电动助力自行车的制作方法

文档序号:4052712阅读:300来源:国知局
专利名称:电动助力自行车的制作方法
技术领域
本发明是关于一种利用马达的动力辅助人力行走的电动助力自行车。特别是,该车采取这样一种构成,它能根据脚蹬踏板的力(以下记作“脚踏力”)随时间的变化,而对来自马达的辅助动力的供给(以下记作“辅助力”)进行控制。这样,在上坡这类连续蹬着踏板的场合,能提供辅助力,而在脚踏力检测系统的输出为不正常时,则停止辅助力。
在专利公报“特开平5-310177”上,展示了这样一种防止骑车感觉变坏的技术在将人力驱动系统和电力驱动系统设计在一起,且能根据脚踏力的变化,来对电力驱动系统的输出进行控制的电动辅助自行车上,脚踏力检测装置中的可动部分的动作不是圆滑进行的,当脚踏力超过预先设定的基准值的状态在一定的时间内持续时,通过对电力驱动系统的输出进行控制,以使不发生不需要的电力驱动系统的输出,从而防止骑车感觉变坏的情况的出现。
在平地行走这类通常的行走状态时,自行车的脚踏力呈现这样一种周期性的变化在踏板的上死点和下死点上,脚踏力几乎为零。
在这样的状态下,当脚踏力在持续的一段时间内高于基准值时,脚踏力检测系统的动作被判断为不正常的动作,从而能够控制不发生不需要的辅助力。
但是,在上坡这类持续蹬着踏板的场合,会有脚踏力在每个周期上几乎不出现零的时候。所以,在上坡这种情况时,有被停止提供辅助的担心。
通过将基准值设得高一些,能够多少解决上坡这种情况时辅助力的停止这个问题。但存在,对脚踏力检测系统的非正常动作的检测,变得困难这样的问题。
另外,在这样一种构成时,即只有当检测出的脚踏力超过基准值时,才提供辅助力,那么就存在这样的问题将基准值设得高一些的话,被辅助的时间就要变短,骑车的感觉要变坏。
而且,当电动辅助自行车停止时,若由于脚踏力的作用而超过了基准值,则在骑车人不需要辅助力的场合,也会受到辅助力的作用而使车产生移动。
又,如在上坡或载着重物这类状态下推着电动辅助自行车行走(以下记作“推着走”)时,那么,尽管具有辅助力功能,但仍和以往那样行走沉重。所以,在推着走时,也期望辅助力功能能得到有效的发挥。
进一步,还存在这样一个问题由于电动辅助自行车是用蓄电池电源(额定电压为24伏)驱动的,所以,在充电充分时电压比24伏要高,而在持续提供辅助时电压则比24伏要低。这样,就会由于蓄电池电源的电压不稳定,而导致辅助力大小的变化,使骑车感觉变坏。
本发明,就是为解决这些问题而进行的。它的首要目的是,提供一种安全可靠的电动助力自行车,该车即使在上坡这类场合,也能有效地提供辅助力;并且,当脚踏力检测系统的动作为不正常时,则不产生不需要的辅助力。
本发明的第二个目的是,提供一种,在车停止时,即使有脚踏力的作用,也能保持停止状态的电动助力自行车。
本发明的第三个目的是,提供一种高便利性的电动助力自行车。该车在上坡或载着重物推着走的情况时,也能提供辅助力。
本发明的第四个目的是,提供一种骑车感觉良好的电动助力自行车。该车在蓄电池电源的电压即使有变动时,相对于同样的脚踏力,也能够提供同样大小的辅助力。
为解决上述问题,本发明第1方案的电动助力自行车的特征为它具有踏板操作判断装置,该装置能根据,由脚踏力检测装置所检测出的脚踏力随时间的变化,而对正蹬着踏板的状态进行判断。根据该踏板操作判断装置的判断输出,对来自马达的辅助动力进行控制。
用人力蹬踏板时,脚踏力的大小会发生变化。踏板操作判断装置,在脚踏力随时间而变化时,就判断为正在蹬踏板,从而允许提供来自马达的辅助力。
在蹬着踏板时,提供辅助动力。而在不蹬着踏板时,由于脚踏力不发生变化,所以踏板操作判断装置就不允许辅助动力的供给。因此,不管此时由脚踏力检测装置所检测出的脚踏力的大小如何,都不会提供辅助动力。
因此,即使由于脚踏力检测系统的非正常动作,而产生了超过基准值(辅助力开始的门槛值)的脚踏力检测输出,也不会提供不需要的辅助动力。
本发明第2方案的电动助力自行车的特征为,它具有一种延迟时间装置。在从判断为不在蹬踏板的时刻起,到经过了规定的延迟时间后的这段时间内,保持判断为正在蹬踏板时的判断输出。
因为具有延迟时间装置,在从判断为不在蹬踏板的时刻开始,到经过规定的延迟时间的这段时间内,保持判断为正在蹬踏板的判断输出,所以,在持续蹬踏板时,就能提供持续的辅助力。
因此,即便当脚踏力小于基准值(辅助力开始的门槛值)时,也有可能提供与被检测出的脚踏力相应的辅助动力,从而能使骑车的感觉进一步得到提高。
进一步,在脚踏力检测系统的动作不正常,即使停止蹬踏板,仍输出不为零的脚踏力时,由于在经过延迟时间后,助力会被自动停止,所以也就不会继续提供不需要的辅助力。
本发明第3方案的主控制部的特征是它具有转矩值补正装置,该装置能根据,由踏板操作判断装置判断为正在蹬踏板的判断输出,而对转矩的零点值进行补正,并将由脚踏力检测装置所检测出的转矩,和经补正过的转矩零点值间的偏差,作为补正转矩。
在主控制部上,具有转矩补正装置。该装置能根据,由踏板操作判断装置判断为正在蹬踏板的判断输出,而对转矩的零点值进行补正。因为将由脚踏力检测装置所检测出的转矩,和经补正过的转矩零点值间的偏差,作为补正转矩,所以,在判断为不在蹬踏板的场合,将转矩的零点值设得高一些,这样,在自行车停止时即使作用有比较大的脚踏力,也能禁止提供辅助力,从而保持停止状态。
本发明第4方案的转矩信号补正装置的特征为它具有转矩信号衰减装置;该转矩信号衰减装置,能在规定的时间内,将不在蹬踏板时的转矩零点值,逐渐衰减为正在蹬踏板时的转矩零点值。
在转矩信号补正装置上,因为具有转矩信号衰减功能,能在规定的时间内,将不在蹬踏板时的转矩零点值,逐渐衰减为正在蹬踏板时的转矩零点值,所以,能够逐渐增加从停止状态转变为行走状态时的辅助力的量。
本发明第5方案的主控制部的特征为它具有推着走模式驱动装置,能根据来自推着走开关的信息,用工作循环确定的马达驱动信号,对马达进行驱动。
在主控制部上,因为具有推着走模式驱动装置,能根据来自推着走开关的信息,用工作循环确定的马达驱动信号,对马达进行驱动,所以,能够给电动助力自行车提供辅助力,使之能以与步行相应的速度而移动。
本发明第6方案的推着走模式驱动装置的特征为它具有驱动信号增加装置,该装置能在规定的时间内,使马达驱动信号逐渐增加。
在推着走模式驱动装置上,因为具有驱动信号增加功能,能在规定的时间内,使马达驱动信号逐渐增加,所以,即使按了推着走开关,也不会突然就变成推着走方式,而是逐渐增加辅助力。这样,就可以实现一种自然的推着走模式。
本发明第7方案的主控制部的特征为它具有系数设定装置,该装置能根据蓄电池电源和标准电压两者之间的偏差,来对马达驱动信号的工作循环进行补正。
在主控制部上,因为具有系数设定功能,能根据蓄电池电源和标准电压两者之间的偏差,对马达驱动信号的工作循环进行补正,所以,当蓄电池电源电压偏高时,使驱动信号的脉冲宽度减小,而当蓄电池电源电压偏低时,则使驱动信号的脉冲宽度增大。通过这种控制方式,就能够提供当蓄电池电源电压与额定值相同时的辅助动力。


图1,与本发明有关的电动助力自行车的侧面图。
图2,前车架的部分侧面图。
图3,蓄电池盒组件的部分剖视后了的侧面图。
图4,显示蓄电池盒组件的前侧固定部的详细构造的侧面图。
图5,显示蓄电池盒组件的前侧固定部的详细构造的平面图。
图6,显示蓄电池盒组件的后部安装部的构造的侧面剖视图。
图7,马达侧连接部件的侧面图。
图8,马达侧连接部件的正面图。
图9,马达侧连接部件的平面图。
图10,确定位置用的凸台的放大图。
图11,蓄电池侧连接部件的正面图。
图12,蓄电池侧连接部件的背面图。
图13,蓄电池侧连接部件的平面图。
图14,蓄电池侧连接部件的侧面剖视图。
图15,传动装置和脚踏力检测装置的模式构造图。
图16,与权利要求项1和2有关的控制单元的功能方框图。
图17,某个例子中的脚踏力随时间的变化图。
图18,蹬踏板的周期和延迟时间之间的关系图。
图19,显示与权利要求项1和2有关的主控制部的动作的流程图。
图20,显示脚踏力和辅助力之间的关系的时间图。
图21,显示马达驱动限制部的动作的时间图。
图22,某个具体例子中的控制单元的电路构成图。
图23,与转矩信号补正装置的转矩(T)相对应的补正转矩(TH)的说明图。
图24,对与权利要求项3和4有关的马达驱动控制装置的动作进行说明的流程图。
图25,往操纵把上安装推走开关时的配置图。
图26,与本发明有关的推走开关的放大的背面图。
图27,推走开关的放大的正面图。
图28,与权利要求项5和6有关的主控制部的主要功能方框构成图。
图29,与权利要求项7有关的主控制部的主要功能方框构成图。
图30,蓄电池偏差电压ΔE和系数α的特性图。
图31,蓄电池电压(EO)和对工作循环进行变更的系数(KVT)的特性图。
图32,显示与权利要求项5、6、7有关的主控制部的动作的流程图。
图33,驱动信号增加装置的马达驱动信号(PW)的时间性图。
图34,车速和辅助力转矩之间的关系图。
以下,根据所附图面,对本发明的实施例进行说明。
图1,为与本发明有关的电动助力自行车的侧面图。
电动助力自行车1具有设在前轮2F和后轮2R之间的从侧面看呈“V”字形的前车架3,和支持后轮2R的后车架4。前车架3的组成为从车头管5呈直线状斜着向后下方延伸的主车架3A,向下弯曲的中间部3B,以及大致上呈垂直地向上下方向延伸的车座架3C。后车架4的组成有后叉4A,后支杆4B,以及固定夹4C。
