速、加速度、飞轮转速及蓄电池荷电状态调节所述飞轮与所述电机的输出轴选择性的接合与分离,以及能源装置的开启与关闭。

优选的是,还包括:

加速齿轮,其设置在所述电机的输出轴与所述飞轮离合器之间,所述飞轮轴通过所述加速齿轮啮合传动;

飞轮变速器,其设置在所述飞轮离合器与所述飞轮之间,并且具有低挡及高挡两组传动比。

优选的是,所述飞轮变速器中通过选择性的齿轮啮合完成传动比的选择。

优选的是,所述蓄电池是由80~100个电池单体串联而成的铅酸电池组。

优选的是,还包括:离合器,其设置在所述发动机一侧。

优选的是,所述飞轮外侧具有固定于车架的飞轮箱。

一种用于重型混合动力车辆的储能装置的控制方法,包括如下步骤:

所述车辆起步后数据采集模块进行数据采集,其中包括:车速、油门开度及蓄电池荷电状态;

所述控制器在所述车辆起步后的连续时间内对所述数据进行稳定性分析,判断所述车辆是否处于稳定行驶,从而控制所述车辆进行重新起步或者继续运行;

所述车辆进入稳定行驶后,根据所述蓄电池荷电状态,控制能源装置的开启与关闭,调节飞轮与电机的输出轴的传动比,使所述蓄电池能够进行储能;

其中,在连续行驶的时间内,根据车速、加速度及蓄电池荷电状态,控制所述能源装置的开启与关闭,控制发动机的开启与关闭,调节所述飞轮与所述电机的输出轴之间的传动比进行蓄电池的储能。

优选的是,所述稳定性分析包括:在车辆起步后的连续时间t0内,加速至V0的过程中,控制器调节飞轮与电机输出轴的选择接合传动比为低挡的齿轮啮合,当满足条件区间时,所述车辆起步处于平稳行驶状态,继续运行;当不满足条件区间时,所述车辆起步处于非正常运行状态,停止运行,重新起步;其中,I为飞轮接合后的传动比,ω为飞轮转速,r为车轮半径,V为车速,β为油门开度,β0为油门完全开启时的开度,e为自然对数的底数,R1,R2为经验稳定系数。

优选的是,在所述车辆稳定行驶后,控制器对发动机及能源装置控制包括如下步骤:

车速满足条件0<V<V′时,所述控制器对所述能源装置控制包括:

所述蓄电池的电池SOC值低于50%,控制器开启燃料电池为电机供电驱动车辆,并且调节飞轮与电机输出轴的选择分离,控制器开启飞轮电机对蓄电池充电;

所述蓄电池的电池SOC值高于50%,低于85%时,控制器开启燃料电池及蓄电池同时为电机供电驱动车辆,并且调节飞轮与电机输出轴的选择接合传动比为高挡的齿轮啮合;

所述蓄电池的电池SOC值高于85%时,控制器开启燃料电池及蓄电池同时为电机供电驱动车辆,并且调节飞轮与电机输出轴的选择接合传动比为低挡的齿轮啮合;

车速满足条件V′≤V<V″时,所述控制器控制燃料电池为电机供电,并且启动发动机与电机同时驱动车辆,此时调节飞轮与电机输出轴的选择接合传动比为高挡的齿轮啮合转动;其中,当所述蓄电池的电池SOC值低于50%,调节飞轮与电机输出轴的选择分离,控制器开启飞轮电机对蓄电池充电;

车速满足条件V≥V″时,所述控制器控制燃料电池和蓄电池为电机供电,并且启动发动机与电机同时驱动车辆,此时调节飞轮与电机输出轴的选择接合传动比为低挡的齿轮啮合转动;其中,当所述蓄电池的电池SOC值低于50%,调节飞轮与电机输出轴的选择分离,控制器开启飞轮电机对蓄电池充电;

其中,V′第一限定速度,V″为第二限定速度。

优选的是,选择传动比为高挡时,所述车轮与所述飞轮传动比为1:4.8~5.5,选择传动比为低挡时,所述车轮与所述飞轮传动比为1:3.5~4.5。

本发明与现有技术相比较所具有的有益效果:

1、在重型混合动力汽车运行的过程中,能够根据实时监测车辆行驶状态,对车辆驱动力进行合理分配,合理的进行发动机及能源装置的开启与关闭,能够使车辆一直处于高效平稳的运行状态;

2、通过飞轮电机对蓄电池的充电作用,使蓄电池能够得到很好的保护,延长其循环使用寿命。

附图说明

图1为本发明所述的结构示意图。

图2为本发明所述的飞轮与电机连接示意图。

具体实施方式

下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。

如图1、图2所示,本发明提供了一种用于重型混合动力车辆的储能装置,其主体结构包括:发动机110、电机120、飞轮200、飞轮电机210、能源装置、数据采集模块及控制器180;其中,发动机110输出旋转动力驱动行星齿轮系140的太阳轮,电机120具有贯穿式的输出轴,输出轴一端连接行星齿轮系140的齿圈,行星齿轮系140具有行星架,行星架将动力输出至车辆的前桥171,输出轴的另一端连接变速箱130,变速箱130连接车辆的后桥172,飞轮电机210具有动力输入轴,飞轮200具有贯穿式的飞轮轴,其一端通过飞轮离合器230与电机120的输出轴选择性的接合,飞轮200能够与电机120的输出轴选择性的同步转动,另一端连接飞轮电机210的动力输入轴;能源装置包括蓄电池310及燃料电池320,其中,蓄电池310能够单独或与燃料电池320组合同时为车辆的电机120供电,蓄电池310与燃料电池320相连,并且飞轮电机210同时与蓄电池310连接,能够为蓄电池310充电,数据采集模块包括车速采集模块191,油门开度采集模块192、飞轮转速采集模块193及蓄电池荷电状态采集模块194,其中,车速采集模块191能够用于采集车速、油门开度采集模块192能够用于采集油门开度、飞轮转速采集模块193能够用于采集飞轮转速及蓄电池荷电状态采集模块194能够用于采集蓄电池荷电状态,控制器180分别与能源装置及数据采集模块相连,能够通过车速、加速度、飞轮转速及蓄电池荷电状态,进而控制飞轮200与电机120的输出轴选择性的接合与分离,以及蓄电池310及燃料电池320的开启与关闭。

