空气动力学气流系统和相关方法

文档序号:4146854阅读:561来源:国知局
专利名称:空气动力学气流系统和相关方法
技术领域
本发明涉及空气动力学气流系统,更具体地说,涉及能控制飞行器机翼 上的边界层流的系统。
背景技术
飞行器设计者的一个设计目标是确保在一定的飞行条件范围内保证空 气动力学性能较高。起飞和着陆期间的性能是运输飞行器的主要设计目标, 此时高升力能力是关键需求。起飞和着陆尤其是一项挑战,因为气流主要受 粘滞效应左右,粘滞效应是对空气动力学性能的主要损害,而且改变粘性流 特性的能力对于有效的高升力系统研发至关重要。非常希望获得改变粘性流结构的技术,因为对于改善效率存在巨大潜 力。已经为广泛的应用场合研制出了用来调节粘性流的各种流体促动器。这 些促动器在机翼表面各个点上提供流体振动排出和吸入。这些设备的巨大魅力在于,它们采用零净重流脉沖("ZNMF"),即不需要流体源。ZNMF的 优势分成两方面避免了高压容器和引擎引出的空气(引出降低推进效率), 和气流控制系统可以集成,而不需要复杂的管道。采用振动加压的气流控制系统可以利用电驱动的流体设备或燃烧动力 设备。电促动器采用移动隔膜或活塞来经由开口产生吹送/吸引动作,而燃烧 促动器经由出口排出脉沖喷流。 一般来说,存在若干种电促动器电磁促动 器(或音圏,类似麦克风上用的那种)、机电促动器(活塞驱动)和压电促 动器(承受电脉冲时,金属隔膜弯曲)。例如,授予Glezer等的美国专利No.5,988,522公开了用于改变流体流方 向的综合喷流促动器。该促动器包括具有内腔的壳体,该壳体中的机构用来 周期性改变所述内腔的体积,以使产生一系列流体涡旋并将其射入开口的外 部环境中。所述机构可以包括活塞或隔膜,其受到电偏压或压电元件促动。 所述机构在部署促动器的地方使用工作流体,以使线性动量传递到气流系 统,而不让净重量注入该系统。此外,采用控制系统来振动所述隔膜,以使综合喷射流从所述开口传播。振动流体促动器已经证明对于多种气流问题非常有效。但是,在该技术 应用到新的值得飞行的航空器之前,与激发不稳定关联的若干缺陷必须解 决。例如,振动促动器仍然处于研发阶段,它们的实用性和耐用性需要调查, 以用于现实的操作环境。此外,脉沖激发导致幅度显著的沖量和不稳定的力, 这对于结构完整性有害,并且非常可能引起结构疲劳。这对于多元件机翼来 说是个尖锐的问题,在多元件飞行器机翼中,缝翼和襟翼利用可扩展的联杆 和导轨展开。因不稳定的力和冲量激发,边界层控制质量也受制于振动促动 器。而且,电驱动促动器的物理限制(隔膜位移、开口尺寸和腔的尺寸)也 为最大喷流速度增加了制约,因此也制约了能量输出。燃烧促动器产生更高 的喷流速度,但是其能量输出也受到限制,因为它们的开口较小。尽管燃烧 动力促动器不需要空气源,但是这些设备采用可燃材料,这些可燃材料需要 存储、供应线路和机体内的防火墙。而且,基于燃烧的系统潜在的危险是使 其为飞行器操作员和 一 般大众接受的主要障碍。因此,提供一种控制飞行器机翼上的边界层流的系统是具有优势的。此 外,提供一种能改善飞行器机翼空气动力学性能的系统是具有优势的。而且, 提供一种易于被飞行器机翼采用来改善起飞和着陆期间飞行器性能的系统 是具有优势的。发明内容通过提供一种控制飞行器机翼上边界层流的系统,本发明的实施例满足 上述需求并实现了其他优势。该系统采用流体设备来调节经过彼此流体连通 的端口的流体流。因此,所述端口和流体设备可以置于多元件飞行器机翼上 的各种位置,以连续控制机翼上的边界层流并减小粘滞效应。流体动力学计 算结果显示,连续调节多个联系的端口导致更为流线形的气流,且循环更高、 粘滞效应更小。空气动力学改善带来了更大的升力系数C^和更小的阻力系数Cd。利用这种气流促动,实现了接近或高于无粘性水平的升力水平。