在车头管5上,内装有可以自由转动的操纵轴6。在操纵轴6的上端,安装着与操纵轴6成一整体的操纵把7。同时,在从操纵轴6的下方伸出的,与操纵轴6成一整体的前叉8的下端,安装着可以使前轮2F自由转动的车轴。
在主车架3A上,在前侧固定部10和马达侧连接部件60之间,安装着可以自由装卸的,与主车架3A具有基本上相同的长度的蓄电池盒组件30。
另外,符号70为锁定装置。
在前车架3的中间部3B上,通过吊盘11,安装着辅助动力装置12。
其前端被安装在辅助动力装置12上的后叉4A,基本上以水平状向后方延伸,它的后端部,同从车座架3C的上端部向斜下方延伸的左右一对的后撑杆4B的后端部一起,被固定夹4C所固定。
该固定夹4C,支持后轮2R的车轴2a和从动链轮13的自由转动。
在车座架3C的上端部上,通过车座杆14,安装着鞍形车座15。前车架3和辅助动力装置12的周围,用车体盖16覆盖着。
该车体盖16,是左右分割的结构。车体盖16的前端部,覆盖着前侧固定部10和蓄电池盒组件30的前部。
在覆盖着蓄电池盒组件30的前部的部分上,形成有斜面壁16a。该斜面壁16a的倾斜,与形成于蓄电池盒组件30的前端两侧上的高差部(图3中的符号30a)的倾斜是一致的。
另外,在车体盖16上,形成有与蓄电池盒组件30的后端部相接触的斜面壁16b。
车体盖16的构造是,以车座架3C的前方部分为开口部,该开口部用前面嵌板17来封闭住。
辅助动力装置12具有控制单元100,马达18,以及传动装置19。曲柄轴20是传动装置19的输出轴,它与驱动链轮21成一整体做转动。通过链条22,使后轮2R上的从动链轮13产生转动。
在曲柄轴20上,安装着用脚踏人力驱动的踏板23。通过来自蓄电池盒组件12内的蓄电池的电力,使马达18发生转动,从而产生辅助动力。
控制单元100,根据来自踏板23的转矩和驱动链轮21的转动速度,对马达18的运转进行控制。
图2为前车架部分的侧面图。
该图显示了当取下车体盖16后的状态。
如图2所示,前侧固定部10,被设置在主车架3A的前端部上。马达侧连接部件60,被设置在中间部3B的附近。
蓄电池盒组件30,在其后端部被嵌合安装到马达侧连接部件60上的状态下,能够处于以下两种位置用锁定装置70将其前端部锁定后的安装位置,如实线A所示;将锁定装置70解锁,其前端部上举后的位置,如假想线B所示。
假想线C显示了沿相对于主车架3A的长度方向为大致上的垂直相交的方向,将蓄电池盒组件30卸下后的状态(或者是安装前的状态)。
从假想线C所示的状态,将蓄电池盒组件30,在箭头X所示方向上下移,然后,从假想线B所示的位置,沿箭头Y所示的方向,一边滑移一边往下按压,就可以对蓄电池盒组件30进行装配。用与上述操作相反的顺序,则可以将蓄电池盒组件30卸下。
在车体盖16的内侧面上,安装着限位开关25。当将蓄电池盒组件30安装在车体盖16上以后,在蓄电池盒组件30的下部的盒32的底部32a上形成的凸台32b,按压着促动器25a,使限位开关25成“通”的状态。
图3,为蓄电池盒组件部分剖视后的侧面图。
蓄电池盒组件30,是一种分裂的构造,它由用塑料做的上盒31和下盒32所组成。在上盒31和下盒32之间的接合面上,设置有相互重叠的部位,形成一种曲折式的结构,从而可以防止水等的进入。通过从下盒32上向上方突起的系合爪32C,将上下的盒31和32的前方侧的侧部系合起来。而在蓄电池盒组件30的后方侧上,是用自攻螺钉33,将上下的盒31和32连接在一起的。这样,使上下的盒31和31,为一种可以分开的一体化结构。
在下盒32的底部32a上,设有橡胶垫34。在安装蓄电池盒组件30时,通过该橡胶垫34,使蓄电池盒组件30的底部与主车架3A相接触。
在蓄电池盒组件30内,收容着蓄电池部35。
在上盒31的内部,形成有向下方突出的加强筋31a。在该加强筋31a上,安装着槽形橡胶36。
在下盒32的底部的里面,设置有平板状的衬垫橡胶37。
蓄电池部35的上部,与槽形橡胶36相接触,而其下部,则与平板状的衬垫橡胶37相接触。所以,蓄电池部35得到了防振措施的支持。
在蓄电池盒组件30的前端部上,安装着可以自由转动的把柄38。在蓄电池盒组件30的前端部的侧面上,形成有倾斜的高差部30a。
该高差部30a的形状,同斜面壁16a的形状是一样的。该斜面壁16a是被设置在覆盖着前侧固定部10(参见图1和图2)的车体盖16的前端部上的。
在前端部的前面30b的下面,形成有向后方陷进去的缺口状的按压部30c。
在蓄电池盒组件30的后端部的侧面上,设有向后方斜着上升的后部斜面30d。
后部斜面30d的形状,同在图1和图2中所示的车体盖16上所形成的斜面壁16b的形状是一样的。
上盒31的后端面30e的倾斜方向,以后部斜面30d的倾斜方向是相反的。
在蓄电池盒组件30的后端面上,用小螺钉39等,安装着蓄电池侧连接部件(阴型连接装置)50。
由蓄电池侧连接部件50的背面50a,构成马达侧连接部件60的凸接面。在背面50a的中央位置上,设有从侧面看大致上呈三角形的确定位置用的系合凸台51。
由蓄电池侧连接部件50的底部后端,构成向后上方倾斜的导向斜面50b。
蓄电池部35,是这样构成的将多个的单元电池35a,分上下两列排列,将各单元电池35a以串联电路方式相连接后,用热收缩管35b组装起来。
各单元电池35a,采用能够进行充电的电池,如镍—镉电池。
相邻的单元电池35a之间,用导电板35c以串联电路方式相接。
蓄电池部35的电力输出,通过保险丝40,被接续到蓄电池侧连接部件50的放电用端子上。
符号41,为检测温度用的热敏电阻。41a为其导线。
符号42,为充电端子。该充电端子42,被设置在下盒32的后部侧面上。
该充电端子42的内部,设置有防止逆向电流用的二极管。
因为,充电端子42的设置,与放电端子(蓄电池侧连接部件)是相互独立的,所以,无论是在电动辅助自行车上安装着蓄电池盒组件30的状态,还是卸下后的状态,充电都是可能。
图4为显示蓄电池盒组件的前侧固定部的详细构造的侧面图。
前侧固定部10上,具有锁定装置70和弹跳装置80。锁定装置70,被安装在立壁部71a上。该立壁部71a,沿前部托架71的上下方向延伸。托架71被安装在车头管5和主车架3A的前端部之间,在断面上它大致呈“L”字形状弯曲。
该锁定装70,是一种组合开关。它具有下列功能通过转动插入钥匙孔的钥匙70k(参看图5),实现电源的“通/断”操作的主开关功能;同时,通过将锁销72,插入或拔出位于蓄电池盒组件30的前端部30b上的销孔73,而进行蓄电池盒组件30的锁定或解锁的功能。
当钥匙70K处于“通”的位置,可以从蓄电池部35往马达18供电时,锁销72就处于锁定蓄电池盒组件30的状态。
在该锁定的状态下,不能卸下蓄电池盒组件30。
另外,在该锁定的状态(钥匙处于“通”的位置)下,钥匙70K是不能拔出的。
当钥匙70K为“断”的位置时,供电被停止。在“断”的位置时,钥匙70K是可以拔出的,但锁销72却仍同锁定状态的时候一样。
当按压着旋转钥匙70K,使之从“断”的位置变成锁定的位置时,锁销72就被解锁。此时,可以取下蓄电池盒组件30。
在蓄电池盒组件30的前端部的前面30b上,用小螺钉74,安装着锁板75,以此对其前端部的前面30b加强。
在锁板75上,设有与锁孔73相一致的开口部75a。
另外,锁板75的下端部,是一直延伸到按压部30c为止的露出部分,由它构成解锁时的呈前后方向延伸的推顶接触面75b,和锁定时的推顶接触面75c。
弹跳机构80具有设置在锁定装置70的下方的陡壁部71a上的支杆81通过与支杆81相连接的滑动轴82,而被支持着的摇动手柄83;以及使该摇动手柄83具有反时针方向转动趋势的拉力弹簧84(参见图2和图5)。
图5为显示蓄电池盒的前侧固定部的详细构造的平面图。
在自行车的宽度的方向上,以一定的间距相隔的一对支杆81,向前方突出,并各自都具有向前后方向延伸的长孔81a。滑动轴82可以做前后方向的移动。
另一方面,摇动手柄83,在平面图上大致上呈“”形状。左右一对的偏平部83a,被重叠安装在各个支杆81的外侧上。
滑动轴82的连接方式是通过左右的支杆81上的长孔81a,滑动轴82沿着横跨摇动手柄83的左右的两个偏平部83a的方向延伸;摇动手柄83,可以相对于支杆81自由地做前后方向的移动,并且可以自由地在滑动轴82的周围进行摇动。
在摇动手柄83上,沿自行车的宽度的方向上延伸的,并连结左右的两个偏平部83a的部分,构成推顶部83b。
该推顶部83b,如图4所示,可以推顶住锁板75被解锁时的推顶接触面75b,和被锁定时的推顶接触面75c。
如图2和图5所示,拉力弹簧84,是由在主车架3A的左右两侧上,沿长度方向设置的一对螺旋弹簧所构成的。
如图5所示,在摇动手柄83的偏平部83a的前端部上,设有向下方突出的安装凸台83c。在该安装凸台83c上,固定着拉力弹簧84的前侧安装部84a。
拉力弹簧84的后侧安装部84b,如图2所示,被固定在从主车架3A的侧面上突出的凸台85上。
由拉力弹簧84,使摇动手柄83经常有一种被拉向后方的趋势,同时,使推顶部83b有一种向反时针方向转动的趋势。
因此,当处于由图4中的假想线B所示的弹跳位置时,因为,摇动手柄83被拉向后方,滑动轴82向长孔81a的后端部移动,而推顶部83b推顶着在解锁时的推顶接触面75b,向上方举起,所以,拉力弹簧84的张力,几乎都用于上举力F1。