在另一种实施例中,还包括:加速齿轮220设置在电机120的输出轴与飞轮离合器230之间,飞轮200的飞轮轴通过加速齿轮220啮合传动;飞轮变速器240设置在飞轮离合器230与飞轮200之间,并且具有低挡及高挡两组传动比。

在另一种实施例中,飞轮变速器240中通过选择性的齿轮啮合完成传动比的选择。

在另一种实施例中,蓄电池310是由80~100个电池单体串联而成的铅酸电池组;在本实施例中,蓄电池310是由85个电池单体串联而成的铅酸电池组。

在另一种实施例中,还包括:离合器150设置在发动机110一侧;在本实施例中,变速箱130为五挡以上的变速箱。

在另一种实施例中,在动力输出到后桥172的动力路径上,设置有中央差速器163,在具有不同的输入角速度时,其用于消除驱动轮的滑动现象,前桥171和后桥172都分别具有减速装置。

本发明还提供了一种用于重型混合动力车辆的储能装置的控制方法,如图1、图2所示,包括如下步骤:

车辆起步后数据采集模块进行数据采集,其中包括:通过车速采集模块191采集车速、油门开度采集模块192采集油门开度、飞轮转速采集模块193采集飞轮转速及蓄电池荷电状态采集模块194采集蓄电池荷电状态;

控制器180在车辆起步后的连续时间内对数据进行稳定性分析,判断所述车辆是否处于稳定行驶,从而控制车辆进行重新起步或者继续运行;

车辆进入稳定行驶后,根据蓄电池310荷电状态,控制蓄电池310以及燃料电池320的开启与关闭,调节飞轮与电机的输出轴传动比,通过飞轮的转动使蓄电池310能够进行充电储能;

在连续行驶的时间内,根据车速、加速度及蓄电池荷电状态,控制蓄电池310及燃料电池320的开启与关闭,同时也控制发动机110的开启与关闭,调节飞轮与电机的输出轴之间的传动比,通过飞轮的转动使蓄电池310能够进行充电储能。

在另一种实施例中,稳定性分析包括:在车辆起步后的连续时间t0内,加速至V0的过程中,控制器180调节飞轮200与电机120的输出轴选择接合传动比为低挡的齿轮啮合,当满足条件区间时,重型混合动力车辆起步处于平稳行驶状态,继续运行;当不满足条件区间时,重型混合动力车辆起步处于非正常运行状态,停止运行,重新起步;其中,I为车轮与飞轮接合后的传动比,ω为飞轮转速,单位为r/min,r为车轮半径,单位为m,V为车速,单位为km/h,β为油门开度,β0为油门完全开启时的开度,e为自然对数的底数,R1,R2为经验稳定系数;在本实施例中,R1=0.253,R2=18.362,t0=8s,V0=15km/h。

在另一种实施例中,在重型混合动力车辆稳定行驶后,控制器180对发动机110、蓄电池310及燃料电池320的控制包括如下步骤:

车速满足条件0<V<V′时,控制器180对蓄电池310和燃料电池320控制包括:

蓄电池310的电池SOC值低于50%,控制器180开启燃料电池320为电机120供电驱动车辆,并且调节飞轮200与电机120输出轴的选择分离,控制器开启飞轮电机210对蓄电池310充电;

蓄电池310的电池SOC值高于50%,低于85%时,控制器180开启蓄电池310及燃料电池320同时为电机120供电驱动车辆,并且调节飞轮200与电机120的输出轴的选择接合传动比为高挡的齿轮啮合;

蓄电池310的SOC值高于85%时,控制器180开启蓄电池310及燃料电池320同时为电机120供电驱动车辆,并且调节飞轮200与电机120的输出轴的选择接合传动比为低挡的齿轮啮合;

车速满足条件V′≤V<V″时,控制器180控制燃料电池320为电机120供电,并且启动发动机110与电机120同时驱动车辆,此时调节飞轮200与电机120的输出轴的选择接合传动比为高挡的齿轮啮合转动;其中,当蓄电池310的电池SOC值低于50%,调节飞轮200与电机120的输出轴的选择分离,控制器180开启飞轮电机210对蓄电池310充电;

车速满足条件V≥V″时,控制器180控制蓄电池310和燃料电池320同时为电机120供电,并且启动发动机110与电机120同时驱动车辆,此时调节飞轮200与电机120的输出轴的选择接合传动比为低挡的齿轮啮合转动;其中,当蓄电池310的电池SOC值低于50%,调节飞轮200与电机120的输出轴的选择分离,控制器开启飞轮电机210对蓄电池310充电;

其中,V′第一限定速度,V″为第二限定速度;在本实施例中,V′=30km/h,V″=60km/h。

在另一种实施例中,选择传动比为低挡时,车轮与飞轮传动比为1:4.5~5.5,选择传动比为高挡时,车轮与飞轮传动比为1:3.5~4.8;在本实施例中,选择传动比为低挡时,车轮与飞轮传动比为1:4.8,选择传动比为高挡时,车轮与飞轮传动比为1:3.8。

尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1