在本发明 一种实施例中,提供了 一种控制飞行器机翼上的边界层流的系 统。所述系统包括至少一个机翼元件和多个限定在所述机翼元件中并彼此流 体连通的端口。所述端口可以限定在所述机翼元件上和/或下表面上。此外, 至少 一个端口可以限定在所述^l^翼元件尾部。所述系统还包括至少 一个流体设备(例如,电动泵),其可操作来经由至少其中一个端口吸入流体并将流 体排出另外至少一个端口 ,从而控制所述机翼元件上流体的边界层流。在本发明各个方面,所述流体设备采用零净重流来调节经由所述端口的 流体流。所述流体设备可以操作来促动多个端口 ,以使流体同时流过每个被 促动的端口,以及自动或手动促动多个端口。所述机翼元件可以包括互联到 主机翼元件的缝翼和襟翼。所述流体设备可以促动与所述缝翼、主机翼元件 和/或襟翼关联的多个端口。本发明的实施例还提供了 一种控制飞行器机翼上流体边界层流的方法。所述方法包括在包括至少一个机翼元件的飞行器机翼上激发流体流;和通 过多个限定在每个机翼元件上的端口吸入和排出流体,持续调节所述飞行器 机翼上的流体流,以控制所述机翼元件上的流体边界层流。激发流体流可以 包括飞行器开始起飞或着陆,以使激发机翼元件上流体流运动。在所述的方法的方面,所述调节步骤包括促动与彼此连通的多个端口关 联的流体设备。所述调节步骤还可以包括同时调节多个端口,和/或经由限定 在所述机翼元件上表面的一对端口吸入和排出流体。类似地,所述调节步骤 可以包括经由限定在所述机翼元件下表面的端口吸入流体而经由限定在所 述机翼元件上表面的端口排出流体。而且,所述调节步骤可以包括经由限定 在所述机翼元件上表面的端口吸入流体而经由限定在所述机翼元件下表面 的端口排出流体。所述调节步骤可以包括经由限定在多个机翼元件中,诸如 缝翼、主机翼元件和襟翼中的多个端口吸入和排出流体。


在以一般术语说明了本发明之后,现在将参照附图讨论本发明,所述附图并非按比例绘制,且其中图l是本发明一种实施例的多元件飞行器机翼截面图;图2是本发明另一种实施例的多元件飞行器机翼截面图;图3是本发明另一种实施例的多元件飞行器机翼截面图;图4是本发明另 一种实施例的多元件飞行器机翼截面图;图5A是本发明另 一种实施例的多元件飞行器机翼截面图;图5B-5C是描绘图5A所示多元件飞行器机翼各种空气动力学特性的曲线图;图6A-6C是图示本发明一种实施例的多元件飞行器机翼在起飞和着陆 时,针对各种襟翼偏转角来说,升力系数对迎角的曲线图;图7A是图示不进行气流促动的基线多元件飞行器机翼上总压力场的图形;图7B是图示本发明一种实施例的多元件飞行器机翼上总压力场的图形;图8A是图示基线多元件飞行器机翼上流线速度场的图形;图8B是图示本发明一种实施例的多元件飞行器机翼上流线速度场的图形;图9A是本发明另 一种实施例的多元件飞行器机翼的截面图; 图9B-9D是描绘图9A所示多元件飞行器机翼各种空气动力学特性的曲 线图;图10是图示本发明一种实施例的飞行器机翼在各种气流促动模式下升力系数对迎角的曲线图;图11A是图示基线多元件飞行器机翼上总压力场的图形;图11B是图示本发明另一种实施例的多元件飞行器机翼上总压力场的图形;和图12A-12C是描绘图11A-11B所示总压力场的额外图形。
具体实施方式
以下将参照附图更为全面地说明本发明,其中示出了本发明的一些实施 例,但并不是全部。实际上,本发明可以实施为许多不同形式,且不应该认 为受到此处所述实施例的限制,而是提供这些实施例来使本公开满足适当的 法律要求。类似的数字始终指代类似元件。现在参照附图,具体参照图1,示出了控制多元件飞行器机翼IO上边界 层流的系统。飞行器机翼IO基本上包括多个机翼元件12、 14和16。每个机 翼元件12、 14和16包括多个限定于其中的端口。采用流体设备18调节流 体流进出端口,以控制每个机翼元件12、 14和16上的边界层流。