另外,在实线A所示的安装着蓄电池盒组件30的状态时,因为解锁时的推顶接触面75b,沿顺时针方向向下方按压着推顶部83b,所以,摇动手柄83基本上是与主车架3A的长度方向相平行的。由锁定时的推顶接触面7 5c,使推顶部83b抵抗摇动手柄83,而被推向前方,滑动轴82向长孔81a的前端部移动。
因此,拉力弹簧84的反作用力,就成了推顶部83b按压住解锁时的推顶接触面75b,和施锁时的推顶接触面75c的押力。
推顶部83b,向后方按压住施锁时的推顶接触面75c时的押力F2,要比向上按压住解锁时的推顶接触面75b时的押力F3大得多。
该上举押力F3,其大小程度为,在解除锁定装置70的锁定时,足够能使蓄电池盒组件30的前部产生弹跳动作。
进一步,在弹跳位置时,滑动轴83被移动到支杆81上的长孔81a的后端部上。同时,推顶部83b向上按压着,当它沿反时针方向转动时与之相接触的,解锁时的推顶接触面75b。
图2和图4中的符号70I为指示器,由它显示锁定装置70的“通”的位置。
图4中的符号16S,为用于安装车体盖16的支架。该支架16被安置在前部托架71的上部。
下面,对马达侧连接部件的构造进行说明。
图6,为显示蓄电池盒组件的后部的安装结构的侧视剖面图。图7,为马达侧连接部件的侧视图。图8,为马达侧连接部件的正面图。图9,为马达侧连接部件的平面图。图10,为确定位置用的凸台的放大图。
如图2所示,马达侧连接部件60,被设置在前车架3的中间部3B的附近。
如图7和图8所示,马达侧连接部件60,具有上侧安装部60a和下侧安装部60b。
在马达侧连接部件60的背面60c的内侧上,形成有接触面60d和导向斜面60e。
在马达侧连接部件60的背面60c上,形成有向后方突出的凸台61。在该凸台61的内侧上,形成有系合凹部61a。
如图6所示,用小螺钉62和螺母63,将马达侧连接部件60的上侧安装部60a,车座3c的前方部分(该图中未画出),以及与封闭了开口部的前面嵌板17(参见图2)的下端部的前面中央部17a,三者一起重叠安装。
另外,在安装蓄电池盒组件30时,使上述下端部的前面中央部17a的倾斜,和蓄电池盒组件30的上盒31的背面30e的倾斜相一致。
当通过安装蓄电池盒组件30,使蓄电池侧连接部件50和马达侧连接部件60嵌合相接的时候,蓄电池侧连接部件50的背面,与马达侧连接部件60的接触面60d相接触。由此,可以确定蓄电池盒组件30在长度方向上的位置。
马达侧连接部件60上的导向斜面60e,是在与蓄电池侧连接部件50上的导向斜面50b相对应的位置上形成的,两者几乎为同一斜面。由导向斜面60e,对蓄电池盒组件30的安装和卸下引导。
马达侧连接部件60上的凸台61和系盒凹部61a,被设置在与蓄电池侧连接部件50上的系合凸台51相对应的位置上。
系合凹部61a的尺寸,要比系合凸台51的大一些。在安装蓄电池盒组件30时,系合凸台51的顶部51a,与系合凹部61a内的顶面61b相接触。由此,可以确定蓄电池盒组件30在上下方向上的位置。
系合凹部61a的下侧的倾斜面61c,和系合凸台51的下侧的倾斜面51b,两者是同样程度的倾斜。但在两倾斜面61c和51b之间,具有一定的间隙。
如图8所示,马达侧连接部件60上,具有左右一对的马达用端子64。
如图6所示,马达用端子64为插头形状。其先端部64a,向蓄电池盒组件30的内方突出。
马达用端子64的后端部64b的构造为从马达侧连接部件60的背面60c向外部突出,并连接导电软线65。
该导电软线65,被接续到控制单元100上。
如图7和图8所示,在马达侧连接部件60的左右,形成有与蓄电池侧连接部件50相嵌合的一对侧壁部60f。该侧壁部60f的前边缘部60g,与蓄电池盒组件30的后部斜面30d相接触。
如图8所示,在左右一对的马达用端子64的中间部位上,形成有与接触面60d为一整体的确定位置用的凸台60h。
如图9所示,确定位置用的凸台60h的前端,比起各马达用端子64的前端部64a要更往前伸出一些。
下面,对蓄电池侧连接部件的构造说明。
图11,为蓄电池侧连接部件的正面图。图12,为蓄电池侧连接部件的背面图。图13,为蓄电池侧连接部件的平面图。图14,为蓄电池侧连接部件的侧面剖视图。
如图6所示,蓄电池侧连接部件50的上部50c,进入到上盒31的内侧。
在蓄电池侧连接部件50的上部50c的背面上,形成有与上盒31的后端面30e相嵌合的,确定位置用的凸台52。
该确定位置用的凸台52,如图12所示,为左右一对的构造。
如图6所示,用图6中虚线所示的小螺钉54,通过如图11和图12中所示的左右一对的螺丝用通孔53,从下盒32的端面的外侧上,对蓄电池侧连接部件50的下部50d进行安装。
当在蓄电池盒组件30内,安装着蓄电池侧连接部件50时,蓄电池侧连接部件50上的系合凸台51,从蓄电池盒组件30的后端突出。
在系合凸台51的下侧,与马达侧连接部件60的马达用端子64相对应的位置上,设有端子出入孔55。
端子出入孔55,与在蓄电池侧连接部件50内的凹部50e相连通。
在安装着蓄电池盒组件30的状态时,马达用端子64,通过端子出入孔55,向凹部50e内突入。
在凹部50e上,沿上下方向设置有片簧状的放电用端子56。
该放电用端子56的上端部,用小螺钉57a,与来自蓄电池部35的电源导线35d一起,共同被紧固着。
在图6、图13和图14中的构造显示出在蓄电池侧连接部件50的上部50c上,预先将螺母57b安插进去固定着。但也可以这样做不使用螺母57b,而是设置具有螺钉用内孔的厚壁部,用自攻螺钉之类的东西,将放电用端子56的上端部,和电源导线35d共同紧固住。
如图6所示,放电用端子56的下端部的自由端,如假想线所示的那样,正好盖着与端子出入孔55的凹部50e相面对的出口部。在安装着蓄电池盒组件30的状态下,该放电用端子56的下端部的自由端,与马达用端子64的先端部64a相接触,产生如图中实线所示那样的弹性变形,从而能得到高的触点压力。
如图11和图12所示,在左右的端子出入孔55之间,设有沿上下方向平行的,并相隔以规定的间距的一对加强筋58。在被这一对加强筋58所夹持着的部位上,设有沿上下方向延伸的长孔59。
在将蓄电池侧连接部件50连接到马达侧连接部件60上时,马达侧连接部件60上的确定位置用的凸台60h,就插入该长孔内。
无论是在图2所示的蓄电池盒组件30的安装位置(实线A),还是在弹跳位置(假想线B)的状态,马达用端子64的先端部64a,都与端子出入孔55相嵌合,且先端部64a与放电用端子56相接触,成一种可通电的状态。
因此,在弹跳位置时,限位开关25为“断”的状态,使通电不能进行。而在安装着蓄电池盒组件30时,限位开关为“通”的状态,通电能够进行。
马达侧连接部件60,和蓄电池盒30的后部这两者之间的结合和分离,是这样进行的使蓄电池盒组件30沿图2中的Y箭头方滑动;使马达用端子64,相对于蓄电池侧连接部件50的放电用端子56,进行插入或拔出操作;同时,使蓄电池侧连接部件50的系合凸台51,相对于马达侧连接部件60的系合凹部61a,进行插入或拔出操作。
这时,蓄电池盒组件30在Y箭头方向上的行程,由弹跳机构80的滑动轴82的行程所决定。在图2中的实线A所示的安装位置时,设在蓄电池盒组件30的后端部上的蓄电池侧连接部件50,以直接接触的方式,与马达侧连接部件60相嵌合着被固定住。
由于两连接部件50和60之间的连接为直接接触的嵌合方式,所以,在前后左右上下的三个方向上,都可以确定住正确的位置。
因此,可以不受蓄电池盒组件30的尺寸偏差的影响,能够正确地进行,放电用端子56和马达用端子64两者之间的接点的接触。
因为接点处接触牢固,相互错动少,所以接点处的磨损也小。
除了将两连接部件50和60,以直接接触的方式相嵌合来定位外,通过使蓄电池侧连接部件50的系合凸台51,与马达侧连接部件60的系合凹部61a相嵌合,蓄电池盒组件30的上下方向的位置可以得到确定。
通过使蓄电池盒组件30的后端,与马达侧连接部件60上的左右的侧壁60f的内侧相嵌合,左右方向的位置就可以得到确定。
因此,可以可靠地进行两端子56和64之间的接触。
进一步,由于通过弹跳机构80上的摇动手柄83,由拉力弹簧84,将蓄电池盒组件30往后方拉着,所以,该作用力是向着使放电用端子56和马达用端子64之间产生接触的方向的。从而能够提高放电用端子56的下侧自由端和马达用端子64的先端64a两者之间的触点压力。
由这个高的触点压力,也可以防止由于伴随自行车车体的振动,而在两端子56和64之间产生的震颤这类使触点压力变化的情况的出现,防止触点磨损,提高端子的使用寿命。
因为将放电用端子56的自由端设计为片簧状,马达用端子64的先端部64a,在使放电用端子56的自由端产生弹性变形的同时与之相接触,所以,这有利于提高触点压力。进一步,即使在蓄电池盒组件30呈向前方斜着上举的状态时,也能够期待,由于蓄电池盒组件30的自身的重量而带来的触点压力的增加。
当取下蓄电池盒组件30时,如果用钥匙70K将锁定装置70得到解锁,则由于拉力弹簧84的弹力,使滑动轴82被滑动着拉回后方,一直被拉到长孔81a的后端部的位置为止。同时,摇动手柄83向逆时针方向摇动,如图2和图4中的假想线所示,因为是处于将蓄电池盒组件30的前部上举后了的弹跳位置,所以如果提着把手38,沿相对于主车架3A的长度方向垂直相交的方向(图2中的X箭头方向),将蓄电池盒组件30取出的话,则如图2中的假想线C所示的那样,能够轻易地取出。
