一种半直驱式海洋动能水下发电系统的制作方法

文档序号:18408224发布日期:2019-08-10 00:38阅读:387来源:国知局
一种半直驱式海洋动能水下发电系统的制作方法

本发明属于水下无人航行领域,具体涉及一种半直驱式海洋动能水下发电系统。



背景技术:

海洋能是一种蕴藏在海洋中的可再生清洁能源,其中包括潮汐能、波浪能、温差能、盐差能和海流能。但目前开发利用的程度还很低,因此探索海洋资源具有十分重要的意义。传统的水下无人航行器由于体积小,容量有限,造成电源系统能量有限,因而续航能力不强,不能长时间航行,若测量的目标地点过远,还需要用其它载具携带水下无人航行器至目标区域投放,十分不便。

为了解决水下无人航行器长时间航行的问题,已有许多专利都提出了具有建设性的方法。

中国专利201710218259.7提出了《一种用于水下航行器的流体动能收集装置》,将装置内置于水下航行器的舱体中,包括两个以上的振动舱和一个以上的水轮舱,这种装置工作时水流由一端流入,另一端流出,需要从航行器内部穿过才能满足需要,因此其占用航行器内部空间大,会影响航行器原有的内部结构。

中国专利201610185853.6提出了《一种用于小型海洋航行器的摆翼式波浪能收集装置》,对于安装这种装置并长期工作在海面以下的水下航行器,当需要充电时,航行器还需上浮到海面上才能发挥最大的作用,从而会使航行器相应地调节系统更加复杂。

中国专利201610826041.5提出了《一种基于海浪-光能互补发电的水下航行器感应充电系统》,如果水下航行器进行远距离探测时,这种充电方式需要布置大量的集洋面漂浮模块、海浪发电模块、光能发电模块、储能模块及水下非接触充电模块,这使得成本增加,并且也为其它在海面航行的船舶增加了安全隐患。

中国专利201410592554.5提出了《一种液压式的水下航行器垂直轴海流发电装置》,包括两个垂直轴海流发电装置,分别安装在航行器前段与航行器中段之间,航行器中段与航行器后段之间。这种装置将航行器分成三段,使前段、中段及后段之间的联系更加复杂,从而会影响航行器原有的内部构造,难以实现系统有机统一。每个垂直轴海流发电装置都有一套由液压油箱、柱塞泵、液压管路和旋转接头组成的液压系统,液压系统不仅占据了很多的航行器内部空间,而且液压系统一旦发生故障,将影响垂直轴海流能发电装置的发电效果及水下航行器运行性能和安全性。



技术实现要素:

本发明的目的在于提供一种半直驱式海洋动能水下发电系统,通过将海洋动能转化为电能,实现了水下无人航行器的无需回收的持续航行和深海远程作业,能够使得水下无人航行器摆脱对自身所带电源容量的限制,并有效提高了海洋动能发电系统的稳定性。

实现本发明目的的技术解决方案为:一种半直驱式海洋动能水下发电系统,其特征在于:包括获能飞轮、齿轮增速箱、永磁同步发电机、整流电路模块、逆变器、交流负载、dc/dc变换器、充电蓄能模块和无人航行器中的电子设备;获能飞轮通过输入轴与齿轮增速箱的输入端相连,永磁同步发电机通过连接轴与齿轮增速箱输出端相连,整流电路模块的输入端和永磁同步发电机相连,逆变器和交流负载串联后连接在整流电路模块的一个输出端,充电蓄能模块和无人航行器中的电子设备并联在dc/dc变换器的输出端,dc/dc变换器的输入端连接在整流电路模块的另一个输出端。

通过获能飞轮实现齿轮增速箱的增速,将不连续的定轴摆动变为圆周运动,再经连接轴传递给永磁同步发电机,永磁同步发电机的转子高速旋转切割磁感线产生不稳定的交流电能,经整流电路模块作用,转换为具有直流成分的脉动直流电,所产生的直流电分为两路,一路经逆变器实现电能变换,输出至交流负载,另一路经dc/dc变换器实现电能变换,输出至充电蓄能模块。

本发明与现有技术相比,有益效果在于:

(1)可为水下无人航行器进行深海远程作业提供持续的清洁电力供应,提高了水下航行器的续航能力,同时降低了化石燃料对海洋环境的污染。

(2)将海洋动能转化为电能,降低了发电成本,有效提高海洋能可再生资源开发装备的研发设计水平。

(3)具有结构简单、可靠、体积小巧轻便等特点,可工作在恶劣海况和工况条件下,节省了无人航行器的内部使用空间和制造成本。

附图说明

图1为本发明半直驱式海洋动能水下发电系统结构示意图。

图2为本发明中电路系统工作原理示意图。

图3为本发明半直驱式海洋动能水下发电系统运行时的示意图。

具体实施方式

下面结合附图对本发明作进一步详细描述。

本发明解决了传统水下无人航行器需要定期进行充电或更换电池组,不能满足长航时、远航程的工作需求的问题。

结合图1、图2和图3,一种半直驱式海洋动能水下发电系统,包括获能飞轮1、齿轮增速箱2、永磁同步发电机3、整流电路模块4、逆变器5、交流负载6、dc/dc变换器7、充电蓄能模块8和无人航行器中的电子设备14;获能飞轮1通过输入轴与齿轮增速箱2的输入端相连,永磁同步发电机3通过连接轴与齿轮增速箱2输出端相连,整流电路模块4的输入端和永磁同步发电机3相连,逆变器5和交流负载6串联后连接在整流电路模块4的一个输出端,充电蓄能模块8和无人航行器中的电子设备14并联在dc/dc变换器7的输出端,dc/dc变换器7的输入端连接在整流电路模块4的另一个输出端。

通过获能飞轮1实现齿轮增速箱2的增速,将不连续的定轴摆动变为圆周运动,再经连接轴传递给永磁同步发电机3,永磁同步发电机3的转子高速旋转切割磁感线产生不稳定的交流电能,经整流电路模块4作用,转换为具有直流成分的脉动直流电,所产生的直流电分为两路,一路经逆变器5实现电能变换,输出至交流负载6,另一路经dc/dc变换器7实现电能变换,输出至充电蓄能模块8。

结合图2,所述dc/dc变换器7包括5v稳压板9、第一滤波电路10、过载保护电路11、12v稳压板12和第二滤波电路13,5v稳压板9、第一滤波电路10、过载保护电路11依次串联后,其输入端连接整流电路4的输出端,其输出端连接无人航行器中的电子设备14,12v稳压板12和第二滤波电路13串联后,其输入端连接整流电路4的输出端,其输出端连接充电蓄能模块8。

永磁同步发电机3转子高速旋转切割磁感线产生不稳定的交流电能,经整流电路4的作用,将交流电转换为具有直流成分的脉动直流电,所产生的脉动直流电分别经三种不同的电能变换来实现对相关设备进行供电。第一,脉动直流电经逆变器5的逆变作用,将脉动直流电变换为频率恒定的交流电,对交流负载6进行供电。第二,脉动直流电经5v稳压板9的电压变换作用,电压降为5v,经第一滤波电路10滤波作用,过滤掉直流电流中的交流成分,然后经过载保护电路11输出+5v恒定电压,用于给水下无人航行器中的电子设备14进行供电。第三,脉动直流电经12v稳压板12的电压变换作用,电压降为12v,经第二滤波电路13滤波作用,过滤掉直流电流中的交流成分,输出连接至充电蓄能模块8,对电能进行存储。

所述的齿轮增速箱2为低速齿轮箱,采用2级增速齿轮结构。

所述的齿轮增速箱2中的第一级齿轮通过输入轴与获能飞轮1相连,第二级增速齿轮将获能飞轮1的低速摆动进行增速,转换为输出轴上的旋转运动。

具体地,当水下无人航行器需要充电时,水下无人航行器自动调整为平行于海平面的状态,结合图3。首先航行器打开锚链15和锚链16,使水下无人航行器固定。水下无人航行器在海洋中受波浪作用产生横摇、纵摇、垂荡等运动,破坏了获能飞轮1的动态平衡,使其发生一定角度的摆动,从而捕获波浪的动能和势能。获能飞轮1的低速摆动将带动齿轮增速箱2中的第一级齿轮运动,通过齿轮增速箱2中的第二级增速齿轮实现增速,将不连续的定轴摆动变为输出轴上的圆周运动,再经连接轴传递给永磁同步发电机3,带动永磁同步发电机3的转子高速旋转切割磁感线产生不稳定的交流电能。所发出的交流电能经整流电路模块4、逆变器5、dc/dc变换器7等环节处理,来满足交流负载6和充电蓄能模块8工作需求。

所述的永磁同步发电机3为24对极永磁同步发电机,由电机轴、转子和定子构成,具有体积小、结构简单的特点。发电过程中,永磁同步发电机3固定于水下无人航行器内部,与航行器处于相对静止状态,转子通过连接轴与齿轮增速箱2中第二级齿轮相连。

所述的dc/dc变换器7可将整流电路模块输出脉动直流电变换为+12v和+5v,可用于直接给水下无人航行器中的电子设备进行供电。

所述的充电蓄能模块8采用的是12v、60ah锂电池,具有体积小巧轻便,重量轻的特点,减轻了水下无人航行器发电系统的重量。当系统检测到锂电池充电完成后,将自动切断锂电池的充电连接线路,保护锂电池的安全。水下无人航行器在工作期间,充电蓄能模块8将接入水下无人航行器的供电系统,用于直接给水下无人航行器中相关电子设备的电子设备进行供电。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1