通常所述 流体设备可以选择性地操作,以控制起飞和着陆过程中流经所述端口的流体 流,以改善飞行器机翼10的性能。于是,飞行器机翼的空气动力学特性, 特别是升力可以在一定的迎角范围内并在各种飞行条件下得到改善。多元件飞行器机翼IO或翼型,通常包括多个机翼元件,即缝翼12、主机翼元件14和襟翼16。而且,每个缝翼12、主机翼元件14和襟翼16包括 一个或多个端口来控制沿着该多元件机翼IO表面的边界层。对于多元件飞行器机翼以及限定于其中的端口的示例说明,参见美国专利申请No._,名称为"Lift Augmentation System and Associated Method",该申请与本发明 同时提交,并转让给本受让人,通过引用包含在本发明中。而且,尽管本发 明中针对多元件飞行器机翼进行讨论,但是应该理解,在本发明额外的实施 例中,如果需要,也可以采用包括单个机翼元件的飞行器机翼。而且,应该 理解,可以通过多个端口和流体设备调节任意数目的提升表面上的气流,以 便改善空气动力学性能。例如,可以将端口限定在尾翼、风舵、机身、螺旋 桨叶片或其他空气动力学主体上。图1图示了多元件飞行器机翼,带有缝翼12,其包括一对端口 sl和s2; 主机翼元件14,其包括一对端口 m2和m3;和襟翼16,其包括一对端口fl 和G。每个端口限定在各缝翼12、主机翼元件14和襟翼16上表面上。但 是,如图2所示,所述端口可以限定在飞行器机翼10的上下表面两者上, 位于飞行器机翼的不同位置。因此,端口s3-s4、 m4-m5和f6限定在各机翼 元件下表面上。所述端口基本上限定为延伸到各缝翼12、主机翼元件4和 襟翼16中,以使流体可以经由这些端口吸入或排出。而且,限定在各缝翼 12、主机翼元件14和襟翼16中的这数对端口可以互相连接且彼此流体连通, 以使一个端口有利于流体流入所述端口 ,而第二端口有利于流体流出所述端 口。但是,这里可以让不同数量的端口彼此流体连通。例如,参照图2,限 定在襟翼16下表面的一个端口 f6可以与限定在襟翼上表面的一对端口 fl-G 流体连通。通常端口 sl-s2和m2-m3限定在各缝翼12和主机翼元件14的尾 部,但是这些端口可以限定在各机翼元件中并位于缝翼、主机翼元件或缝翼 16的不同位置上,以实现希望的空气动力学特性。例如,端口可以限定在主 机翼元件14前缘附近,或位于一个或多个缝翼12、主机翼元件和襟翼16 中。而且,虽然示出了多元件飞行器机翼10的截面图,但是应该理解,所 述端口可以沿着所述机翼限定成各种翼展方向的配置(例如,对准、交错、不对准等)。图3和4描绘了本发明进一步的方面,其中采用了克鲁格缝翼22。图3 示出了克鲁才各缝翼22包括端口 sl和s2,主机翼元件24包括端口 ml和m2,而襟翼26包括端口fl、 f2、 f3和f4。示于图3的每个端口限定在多元件飞 行器机翼20上表面上。图4表明所述端口可以限定在飞行器机翼20上下表 面两者之上。于是,克鲁格缝翼12包括限定在缝翼上表面中的端口 sl-s2, 而端口 s3-s4则限定在缝翼下表面中。同样,主机翼元件24包括上端口 ml-m4 和下端口m5-m8,而襟翼26包括上端口 fl-f5和下端口伤-f10。因此,可能 存在多种飞行器机翼配置和限定在飞行器机翼中的联系端口 ,以实现希望的 空气动力学特性。多个流体设备18用来调节流体流进出所述端口 。流体设备18通常采用 零净重流(即,不需要外部流体源)来调节经过所述端口的流体流,并且可 以使用各种机构来促动一个或多个端口。通常,采用电力泵来经由彼此流体 连通的至少一对端口持续吸入(即,吸取)和排出(即,吹出)流体,以影 响多元件飞行器机翼上的边界层流。但是,根据需要,也可以使用其他恒流 设备,用来经由所述端口吸入或排出流体。