当要安装上蓄电池盒组件30时,如图2中的假想线C所示的那样,将蓄电池盒组件30,以与主车架3A为大致呈平行的状态保持在主车架3A的上方,接着,向下方(X箭头方向)移动;然后,沿着与主车架3A的长度方向大致上平行的方向(Y箭头所示方向),将蓄电池盒组件向后方滑动,蓄电池侧连接部件50嵌合安装到马达侧连接部件60上。
这样,系合凸台51与系合凹部61a相嵌合同时,马达用端子64进入蓄电池侧连接部件50内,马达用端子64的先端部64a与放电用端子56相接触。
这些操作,通过马达侧连接部件60的确定位置的作用,可以顺利而且可靠地进行。
在该时刻,虽然马达用端子64的先端部64a和放电用端子56两者之间为相互接触的状态,但因为限位开关25为“断”,切断通电,从而提高端子的使用寿命。
这时,摇动手柄83处于假想线所示的位置。如图4所示,蓄电池盒组件30的前部上的在解锁时的推顶接触面75b,与摇动手柄83的推顶部83b相接触。但由于作用于推顶部83b上的拉力弹簧84的上举力,起着支撑住蓄电池盒组件30的重量的作用,所以,蓄电池盒组件30,如假想线B所示的那样,处于一种其前侧为稍稍向上扬起的弹跳位置。
如该弹跳位置所示,没有被锁定装置所锁定的状态,是一种蓄电池盒组件30的安装不彻底的状态。如果就在这种状态下行走的话,会发生蓄电池盒组件30的脱落,以及在放电端子56和马达用端子64两者之间发生的接触不良这些问题。不过,当处于这种状态时,一定是处于弹跳位置,所以能够立即用目视来确认。
接着,当按押下蓄电池盒组件30的前端部时,由于锁定时的推顶接触面75c,使摇动手柄83的推顶部83b按顺时针方向向下押,所以,摇动手柄83,反抗着拉力弹簧84的弹力,被强押着滑向前方,一直滑到在长孔81a内移动的滑动轴82到达长孔81a的前端部时为止。此时的状态,如图中实线所示。
当用钥匙70K来对锁定装置70进行施锁时,将推顶部83b押向后方的分力增大,从而使蓄电池盒组件30被强制压向后方。
因此,蓄电池侧连接部件50,被更紧地压入到马达侧连接部件60内,从而被可靠地固定着。
此时,由于蓄电池侧连接部件56的导向斜面50b,被马达侧连接部件60内的导向斜面60e所引导,所以,系合凸台51的顶部51a与系合凹部61a的顶面61b相接触,从而决定了上下方向的位置。
因此,马达用端子64的先端部64a,能更深地进入到蓄电池侧连接部件50内的凹部50e,使放电用端子56向前方产生较大的弹性变形,从而实现触点间的稳定的接触。
图15为传动装置和脚踏力检测装置的模式构造图。
在曲柄轴20的轴方向的中间部位上,形成有在曲柄轴的直径方向上贯通的,且沿该曲柄轴的轴方向扩展的贯通孔20a。
被收容在该贯通孔20a的内部,并与曲柄轴20为同一轴的扭力杆91,在将形成于其左端(输入端)上的头部91a,通过轴环92,安装到曲柄轴20上的同时,将形成于其右端(输出端)上的头部91b,通过压入位于环状的驱动部件93的内周的凹槽上,从而使其得到固定。
曲柄轴20的贯通孔20a的互相相对着的壁面,以大致上的圆弧状弯曲着。由此,该壁面被允许相对于扭力杆91的自由端侧的头部91b,做规定角度的转动,同时,还可以防止当受到过大的负荷作用时扭力杆91的断裂。
在固定于轴套94的内周上的锥齿轮95,和环状的驱动部件93两者之间,设置着第1弹向离合器96。
当通过蹬图中未画出的踏板23,而使曲柄轴20产生正向转动时,曲柄轴20的转矩,通过扭力杆91,驱动部件93,锥齿轮95,以及轴套94,被传递到用花键安装在该轴套94的外周上的驱动链轮21上。然后,通过链条22和图1中所示的从动链轮13,被传递到后轮2R上。
另外,当蹬图中未画出的踏板23,而使曲柄轴20产生逆向转动时,通过松脱第1单向离合器96,就可以容许曲柄轴20的逆转。
当马达18被驱动时,其输出轴18a的转矩,通过四个直齿圆柱齿轮97A、97B、97C和97D,以及两个锥齿轮98和95,被传递到驱动链轮21上。
另外,即使是在驱动用马达18处于停止的状态下,为不妨碍由人力产生的驱动链轮21的转动,在第1中间轴97E上,设有第2单向离合器99。
另外,符号97F为第2中间轴。
脚踏力检测装置110的组成是将由脚踏力(转矩)所产生的转矩,变换为轴方向的位移的转矩变位变换装置111,和将与位移相对应的信号进行输出的行程传感器112。
转矩变位变换装置111的构成方式为在与曲柄轴20成一整体进行转动的滑块内侧111a上,将形成于端面上的凸形的凸轮面,和形成于驱动部件93的端面上的凹形的凸轮面系合起来。
为检测曲柄轴20的转数,在结合曲柄轴20和扭力杆91的头部91a的轴环92的外周上,设有齿部92a。在与该齿部92a相对应的位置上,设有曲柄轴转动传感器120。
曲柄轴转动传感器120是这样一种构成,即,能用光学或磁性的方法,来检测齿部92a,并输出检测到的脉冲。
图16为本发明第1方案和第2方案的控制单元的功能模块构成图。
控制单元100上具有下列装置用微机系统构成的主控制部101,无微机系统的马达驱动限部102,对给马达18的供电进行控制的继电器RL,以及构成马达驱动器的场效应晶体管FET。
符号BAT,为被收容在蓄电池盒组件内的蓄电池部上的蓄电池电源。符号KSW,为由锁定装置的钥匙而进行动作的主开关(联合开关)。
主控制部101上,具有踏板操作判断装置130,和马达驱动控制装置140。
踏板操作判断装置130上,具有脚踏力变化量运算部件131,辅助力判断部件132,和延迟时间部件133。它根据由脚踏力检测装置110所检测出的脚踏力T,对是否为正在蹬踏板的状态进行判断。如果判断为正在蹬踏板的状态时,则输出辅助力许可指令A。
脚踏力变化量运算部件131的工作情况是每隔规定的时间间隔,对脚踏力(转矩信号)T进行检测,然后与前一次的检测值进行比较,从而对脚踏力的增加值(单位时间的脚踏力增加量)ΔT进行运算,并输出运算结果。
辅助力判断部件132,对脚踏力增加量ΔT和预先设定的辅助力许可门槛值ΔTth进行比较。在脚踏力增加量ΔT超过辅助力许可门槛值ΔTth时,就判断为正在蹬踏板,这时输出例如H水平的蹬踏板检测输出P。而在脚踏力增加量ΔT还不到辅助力许可门槛值ΔTth时,输出例如L水平的信号。
延迟时间部件133,当被提供,例如,H水平的蹬踏板检测输出P时,就无条件地输出辅助力许可指令A。而当蹬踏板检测输出P的供给停止时,在从该时刻开始,到经过了规定的延迟时间td之后的时刻为止的这一段时间内,继续保持辅助力许可指令A的输出。过了这段时间以后,许可指令A的输出就被自动停止。
马达驱动控制装置140,当辅助力许可指令A被供给时,就输出继电器驱动指令RD,从而使继电器RL产生动作。同时,根据来自曲柄轴转动传感器120的脉冲信号120a的脉冲周期,对曲柄轴的转动速度进行运算。根据曲柄轴的转速和由脚踏检测装置110所检测出的脚踏力T,参照预先登记了的PWM图(或者是利用预先准备好了的计算公式),对马达18在单位时间内的通电比率(工作负荷)进行计算。然后,对应于所求出的通电比率(工作负荷),产生并输出经PWM调制过的马达驱动信号140a。
马达驱动限制部102上,具有电压比较器102b,和“与”门逻辑电路102c。由该电压比较器102b,对由门槛值电压产生装置102a所生成的门槛值电压VTH,和与由脚踏力检测装置110所检测出的脚踏力T有关的电压,进行比较。当与脚踏力T有关的电压值超过了门槛值电压VTH时,就输出H水平的马达运转“许可/限制”指令信号MS,而当与脚踏力有关的电压没有超过门槛值电压VTH时,则输出L水平的马达运转“许可/限制”指令信号MS。在“与”门逻辑电路102c的一侧的输入端子上,被供给经PWM调制过的马达驱动信号140a,而在“与”门电路102c的另一侧的输入端子上,被供给马达运转“许可/限制”指令信号MS。根据该“与”门电路102c的输出信号102d,对构成马达驱动器的场效应晶体管FET进行切换驱动操作。
图17为一个显示脚踏力随时间变化的时间图的例子。
当从停止状态变成出发状态时,需要大的脚踏力。而在平路上行走时,小一点的脚踏力就够了。
因此,为了在以低车速在平路上行走时也能提供辅助力,设置了辅助力许可门槛值ΔTth,由它对是否正在蹬踏板进行判断。
另外,为检测骑车人已蹬了踏板这个动作而设置的辅助力许可门槛值ΔTth,可以以脚踏力的绝对值,车速,以及曲柄轴的转速等为参数而变化。
另外,也可以这样做在停止状态时,将辅助力许可门槛值ΔTth设得高一些;而在曲柄轴的转动被检测出以后,则可以将辅助力许可门槛值ΔTth设得低一些。
这样,由于使辅助力许可门槛值ΔTth具有滞后特性,所以,在停止状态时,如果只是轻轻蹬踏板,就能够做到不提供辅助力。
图18,为显示蹬踏板的周期和延迟时间之间的关系的时间图。
对辅助力许可的延迟时间td的设定,要使得,即使是在慢慢地蹬着踏板的状态下,在从脚踏力T的高峰值到低谷值为止的这一段时间内,辅助力的提供也不会停止。
随曲柄轴的转速而对延迟时间td的长短进行改变这样一种构成也是可以的。若采取这样的构成,那么,即使是在很缓慢地蹬着踏板的情况下,也能够可靠地提供辅助力。
另外,延迟时间td,也可以随脚踏力的绝对值和车速等参数而改变。
图19为显示与本发明第1、第2方案2有关的主控制部的动作的流程图。
当主开关接通时,主控制部101进入工作状态。
在S1步骤,进行曲柄轴转速的运算。在S2步骤,进行脚踏力T在单位时间内的增加量ΔT的运算。
在S3步骤,对是否正在蹬着踏板进行判断。
在脚踏力T的增加量ΔT超过了辅助力许可门槛值ΔTth时,就被判断为正在蹬着踏板。由S4步骤发出辅助力许可指令A。在S5步骤,使继电器RL产生动作,这时处于往马达18可以供电的状态。在S6步骤,生成并输出经PWM调制过的马达驱动信号140a。
当在S3步骤判断为不在蹬踏板(脚踏力T的增加量ΔT小于辅助力许可门槛值ΔTth)时,在S7步骤对是否已经经过了延迟时间td进行监视。在刚好经过了延迟时间td后的时刻,停止辅助力许可指令A的输出(S8步骤),使继电器RL复位(S9步骤),从而停止输出马达驱动信号140a(S10步骤)。
图20为显示脚踏力和辅助力之间的关系的时间图。
图20(a)为脚踏力的低谷值(相当于不在蹬踏板的状态)小于马达驱动限制的门槛值电压时的情况。图20(b),为脚踏力的低谷值(相当于不在蹬踏板的状态)大于马达驱动限制的门槛值电压时的情况。
如果脚踏力增加量ΔT在辅助力许可门槛值ΔTth以上时,则输出辅助力许可指令A,使马达18产生PWM运转,从而可以提供相应于脚踏力T的辅助力。
即使脚踏力增加量ΔT还不到辅助力许可门槛值ΔTth,因为在延迟时间内辅助力都是在继续提供的,所以在连续蹬着踏板的期间,就可以排除由于马达驱动限制部102的动作而使辅助力停止的时间段(与脚踏力T有关的电压小于门槛值电压VTH的区间)的出现,使辅助力的提供得到继续。
即使在,由于脚踏力检测装置110的非正常动作,而使不蹬踏板时的与脚踏力T有关的电压,比门槛值电压VTH都还要大的场合,在经过了延迟时间td后,辅助力的供给也就被停止。
因此,即使是在,由于脚踏力检测装置110的非正常动作,而使不在蹬踏板时的脚踏力检测值T仍基本上不为零的场合,在停止输出来自踏板操作判断装置130的辅助力许可指令A的同时,不需要的辅助力也就被停止了。
虽然我们在以上已显示了只根据脚踏力T的增加量,而对蹬踏板的状态进行判断的例子。但是,也可以根据脚踏力T的减小量,而对蹬踏板的状态进行判断。
在根据脚踏力T的增加或减小程度两方面,而对蹬踏板的状态进行判断时,也可以将延迟时间td设定得比较短一些,以便从停止蹬踏板的时刻开始,能很快地使辅助力的供给停止。
在图19所示的流程图上,先对曲柄轴的转速进行运算,以便能够相应于曲柄轴的转速,而对辅助力许可门槛值ΔTth和延迟时间td的设定进行改变。然而,在不需要对辅助力许可门槛值ΔTth和延迟时间td作改变的场合,也可以先于在S6步骤的马达驱动信号的生成,而先对曲柄轴的转速进行运算。
图21,为显示马达驱动限制部的动作的时间图。
当蹬自行车的踏板时,因为在踏板的上死点和下死点上,脚踏力不变化,所以,脚踏力检测输出T,如图21(a)所示,呈一种周期性增减的电压波形。
在脚踏力检测输出T的电压超过门槛值电压VTH的期间,如图21(c)所示,电压比较器102b输出H水平的马达转动“许可/限制”信号MS。
因此,即使主控制部101根据脚踏力检测输出T,而输出了如图21(b)所示的马达驱动信号(PWM信号)140a,也会通过“与”逻辑电路102c,输出如图231(d)所示的逻辑“与”输出信号102d,对马达18的实际的运转进行控制。
也就是说,只是在脚踏力超越了门槛值期间,马达18的运转是允许的,所以,只在这期间提供辅助力。
当主控制部101,由于何种原因而变得不能进行正常的动作时,例如如图21(e)所示的那样,即使在t1时刻以后一直保持H水平的输出,如图21(f)所示的那样,也是只有在脚踏力超过了门槛值的期间,马达18的转动是允许的。
因此,即使主控制部101的动作变得不正常了,当不蹬踏板时,也不会有来自马达18的辅助动力的提供。
图22为显示一个具体例子的控制单元的电路构成图。
蓄电池盒组件30内的蓄电池电源BAT,经过供电侧保险丝FO、蓄电池侧连接部件50、马达侧连接部件60以及限位开关25,被供给到控制单元100的电源端子B和G上。
另外,从充电用连接器42上的正极侧端子42a开始,经过二极管DI,以及充电侧保险丝FI,可以对蓄电池盒组件30内的蓄电池电源BAT进行充电。
为检测充电时蓄电池的温度而设置的热敏电阻41,其一端被连接到负极侧端子42b上,而另一端被连接到信号端子42c上。
当主开关KSW处于“通”的状态时,从控制单元100的正极侧电源端子VB开始,经过保险丝F1、主开关KSW、和端子SW,蓄电池电源BAT被供给到电源·复位电路103。同时,经过由二极管D1和充电电流限制电阻R1所构成的预充电电路104,对稳定马达电源用的电容器C1进行充电。
电源·复位电路103,具有12伏·5伏电源103a,和由5伏电源而动作的复位电路103b。12伏·5伏电源103a,经过对例如24伏的蓄电池电源进行降压,可以提供稳定的12伏·5伏的电源。
12伏电源被用于曲柄轴转动传感器120,和对送往马达18的电流进行控制的场效应晶体管FET的栅极控制电压。
5伏电源被用于用单片微机构成的主控制部101,马达驱动限制部102,和马达电流检测电路105等装置。
复位电路103b,在5伏电源脉冲的上升边时,将复位脉冲RS送到CPU101a上。同时,复位电路103b,对以规定的周期由CPU101a所输出的监视器脉冲WP进行监视。当该监视器脉冲WP,在规定的时间以上,没有被提供时,由复位电路103b输出复位脉冲RS,使CPU101a复位(初始化)。
另外,在输出复位脉冲RS后,仍没有重新开始监视器脉冲WP的供给时,复位电路103b将12伏·5伏电源的关闭指令POFF,供给12伏·5伏电源103a,从而使12伏·5伏电源的供给停止。
主控制部101由单片微机所构成。在该单片微机上,内置有CPU101a,ROM·RAM101b,A/D转换器101c,以及图中未画出的时间装置等。
将稳定马达电源用的电容器C1的两端的电压,在电阻R2和电阻R3上进行分压,以使达到A/D转换器101c的输入容许电压范围。经分压后的电压,被供给到A/D转换器101c的输入端子A5上。
CPU101a,在根据复位信号RS而进行初始化处理后,当经A/D转换后的分压电压值超过了预设的电压值时,该CPU101a容许继电器驱动指令RD的输出。
当输出继电器驱动指令RD时,通过继电器驱动电路106R,继电器RL的励磁线圈被通上电,继电器RL的接点成闭合状态,从而将蓄电池电源BAT供给到马达18上。
对稳定马达电源用电容器C1的两端的电压进行监视,在该电容器C1被充过电以后,才使继电器RL的接点闭合,所以,就不会出现有过大的充电电流流过继电器RL的接点,从而不会损伤接点。
另外,也可以是这样一种构成当电容器C1的两端电压,在单位时间内的上升率低于规定值时,就判断为对电容器C1的预充电已经结束,从而容许继电器RL的驱动。
基于电容器C1的两端的电压的变化而进行的判断,能够不受蓄电池电源BAT的电压值的影响,而检测出预充电的结束。
当对马达18的通电进行控制的场效应晶体管FET的漏源之间发生短路时,或者在发生了与漏源之间为并联接续的,吸收逆方向波动电压用的二极管D2的短路之类的故障时,电容器C1的两端的电压,是用充电电流限制电阻R1和马达18的线圈电阻,对蓄电池电压进行分压后的电压值。
充电电流限制电阻R1的电阻值,被设置得比马达18的线圈的电阻值要大很多。
因此,如果发生了上述的短路故障,因为在预充电时电容器C1的端子电压并不上升,所以,可以禁止继电器RL的驱动,从而预先防止伴随短路故障而带来的过电流的供给。
另外,即使是处在马达18的转动状态下,CPU101a也对电容器C1两端的电压进行监视,对马达驱动信号(PWM信号)140a的通电比率进行补正,以便能依据被施加到马达18上的实际的电压值,来得到所希望的辅助转矩。
因此,即使是在蓄电池电源电压下降了的场合,也能够产生出所希望的辅助转矩。
在停止供电给马达18时所发生的逆极性的波动电压,经二极管D3后,由蓄电池电源BAT所吸收。
蓄电池盒组件30内的供电侧保险丝FO,是可以通过大电流(数十个安培)的保险装置。
因为给马达18的供电是通过继电器RL的接点而进行的;而对于例如灯L等各种电器部件的供电,是通过主开关KSW而进行的,所以,主开关KSW的电流容量,和与该主开关KSW为串联连接的保险丝F1,用小容量(数安培)的即可。
通过分泄电阻R4,12伏的电源被提供给曲柄轴转动传感器120。
即使是不是在端子VC处,而是在曲柄轴转动传感器120一侧发生了短路等故障时,由于短路电流受到分泄电阻R4的限制,所以电源系统能得到保护。
供给到端子CP上的脉冲信号(曲柄轴转动检测信号)120a,其波形在波形整形电路107上得到整形,并被变换为5伏的逻辑振幅,然后被供给到CPU101a的输入端子上。
通过分泄电阻R5,将5伏的电源提供给脚踏力检测装置110。
即使是不是在端子VT处,而是在脚踏力检测装置110一侧发生了短路等的故障时,由于短路电流受到分泄电阻R5的限制,所以电源系统能得到保护。
与被供给到端子TS上的脚踏力检测输出T有关的电压信号110a,被两组不同分压比的分压电路所分压,然后,它们各自的分压电压被送到A/D转换器101c上。
由电阻R6和电阻R7所构成的一侧的分压电路的分压比,被设定为,例如,1/2。而由电阻R8和电阻R9所构成的另一侧的分压电路的分压比,被设定为例如1/4。