此外,可以同时促动若干端口。而且,流体设备18能促动与缝翼、主机翼元件和/或襟翼关联的端口, 以实现飞行器机翼上的综合流体流控制,从而实现更高的升力水平。图3和 4图示了流体设备18与各机翼元件中的一对端口关联。但是流体设备18可 以有选择地促动任何数量的端口来实现飞行器机翼空气动力学性能的增益。 基本上在飞行器起飞和着陆过程中促动所述端口 ,此时希望有较高的升力。 此外,在起飞和着陆过程中,流经各端口的流体基本上连续(即,流体恒定 吸入或排出),虽然根据需要,在起飞和着陆过程中也可以选择性地调节所 述端口来实现振动流体流。流体基本上经由各端口沿着流体流的一般方向排 出,当然也可以沿着各种方向排出,诸如靠近或垂直于各缝翼、主机翼元件 或襟翼的方向,或相反于流体流的方向。此外,可以在才几翼下表面吸入流体 而在机翼上表面排出流体,在机翼上或下表面吸入和排出流体,或在机翼上 表面吸入流体而在机翼下表面排出流体,从而影响机翼的空气动力学性能。 而且,所述流体设备可以与反馈系统协同操作,以使自动促动所述端口。例 如,位于飞行器机翼上的传感器可以提供有关流过机翼上的流体的各种空气 动力学特性指标的信息,以使基于所述信息促动特定端口,从而改善空气动 力学性能。但是,也可以手动操作所述流体设备,以使在需要或预定飞行条 件下促动所述端口,诸如在起飞和着陆时。图5A图示了包括限定在每个缝翼32、主机翼元件34和襟翼36中的端口的多元件飞行器机翼30。缝翼32包括端口 sl-s2,主机翼元件34包括端 口 ml-m3,而襟翼36包括端口 fl-f5。图5B-5D提供了描绘多元件飞行器机 翼30各种空气动力学特性的曲线。为了模拟起飞条件,将缝翼32展开,而 襟翼偏转到S=24°。图5B示出了基线多元件飞行器机翼(即,不促动端口 )上无粘性流、 粘性流的升力系数Cl,以及促动与缝翼32、主机翼元件3 4和襟翼36关联 的端口时,多元件飞行器机翼上的粘性流的升力系数CL,所述升力系数针 对迎角a进行绘制。以下规则用于辨别促动模式数字指代端口号,而负("m,,)和正("p,,)分别表示吸入和排出。例如,s (lm2p)、 m ( 2m3p ) 和f (2m3p)表示每个缝翼32、主机翼远见34和襟翼36的上表面促动器, 此时f (2m3p)指代在端口 2处吸入而在端口 3处吹出的襟翼促动器。如图5B所示,促动缝翼32、主机翼元件34和/或襟翼36上的端口,较 之不促动端口的基线多元件飞行器机翼而言,在迎角a约为9。以上提供更大 的CL。此外,促动端口 s (lm2p)、 m ( 2m3p )和f ( 2m3p )提供了 CLmax(~6.0)的最大增幅,并直到迎角约为22。都导致大于无粘性升力。促动端 口 m (2m3p)和f ( 2m3p )直到迎角约为12。都导致升力大致符合无粘性水 平。图5C (阻力曲线)还图示了促动缝翼32、主机翼元件34和/或襟翼36 中的端口,对于给定升力水平而言,基本上导致阻力比基线机翼低。因此, 促动多元件飞行器机翼30中的端口,相对于基线飞行器机翼来说,在阻力 系数(CD)几乎全部范围内都导致Cl増大。如上所述,增大CLmax,即CL 的最大可获取值,将降低失速速度,从而有利于缩短起飞和着陆距离。而且, 可以增加净载重能力。图5B和5C中的模拟图表示空气动力学性能受到促动模式的显著影响。 具体来说,在图5B所示升力曲线线性部分,单独促动与每个缝翼32、主机 翼元件34或襟翼36关联的端口导致空气动力学性能适当改善。但是每个缝 翼32、主机翼元件34和襟翼36上的组合促动模式在达到或超过无粘性水平 方面最为有效。通常,根据由流体设备提供的净冲力增量可以实现超过无粘 性水平的升力水平。