设置分压比不同的两个系统的检测电压后,CPU101a,就会根据两系统的A/D转换数据,对检测出的转矩的大小进行检测。同时,CPU101a会对,当检测出的转矩小时,被供给到A/D输入端子A2上的电压(分压比为1/2)的D/A转换数据,而当检测出的转矩大时,被供给到A/D输入端A3上的电压(分压比为1/4)的D/A转换数据,进行选择,通过考虑分压比,对转矩进行换算。
通过这样的构成,和进行这种处理,即使A/D转换器101c的分辨率是同样的,也有可能在从小的转矩到大的转矩这样广泛的范围内,检测出高精度的转矩值。
因为脚踏力检测装置110的检测输出,受到被供给的电源电压的影响,所以,通过将实际上正被供给脚踏力检测装置110的电压,送到A/D输入端子A1上,根据其A/D转换数据,对检测出的电压进行校正,从而可以进行更精确的脚踏力的检测。
由马达驱动限制部102内的电压比较器102b,对门槛值电压VTH,和与脚踏力检测输出T有关的电压110a经电阻R8和电阻R9分压后的电压值,进行比较。上述门槛值电压VTH,是通过将供给到脚踏力检测装置110上的电压,经电阻102e和电阻102f分压后得的。
因为将供给到脚踏力检测装置110上的电压进行分压后得到门槛值电压VTH,所以,可以排除由于供给电压的变动而伴随的输出电压的变动的影响,从而能够更精确地对脚踏力是否超过了规定值进行判断。
马达转动“许可/限制”指令信号MS,是由电压比较器102b所输出的,并被供给到CPU101a的输入端子上。
CPU101a,对电压比较器102b的输出MS为L水平的情况,即脚踏力周期性地为零的状况进行监视。
然后,根据由A/D转换数据得到的脚踏力检测的结果,使马达18产生运转。在此种状态下,当持续一定的时间以上检测不出脚踏力为零的的状态时,就停止PWM信号140a的输出,从而使马达18的运转停止。
由此,可以防止,由于脚踏力检测装置110和A/D转换器101c等的脚踏检测系统的不正常动作,而导致的不需要的转矩的发生。
另一方面,在上坡之类持续着蹬踏板的场合,会出现脚踏力在一个周期内都不为零的情况。
因此,设置在CPU101a内的踏板操作判断装置130的工作情况是这样的通过A/D转换器101c,以规定的时间间隔读入脚踏力T的数据,并监视脚踏力T在单位时间内的变化量。当脚踏力T的增加量ΔE超过了预设的辅助力许可门槛值ΔTth时,就判断为蹬踏板的操作正在进行。然后输出继电器驱动指令RD,使继电器RL产生动作。生成并输出驱动信号(PWM信号)140a,使马达18产生辅助动力(辅助力)。同时,即使在脚踏力T的增加量ΔT,比预设的辅助力许可门槛值ΔTth要小时,在预定的延迟时间td期间内,也能继续提供辅助力。
具体来说,CPU101a的工作情况是,根据经A/D转换器101c后所检测到的脚踏力T,和对曲柄转动轴的转动脉冲120a的周期进行运算后求得的曲柄轴转速这两个参数,对PWM工作状态图进行检索,然后生成并输出对应于已求得的工作状态的马达驱动信号(PWM信号)。
另外,虽然在本实施例中所显示的构成是,当根据脚踏力T的增加量ΔT,判断为正在蹬踏板的状态时,使继电器RL产生动作。但在主开关MSW为“通”的状态下,也可以使继电器RL经常处于动作的状态。在判断为正在蹬踏板的时候,进行马达驱动信号(PWM信号)140a的生成和输出。
该马达驱动信号(PWM信号)140a,在比较器102b的输出MS为高电平(H)期间,即,在检测出了高于规定值的脚踏力期间,通过逻辑“与”电路102c,被供给到FET驱动电路106F上。
FET驱动电路106F,根据逻辑“与”电路的输出信号02d,提供电流给场效应晶体管FET的栅极上,使场效应晶体管FET产生开关动作。
这样,马达18就在PWM的控制下产生运转。
CPU101a,根据马达电流的大小,对马达18的运转情况是否正常进行监视。在检测出有异常的电流值时,就限制马达18的运转。
当马达被通上电时,在场效应晶体管FET的漏极源之间,会出现将马达电流和该场效应晶体管FET的导通电阻相乘后的电压(以下记作FET导通电压)。
马达电流检测电路105内的电子开关105a,在逻辑“与”电路的输出信号102d为H水平期间,也同步地成“通”的状态,从而将FET导通电压提供给由电阻R10和电容器C2所组成的时间常数电路105b。
电子开关105a,可以用双极晶体管或场效应晶体管之类的器件所构成。
与PWM信号同步输进来的FET导通电压,由时间常数电路105b,变换为与FET导通电压相对应的大体上的直流电压(脉流电压)。
将该直流电压(脉冲电压),用电压放大器105c进行直流放大后得到的电压信号105d,被供给到A/D转换器101c上的A/D转换输入端A4上。
而且,CPU101a,会根据与经A/D转换过的马达电流值有关的电压数据,当马达电流值过大时,使通电工作负荷减轻,或使马达18的运转停止。
另外,通过设置与场效应晶体管FET为串联相接的电流检测用电阻,根据在该电流检测用电阻的两端上产生的电压值,也可以对马达电流进行检测。在本实施例中,因为是通过检测FET导通电压,而对马达电流进行检测这样一种构成,所以,不会出现由于电流检测用电阻的接入而导致的电力损失,能够有效地利用蓄电池电源BAT。
另外,CPU101a,将与蓄电池电源电压相关的经A/D转换器10c后输入的数据,和预先设定的残量判断电压值比较。在蓄电池电源比残量判断电压值要小时,发生输出信号HL,通过显示灯驱动电路106L,使显示灯L点亮,从而发出催促充电的显示。
再,考虑到省电,显示灯L不是被连续地通着电,而是采取动态点灯方式。
显示灯L,也可以采取在数秒钟的周期内间歇点灯的方式。
在本实施例中,当脚踏力在规定值以下时,对用逻辑“与”电路来阻止来自CPU的马达驱动信号的通过这样一种构成,进行了说明。但也可以,通过阻断给控制马达的通电的场效应晶体管的栅极上的电力供应,来对马达的运转进行限制。
以下,对与权利要求项3和4有关的主控制部的转矩值补正装置,进行说明。
另外,本发明中的转矩值补正装置,是这样一种装置在电动辅助自行车1停止时蹬踏板的场合(以下记作“随便蹬”),它可以防止由于有较大的脚踏力(转矩)的作用而出现的,与骑车人的意原相反的,对电动输助自行车1的辅助力的提供。同时,在持续着“随便蹬”而使电动辅助自行车1行走时,则逐渐增加辅助力。从而使骑车的感觉良好。
转矩信号补正装置,被设置在如图16所示的马达驱动控制部140内。该转矩信号利正装置具有ROM等记忆装置,比较判断装置,和运算装置等部件。根据由图16所示的踏板操作判断装置130对正在蹬踏板的状态进行判断后的判断输出(辅助力许可指令A),由该转矩信号补正装置,对补正转矩TH进行运算,然后输出结果。
在记忆装置上,将预设的转矩最低值TX的初始值TA作为电动助力自行车1在停止时的转矩零点值TB记忆α。
另外,自行车在停止时的转矩零点值α,比“随便蹬”时的转矩TS,要设定得稍稍大一些。
由比较装置,对由图16所示的脚踏力检测装置110所检测出的脚踏力T(转矩传感器值T),和转矩零点值TB两者之间的偏差,进行运算,并计算出补正转矩TH(=T-TB),然后判断该补正转矩TH是否比0要大。
另外,由比较装置对转矩零点值TB和转矩最低值TX两者的大小比较。在转矩零点值TB比转矩最低值TX要大时,由转矩信号衰减装置,在规定的时间内,对转矩零点值TB进行补正,使之逐渐减小。接着,对转矩传感器值T,和经衰减补正过的转矩零点值TB两者之间的偏差,进行运算,然后输出补正转矩TH。
而且,在转矩补正装置上,具有带函数运算功能的转矩信号衰减装置,它会根据由踏板操作判断装置130所输出的判断输出信号(辅助许可指令A),将不在蹬踏板时(停止状态)的转矩零点值α,逐渐衰减到转矩最低值TX为止。
图23,为与转矩信号补正装置的转矩(T)相对应的补正转矩(TH)的说明图。
在(a)图上,显示了转矩(信号)T随时间的变化关系。在(b)图上,显示了补正转矩(信号)TH随时间的变化关系。
在图(a)和图(b)上,当电动辅助自行车1处于停止的状态时(从时间0到t1),即使由于蹬踏板而产生了“随便蹬”转矩TS,但只要在比自行车停止时设定的转矩零点值α要小的情况下,补正转矩TH就一直被保持在0以下的值。
在时间t1时,从“随便蹬”状态,转变为使劲地蹬踏板而使辅助力许可指令A被检测出的行走的状态。在时间t2时,如果转矩(传感器值)T超过了转矩零点值TB,则补正转矩TH被输出。但由于转矩信号衰减装置的动作,如图23中A特性曲线所示那样,使转矩零点值TB减小了,所以,在规定的时间TK内,补正转矩TH是转矩(传感器值)T和减小了的转矩零点值TB两者之间的差值。这样,补正转矩TH,就不是突然升高的,而是逐渐增加的。
图24,为显示与权利要求项3和4有关的马达驱动控制装置的动作的流程图。
当马达驱动控制装置140为工作状态时,首先,在S11步骤,将转矩最低值TX设为TA。在S12步骤,将自行车停止时的比较大的转矩零点值TB设为α。
然后,在S13步骤,根据辅助力许可指令A,对电动辅助自行车1是在停止状态还是行走状态进行判断。如果是停止状态,则返回到S12步骤,再进行一次S13步骤。而如果是在行走状态下,则移向S14步骤,计算出转矩最低值TX。
接着,在S15步骤,对转矩传感器值T和转矩零点值TB两者之间的差值进行运算,计算出补正转矩TH。
其次,在S16步骤,对补正转矩TH是否为正值(TH>0)进行判断。若是正值,则移向S17步骤,输出补正转矩TH。