图6A-6C图示了在多元件飞行器机翼进行吸入和排出时("UTU"表示 上表面对上表面)和多元件飞行器机翼在下表面吸入而在上表面排出时 ("LTU,,表示下表面对上表面),获得的升力(即,CL)。 UTU配置包括促动三个端口 s ( lm2p )、 m ( 2m3p )和f ( 2m3p ),而LTU配置包4舌促动一组 六个上下端口 ,其中吹出端口由s ( lp2p)、 m (2p3p)和f (2p3p)表示。 在促动LTU配置时,流体设备经由位于机翼下表面的吸引端口吸入空气, 而经由机翼上表面的各排放端口排出空气。而且,图6A-6C针对不促动端口 的基线飞行器机翼、无粘性流和振动促动(即,促动个别端口 )在同一幅曲 线上绘制了 UTU和LTU配置。图6A相应于起飞配置(襟翼角=13°),图 6B相应于另一种起飞配置(5=24°),而图6C相应于着陆配置(5=40°)。图6A-6C表明UTU和LTU配置与恒流体流结合使用,相对于振动流控 制("OFC")和基线配置,导致Ct增大。UTU和LTU配置两者还在迎角低 于约24°且5=13°,或者迎角低于约22°且5=24。时,产生了高于无粘性水平 的升力。另外,较之LTU配置的C^ax来说,OFC配置在基线机翼上实现了 Cl隱的約50%-60%。而且,LTU配置的表现略强于UTU配置。鉴于因上下 表面压力差(即,从高压区域到低压区域)为负而使动力需求降低,所以希 望采用LTU配置。模拟曲线不仅示出了可获得无粘性升力水平,而且在促 动预定端口且流体流恒定经过时,甚至可以超过它。图7A和7B描绘了基线和图6C所示气流控制情况下,多元件飞行器机 翼上的总压力场,此时根据UTUs (lm2p)、 m ( 2m3p )和f ( 2m3p )进行 促动。图形示出了襟翼偏转40。且迎角为16。时的流场。基线的情况导致C匕 约为3.91,而促动的情况产生了 6,14。图7A图示了不进行气流控制,则气 流没有效率,即与个别机翼元件关联的尾流和粘性层尺寸相当大,且总压力 损失较大。与此相对照,图7B表明促动导致粘性层更狭窄,且总压力损失 减小,在多元件飞行器机翼30上气流更为流线形。因此,在飞行器机翼尾 流中限定了更大的转向角,这样增加了升力和减小了反流,即使不能消除。 而且,图8B还图示了通过促动与飞行器机翼关联的端口而获得的更为流线 形的速度分量。图8B所示的缝翼尾流较之图8A所示更为狭窄,且减小了 速度缺陷。也显著减小了襟翼36尾流中的反流,即使未能消除,同时由于 上表面上更高的吸力水平,升力也如图所示增加。作为缝翼32流线形尾流 的结果,主机翼元件34和襟翼36上的气流质量也得到改善,此时不再发生 反流。图9A描绘了本发明另一种实施例的多元件飞行器机翼40。多元件飞行 器机翼40包括克鲁格缝翼42、主机翼元件44和偏转在50。的襟翼46。襟翼46偏转50。,表示着陆条件,此时气流即使在迎角较低时,也在大部分襟翼
上分离。而且,缝翼42包括端口 sl-s2,主才几翼元件44包括端口 ml-m5, 而襟翼46包括端口 fl-f5。和前面一样,图9B表明有选择地促动端口 m (4m5p )和f ( lm2p )、 s ( lm2p )和f ( lm2p )或端口 s ( lm2p )、 m ( 4m5p ) 和f ( lm2p )导致Cl校之基残配置(即,不促动端口 )和振动促动OFC两 者增大。 一般来说,促动多元件飞行器机翼30每个机翼元件中的端口在迎 角小于约24。时超过无粘性水平,且较之基线飞行器机翼实现显著更大的 CLmax ( 7.3 )。而且,图9B示出了经过所述端口的恒定流体流产生比振动流 体流(CLmax~6.2)更大的CL。而且,图9C-9D表明在促动相同的端口组合 针对促动个别端口、采用振动流体流、或未促动基线机翼时,对于给定升力 系数来说,阻力减小而L/D增大。而且,对于给定阻力系数(Cd)来说,促 动多元件飞行器机翼40中的端口导致QJ交之基线基线飞行器机翼增大。
图10描绘了采用克鲁格缝翼和襟翼偏转50。的多元件飞行器机翼促动各 种端口配置时,&对迎角的曲线图。如图所示,促动每个缝翼、主机翼元件 和襟翼中的多个端口 ( s ( lm2m )、 m ( 2p3p4p5p )和f ( lp2p3p4p5p ))并 对主机翼元件和缝翼采用LTU配置、对缝翼采用上表面对下表面("UTL") 配置,导致了最大的CLmax(~8.7),而且对于迎角直到至少约32°,表现都 在无粘性水平之上。而且,促动每个缝翼、主机翼元件和襟翼中的一对开口 并使用LTU和/或UTU配置导致C^在全部线性升力范围内都位于无粘性水 平之上。在较低迎角时(即,小于约12°), UTU和LTU配置的性能类似, 但在迎角较高时,LTU配置在升力方面展现出逐渐变差。这种升力下降暗示 了缝翼受到端口促动的不良影响,且其尾流对于主元件和襟翼的总气流质量 有损。在缝翼上反转气流促动,即在缝翼上表面吸入流体,而在缝翼下表面 排出流体,导致升力剧烈增加(CLmax 8.0)。图IO还表明尤其在线性升力范 围内,在增加升力方面,OFC还是不能像经由所述端口持续吸入和排出流体 那样有效。
图11A图示了基线配置(Q=4.42)多元件飞行器机翼上总压力场的图 形。在图11B中,促动每个端口 s( lm2m)、 m(2p3p4p5p)和f( lp2p3p4p5p ) (产生CL=8.4 )以使缝翼42采用UTL促动,而主机翼元件44和襟翼46采 用LTU配置。比较图IIA和IIB还表明,较之基线多元件飞行器机翼来说, 尤其是靠近主机翼元件44和襟翼46尾部的地方,与飞行器机翼40关联的气流更为流线形。在襟翼46尾流中消除了反流。因此,促动每个机翼元件
中的飞行器机翼40多个端口有利地影响缝翼42、主机翼元件44和襟翼46 尾流和粘性上表面层。气流以高转向角在襟翼区域变为流线形,导致主机翼 元件44和襟翼46上循环更强而升力更高。
图12A-12C图示了图11B所示多元件飞行器机翼40上气流结构的进一 步细节。特别是图12B和12C还示出了分别表示经由每个缝翼42、主机翼 元件44和襟翼46中的端口 s ( lm2m )、 m ( 2p3p4p5p )和f ( lp2p2p4p5p ) 吸入和排出流体的速度矢量。
本发明的实施例提供若干优势。具体来说,多元件飞行器机翼包括流体 设备和端口,用于控制机翼上的边界层流。将端口定位在飞行器机翼上的关 键位置,诸如压力增大的位置、气流分离的位置或复循环位置,并在预定时 刻促动特定端口,则机翼空气动力学性能,包括升力,在宽泛的迎角范围内 可以得到改善。促动多元件飞行器机翼中的端口可以导致通常与襟翼关联的 气流效应,但是阻力减小、失速特性改善。而且,应用于多元件飞行器机翼 可以缓解粘滞效应,并减小边界层在机翼关键区域上的冲角,以使流体流可 以超过无粘性水平。所述端口和流体设备可以用来管理多元件飞行器上的载 荷。此外,所述流体设备可以采用零净重流,以使不需要外部流体源或复杂 的管道。
而且,机翼载荷管理在各种低速飞行条件下,最大限度减小阻力。例如, 在起飞和攀升时,所述系统可以设计成产生更接近椭圓形的翼展载荷分布, 用来减小感生阻力。减小感生阻力使得引擎功率需求降低,这将会减少噪音, 因为起飞时引擎是主要的噪声源。此外,减小感生阻力使得双引擎型飞行器 的引擎尺寸减小。另一方面,在进场和着陆时,所述系统可以用来产生更为 三角形的载荷分布,用来提高阻力,这对于更好的控制飞行器来说是令人期 望的。
所述本发明的许多改动和其他实施例将进入本发明所述领域技术人员 的脑海,具有前述说明和相关附图所教导的益处。因此,应该理解,本发明 并未限于所公开的具体实施例,所述改动和其他实施例旨在包含于附带的权 利来要求书的范围内。虽然本发明采用了具体的术语,但是它们仅用于上位 和说明的意思,且不用作限制。