另一方面,若补正转矩TH为0或负值(TH≤0)时,就将补正转矩TH设为0,然后移向S18步骤,对转矩零点值TB是澡超过了转矩最低值TX(TB>TX)进行判断。在TB>TX的场合,移向S19步骤,从转矩零点值TB中减去规定值β,这样得到一个新的转矩零点值TB(=TB-β),之后再移向S13步骤。直到TB≤TX为止。在规定的时间TK内,反复进行从S13步骤到S19步骤的操作流程。
另外,在S18步骤,若判断为TB≤TX,则移向S13步骤,然后再进行一遍从S13到S19的操作流程。
这样,在主控制部上,具有了转矩值补正装置,能根据由踏板操作判断装置对正在蹬踏板的状态进行判断后的输出,对转矩零点值进行补正。由于将由脚踏力检测装置所检测出的转矩,和经补正过的转矩零点值两者之间的差值,作为补正转矩,所以,在判断为不在蹬踏板的场合,就将转矩零点值设定为一个大的值,这样,在自行车停止时,即使作用有较大的脚踏力,也能禁止辅助力的提供,使之保持停止状态。
另外,在转矩信号补正装置上,因为具有转矩信号衰减装置,能在规定的时间内,将不在蹬踏板时的转矩零点值,逐渐衰减为正在蹬踏板时的转矩零点值,所以,当从停止状态变为行走状态时,能够使辅助力的增加是逐渐进行的。
图25,为往操纵把上安装推走开关时的配置图。
图25中,在操纵把7上,从左到右依次设置有把手161,后刹车柄162,推走开关9,变速控制杆164,车铃166,前刹车柄165,以及把手167。
在操纵轴6的后面,设有蓄电池盒组件30。该蓄电池盒组件30,是收容和支持可以装卸的蓄电池(图中未画出)用的装置。
由握着把手161的左手,在对后刹车柄162进行操作,使产生后刹车的同时,能够对推走开关9进行操作。
另一方面,由握着把手167的右手,对变速控制杆164,车铃166,以及前刹车柄165进行的操作,与一般的自行车是一样的。
这样,由于将需要多次进行烦杂操作的变速控制杆164,和车铃166之类的操作装置,配置在了右侧,所以,不会有误操作了左侧的推走开关9的担心。
另外,将车铃166和推走开关9的配置,进行互换也是可以的。这时,与多数人右手更灵活的情况相符,容易对推走电动助力自行车1时的推走开关9进行操作。
图26上,显示了与本发明相关的推走开关的放大的背面图。
推走开关9,由开关盒9a,按扭9b,软线9c,以及小螺钉9d所。
上述软线9c,如图26所示,沿着从后刹车柄162开始延伸的杀车钢丝线169的走向,经过蓄电池安装部168的下面后,被连接到图1中所示的控制单元100上。
图27,为推走开关的放大的正面图。
推走开关9的开关盒9a,其下面具有分割部9e。通过拧紧图26中所示的小螺钉6d,能够使该开关盒9a固定在操纵把7上。
当要将开关盒9a从操纵把7上卸下时,先要卸下把手161和后刹车柄162,然后松开小螺钉9d,就可以拔出。
内藏在推走开关9上的按扭开关,采用,例如,一般的由间隙接点构成的非锁式按扭开关。每当操作一次按扭开关时,就交替出现开关的“开”和“关”的状态。
图28,为与权利要求项5和6有关的主控制部的主要功能方框构成图。
主控制部101上,具有踏板操作判断装置130,马达驱动控制装置140,推走方式驱动装置151,继电器驱动缓冲器154,以及切换装置155和156。
另外,踏板操作判断装置130和马达驱动控制装置140,因为与图16中所示的为同样构成,并具有相同的作用,所以此处的说明省略。
在推走方式驱动装置151上,具有驱动信号设定装置152和驱动信号增加装置153,根据来自推走开关9(参照图25至图27)的推走信息OS,由推走方式驱动装置151产生这样一种马达驱动信号PW,它使电动助力自行车1能得到比骑车人的步行速度还要慢一些的速度(例如,每小时1至2公里)。
驱动信号设定装置152,具有PWM发生装置。由该PWM发生装置,产生出小宽度的“通”驱动脉冲和大宽度的“断”驱动脉冲的工作循环的PWM(脉冲宽度调制)信号。根据由推走开关9提供的,例如,高电平(H)的推走信息OS,由驱动信号设定装置152,将具有规定的工作循环的PWM驱动信号PA,提供给驱动信号增加装置153。
另一方面,驱动信号设定装置152,在由推走开关9提供低电平(L)的推走信息OS时,则停止产生PWM驱动信号PA。
带函数发生功能的驱动信号增加装置153,接收由驱动信号设定装置152所提供的具有规定的工作循环的PWM驱动信号PA,然后,给切换装置156提供这样一种马达驱动信号PW从“通”驱动脉冲宽度0开始,到与规定的工作循环相对应的“断”驱动脉冲宽度DU(例如,规定为工作循环的20%)为止,在规定的时间TX内,使之逐渐增加的马达驱动信号PW。
图33,为驱动信号增加装置的马达驱动信号(PW)的时间特性图。
在图33上,马达驱动信号PW的时间特性是在从0开始到TX(例如1秒钟)为止的时间内,以直线的倾斜度 ,在工作循环随时间而进行的同时,增加马达驱动信号PW,一直增加到DU(规定为工作循环的20%)为至。在时间TX以后,保持规定的工作循环DU。
图34,为车速和辅助力转矩的关系图。
当操作推走开关9时,辅助力转矩就急剧增加,然后随车速的增加而逐步减小。在辅助力转矩和行车阻力相交的点上,此时的车速被设定为每小时1至2公里。
由继电器驱动缓冲器154,将由推走开关9所提供的推走信息OS(例如,为H水平),转换成,为了驱动继电器RL而具有必要的电流容量的继电器驱动信号LD,然后将继电器驱动信号LD提供给切换装置155。
切换装置155和156,例如,可用电子开关来构成。它们根据由推走开关9所提供的推走信息OS,对接续进行切换操作。
切换装置155,对由马达驱动控制装置140所提供的继电器驱动指令RD,和由继电器驱动缓冲器154所提供的继电器驱动信号LD进行切换,然后输出继电器驱动信号DO,使继电器RL产生动作。
当由推走开关9所提供的推走信息OS为H水平的场合,选择继电器驱动信号LD。而在推走信息OS为低电平(L)的场合,则选择继电器驱动指令RD。
由切换装置156,对由马达驱动限制部102所提供的输出信号102d,和由驱动信号增加装置153所提供的马达驱动信号PW进行切换,然后,将PWM信号的FET驱动信号PO输出,使FET(场效应晶体管)产生动作。
当由推走开关9所提供的推走信息OS为H水平时,选择马达驱动信号PW。而在推走信息OS为L水平时,则选择输出信号102d。
在主控制部,因为具有推走方式驱动装置151,和切换装置155、156,所以,当使推走开关9为“通”操作时,能够将,由于蹬踏板而产生的继电器驱动指令RD和输出信号102d,分别切换成继电器驱动信号LD和马达驱动信号PW。由于能在规定的时间TX内,到规定的工作循环为止,使马达驱动信号PW逐渐增加,以驱动马达,所以,即使是在使电动助力自行车1为推走的场合,也能够对马达的动力进行辅助。
这样,在主控制部上,由于具备推走方式驱动装置,能根据来自推走开关的信息,以工作循环确定了的马达驱动信号,对马达进行驱动,所以,能够给电动助力自行车提供辅助力,以使自行车能以与步行相符的速度而移动。
另外,在推走方式马达驱动装置上,因为具有使马达驱动信号在规定的时间内逐渐增加的驱动信号增加装置,所以,即使按压了推走开关,也不会突然就变成推走方式,而是逐步增加辅助力。所以,就能够实现一种自然的推走方式。
图29,为与权利要求项7有关的主控制部的主要功能的方框构成图。
主控制部101上,在设于图16所示的马达驱动控制装置140上的目标信号设定装置142和驱动信号发生装置143两者之间,设有系数设定装置170。由该系数设定装置170,对应于蓄电池电源BAT(电压EO)的变动,对目标信号DS补正。
用与蓄电池电源BAT的任意电压EO和基准电压EK两者之间的偏差电压ΔE(=EO-EK)相对应的系数α,对目标信号DS进行补正,从而对由马达驱动信号发生装置143所产生的PWM信号(马达驱动信号140a)的工作循环进行补正。
在系数设定装置170上,具有电压比较装置171,系数发生装置172,和乘法装置173。
电压比较装置171,具有进行比较和偏差运算的功能,以及具备ROM等记忆装置。它对来自蓄电池电源BAT的蓄电池电压EO,和预先贮存在记忆装置上的确定的基准电压EK两者进行比较,然后计算出蓄电池电压EO和基准电压EK之间的偏差电压ΔE(=EO-EK),并将该偏差电压信号ΔE提供给系数发生装置172。
在刚充满电的状态,和持续着一段时间驱动电动助力自行车1后的状态,在这两种状态下,蓄电池电源BAT的蓄电池电压EO的数值是不同的。在刚充满电时,蓄电池电压EO比名义值(基准电压EK)要大。而在持续着一段时间驱动电动助力自行车1后的状态下,蓄电池电压EO则比名义值(基准电压EK)要小。
产生马达驱动信号140a的驱动信号发生装置143,因为是由比蓄电池电压EO要小的固定的电压(例如,5伏)而产生驱动的,所以可以不受蓄电池电压EO的变动的影响,而产生出有统一的脉冲波高度的PWM信号。所以,在经过FET(场效应晶体管)后,利用蓄电池电压EO而进行PWM信号驱动的马达18上,当蓄电池电压EO为高值时,流过的马达电流就大,从而产生出比名义值(=基准电压EK)时要大的驱动力。
另一方面,当蓄电池电压EO为低值时,流过有小的马达电流,从而产生出比名义值(=基准电压EK)时要小的驱动力。
在系数发生装置172上,具有ROM等记忆元件,并预先设置有图30中的蓄电池偏差电压(ΔE),和系数(α)的特征图上所示的对应的数据。由该系数发生装置172,读出与来自电压比较装置171的偏差电压信号ΔE(=EO-EK)相对应的系数α,然后将该系数提供给乘法装置173。
如图30所示,系数α的设定是随蓄电池偏差电压ΔE的增加而减小的。
例如,在蓄电池偏差电压ΔE为0时,系数α被设为1。在蓄电池偏差电压ΔE为负值(-)时,系数α被设为比1要大的值(α>1)。而在蓄电池偏差电压ΔE为正值(+)时,系数α被设为比1要小的正值(0<α<1)。
乘法装置173,具有乘法运算功能,它对来自目标信号设定装置142的目标信号DS,和来自系数发生装置172的系数信号α,进行相乘运算。然后将补正目标信号DSO,提供给驱动信号发生装置143。
驱动信号发生装置143,因为它能产生与补正目标信号DSO相对应的工作循环的PWM信号,所以能将与目标信号DS相对应的工作循环的PWM信号,转换成与蓄电池电源BAT的任意电压EO相对应的工作循环的PWM信号,然后将其作为马达驱动信号140a,而提供给FET(场效应晶体管)。
因此,即使蓄电池电源BAT的电压EO有变动,流过马达18的电流,也能被保持在与名义值(二基准电压EK)时的电流为相同的数值上。
另外,系数设定装置也可以是这样一种构成它产生出与蓄电池电压EO相对应的工作循环DU,用该工作循环DU,对图29所示的驱动信号发生装置143的工作循环进行补正。
图31,为蓄电池电压(EO)和对工作循环进行变更的系数(KVT)之间的特征间。
当相对于名义值EK(系数KVT=100),蓄电池电压EO发生变动时,在比名义值EK要小的电压值EL处,使系数KVT增大。而在比名义值EK要大的全充电后的电压值EF处,则使系数KVT减小。
利用系数KVT,由图31所示的运算公式,可以对与蓄电池电压EO的变动相对应的工作循环进行补正。
这样,在主控制部上,因为具有,能根据蓄电池电源和标准电压两者之间的偏差,而对马达驱动信号的工作循环进行补正的系数设定装置,所以,当蓄电池电源电压变高时,使驱动信号的脉冲宽度减小;而当蓄电池电源电压降低时,则使驱动信号的脉冲宽度增大。由此,就能够产生出与蓄电池电源为名义值时相同大小的辅助力。
图32,为显示与本发明第5、6、7方案有关的主控制部的动作的流程图。
在图32的流程图上,从S1步骤到S10步骤,由于与图19中所示的流程图是一样的,所以此处省略对它们的说明。
在S0和S24步骤,显示了推走方式的操作流向。在S20、S21、S22,以及S23步骤,显示了对蓄电池电源的变动进行补正的工作流向。
在推走方式的工作流向中,由S0步骤,对推走开关是否已被“接通”进行判断。在没被“接通”的场合,进行从S1到S10的工作流向(参见图19的说明)。而在已被“接通”的场合,则移向S22步骤。
首先,在S22步骤,对蓄电池偏差电压值ΔE是否偏离名义值(=基准电压EK)进行判断。当为名义值(ΔE=0)时,移向S24步骤。而在不为名义值(ΔE<0,或ΔE>0)时,则移向S23步骤。
在S23步骤,产生与蓄电池偏差电压ΔE相对应的系数α,然后移向S24步骤。
在S24步骤,生成并输出,与蓄电池偏差电压ΔE为0(系数α=1),或者为非0值(系数α>1,或0<α<1)相对应的,有规定的工作循环的推走方式的马达驱动信号。
另一方面,在S20步骤,对蓄电池偏差电压ΔE是否偏离了名义值(=基准电压EK)进行判断。当为名义值(ΔE=0)时,移向S6步骤。而当为非名义值(ΔE<0,或ΔE>0)时,则移向S21步骤。
在S1步骤,产生出与蓄电池偏差电压ΔE相对应的不数α,然后移向S6步骤。
在S6步骤,生成并输出,由于蹬与蓄电池偏差电压ΔE为0(系数α=1)或者为非0(系数α>1,或0<α<1)时相对应的踏板而产生脚踏力的,通常方式的马达驱动信号。
如上所述,与本发明方案1有关的电动助力自行车,根据由脚踏力检测装置所检测出的脚踏力随时间的变化,能允许来自马达的辅助动力的供给。所以,当脚踏力随时间而变化时,就判断为正在蹬踏板,提供来自马达的辅助动力。
也就是说,当正在蹬踏板时,提供辅助动力,从而对人力骑车进行辅助。而当不在蹬踏板时,由于脚踏力不变化,所以即使由脚踏力检测装置所检测出的脚踏力是个大的值,也不提供辅助动力。
因此,即使是由于脚踏力检测系统的不正常动作,而产生了超过辅助开始的门槛值的脚踏力输出,也不会出现不需要的辅助动力。
与本发明方案2有关的电动助力自行车的辅助力许可装置,由于从判断为不在蹬踏板的时刻开始,到经过了规定的延迟时间之后,辅助力许可的输出才被停止,所以,在持续着蹬踏板期间,能够连续提供辅助力。
因此,即使是在脚踏力比辅助力开始的门槛值要小时,也有可能提供与所检测出的脚踏力相对应的辅助动力,从而能够使骑在感觉得到较大改善。
即使是在,由于脚踏力检测系统的不正常动作,而在停止了蹬踏板时,仍输出了不为零的脚踏力检测输出时,由于在经过了由延迟时间装置所设定的延迟时间后,辅助力会被自动停止供应,所以,就不会继续供应不需要的辅助动力。
与本发明方案3有关的主控制部,具有转矩值补正装置。由该转矩值补正装置,根据由踏板操作判断装置判断为正在蹬踏板的判断输出,对转矩零点值进行补正。它将由脚踏力检测装置所检测出的转矩,和经补正后的转矩零点值两者之间的偏差,作为补正转矩。在判断为不在蹬踏板的场合,将转矩零点值设置得大一些。这样,在自行车停止时,即使作用有较大的脚踏力,也会禁止产生辅助力,从而继续保持停止状态。所以,能够给只符合骑车人意愿的,需要使劲蹬踏板的时候提供辅助力。
与本发明方案4有关的转矩信号补正装置上,具有转矩信号衰减装置。由该转矩信号衰减装置,能在规定的时间内,将不在蹬踏板时的转矩零点值,逐渐衰减为正在蹬踏板时的转矩零点值。因为当从停止状态转成行走状态时,辅助力是逐渐增加的,所以在从停止状态转成行走状态时,会使辅助力自然地增加,从而能够改善骑车感觉。
与本发明方案5有关的主控制产,具有推走方式驱动装置,它根据来自推走开关的信息,以工作循环确定的马达驱动信号,对马达进行驱动。由于能够对电动辅助自行车提供这样一种辅助力,以使自行车能以与步行相应的速度移动,所以,即使是在上坡或者载着重物艰难地行走时。也可以使辅助力功能得到有效利用,从而可以提高使用的方便性。
与本发明方案6有关的推走方式驱动装置,具有能在规定的时间内,使马达驱动信号逐渐增加的驱动信号增加装置。所以,即使按下了推走开关,也不会突然地就变成推走方式,而是逐渐增加辅助力。因此,可以实现一种自然的推走方式,使推走时的骑车感觉变好。
与本发明方案7有关的主控制部,具有系数设定装置。该系数设定装置,能根据蓄电池电源和标准电压两者之间的偏差,对马达驱动信号的工作循环进行补正。当蓄电池电源电压偏高时,就减小驱动信号的脉冲宽度;而当蓄电池电源电压偏低时,则增加驱动信号的脉冲宽度。由此,能够提供与蓄电池电源为名义值时的辅助力相同大小的辅助力。这样,即使蓄电池电源电压有所变动,也可以提高辅助力的稳定性。
这样,就可以提供,具有高便利性的推走方式的,骑车感觉良好和辅助力稳定的电动助力自行车。
权利要求
1.一种利用马达的动力辅助人力行走的电动助力自行车,其特征为控制上述电动助力自行车的驱动的主控制部,具有踏板操作判断装置,该踏板操作判断装置,能根据由脚踏力检测装置所检测出的脚踏力随时间的变化,判断蹬踏踏板的状态;根据该踏板操作判断装置的判断输出信号,对来自马达的辅助动力的供给控制。
2.如权利要求1中所述的电动助力自行车,其特征为它具有一种延迟时间装置,在从判断为不在蹬踏板的时刻开始,到经过了规定的延迟时间的这段时间内,保持蹬着踏板的状态的判断输出。
3.如权利要求1中所述的电动助力自行车,其特征为上述主控制部,具有转矩补正装置,该转矩补正装置能根据由上述踏板操作判断装置判断为正在蹬踏板的判断输出,对转矩的零点值进行补正;并将由上述脚踏力检测装置所检测出的转矩,和经补正过的转矩的零点值之间的差值,作为补正转矩。
4.如权利要求3中所述的电动助力自行车,其特征为上述转矩信号补正装置具有一种转矩信号衰减装置,它能在规定的时间内,将不在蹬踏板状态的转矩零点值,逐渐衰减为在蹬踏板状态时的转矩零点值。
5.如权利要求1中所述的电动助力自行车,其特征为上述主控制部具有推走模型驱动装置,它能根据来自推走开关的信息,用规定工作循环的马达驱动信号,对上述马达进行驱动。
6.如权利要求5中所述的电动助力自行车,其特征为上述推走模型驱动装置具有能使马达驱动信号在规定的时间内逐渐增加的驱动信号增加装置。
7.如权利要求1中所述的电动助力自行车,其特征为上述主控制部具有一种系数设定装置,它能根据蓄电池电源和标准电压两者之间的偏差,来对马达驱动信号的工作循环进行补正。
全文摘要
提供一种具有推走模型的、高便利性的、骑车感觉良好的、以及具有稳定的辅助力的电动助力自行车。该电动助力自行车1,具有控制部分100。该控制部分100的组成为脚踏力变化量运算装置131,辅助力判断装置132,具有延迟时间装置133的踏板操作判断装置130,具有马达驱动控制装置140的主控制部101,以及马达驱动限制部102。
文档编号B62M6/45GK1140680SQ9610499
公开日1997年1月22日 申请日期1996年4月16日 优先权日1995年4月17日
发明者熊谷千昭, 本田聪, 中泽祥浩, 鸟山正雪, 长敏之 申请人:本田技研工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1