权利要求
1.一种控制飞行器机翼上边界层流的系统,包括至少一个机翼元件;多个端口,其限定在所述机翼元件中并彼此流体连通;和至少一个流体设备,其可操作来经由至少一个端口吸入流体并经由另外的至少一个端口排出流体,以控制所述机翼元件上的边界层流。
2. 如权利要求1所述的系统,其特征在于,所述至少一个流体设备包 括电动泵。
3. 如权利要求1所述的系统,其特征在于,所述至少一个流体设备采 用零净重流来调节经过所述端口的流体流。
4. 如权利要求1所述的系统,其特征在于,所述至少一个流体设备可 操作来促动多个端口 ,以使流体同时流经每个被促动的端口 。
5. 如权利要求1所述的系统,其特征在于,所述至少一个流体设备可 操作来自动或手动促动多个端口 。
6. 如权利要求1所述的系统,其特征在于,所述机翼元件包括互联到 主机翼元件的缝翼和襟翼。
7. 如权利要求6所述的系统,其特征在于,所述至少一个流体设备促 动与所述缝翼、主机翼元件和襟翼至少其中之一关联的多个端口。
8. 如权利要求1所述的系统,其特征在于,所述至少一个端口限定在 所述才几翼元件上表面。
9. 如权利要求1所述的系统,其特征在于,所述至少一个端口限定在 所述才几翼元件下表面。 .
10. 如权利要求l所述的系统,其特征在于,限定在所述机翼元件上表 面中的至少一个端口与限定在所述机翼元件下表面中的至少一个端口流体 连通。
11. 如权利要求l所述的系统,其特征在于,至少一个所述端口限定在 所述机翼元件尾部。
12. —种控制飞行器机翼上流体边界层流的方法,包括 在包括至少 一个机翼元件的飞行器机翼上激发流体流; 通过限定在每个机翼元件中的多个端口吸入和排出流体,以持续调节所述飞行器机翼上的流体流,从而控制所述机翼元件上流体的边界层流。
13. 如权利要求12所述的方法,其特征在于,所述激发包括启动飞行 器起飞和着陆。
14. 如权利要求12所述的方法,其特征在于,所述调节包括促动与多个流体连通的端口关联的流体设备。
15. 如权利要求12所述的方法,其特征在于,所述调节包括同时调节 多个端口。
16. 如权利要求12所述的方法,其特征在于,所述调节包括经由限定 在所述机翼元件上表面中的一对端口吸入和排出流体。
17. 如权利要求12所述的方法,其特征在于,所述调节包括经由限定 在所述机翼元件卞表面中的端口吸入流体,而经由限定在所述机翼元件上表 面中的端口排出流体。
18. 如权利要求12所述的方法,其特征在于,所述调节包括经由限定 在所述机翼元件上表面中的端口吸入流体,而经由限定在所述机翼元件下表 面中的端口排出流体。
19. 如权利要求12所述的方法,其特征在于,所述调节包括经由限定 在多个机翼元件中的多个端口吸入和排出流体。
20. 如权利要求19所述的方法,其特征在于,所述调节包括经由限定 在每个缝翼、主机翼元件和襟翼中的多个端口吸入和排出流体。
全文摘要
提供了一种控制飞行器机翼上的边界层流的系统和方法。所述系统包括至少一个机翼元件(12、14、16);和多个限定在所述机翼元件中并流体连通的端口(s1、s2、m2、m3、f1、f2)。所述系统还包括至少一个流体设备,其可操作来经由至少一个端口吸入流体并经由另外至少一个端口排出流体,从而控制所述机翼元件上的边界层流。
文档编号B64C21/02GK101263051SQ200680033794
公开日2008年9月10日 申请日期2006年7月26日 优先权日2005年8月9日
发明者戴维·J·曼利, 约拉姆·亚德林, 罗杰·W·克拉克, 阿尔文·施米洛维克 申请人:波音公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1