一种食品膜包装料包的自动投包机的制作方法

文档序号:12231989阅读:445来源:国知局
一种食品膜包装料包的自动投包机的制作方法与工艺

本发明涉及食品领域,具体涉及的是一种食品膜包装料包的自动投包机。



背景技术:

相关技术中,目前,应用于食品的膜包装料包,包括铝膜、塑料膜,比如方便面生产中的粉包、酱包、油包、菜包还有用于各种物体中的干燥剂等。由于膜包装的袋装料包材料及规格的多样性,其形状不确定性,容易造成尺寸误差,卷边、板结,热冷变形等问题,很难定位,使得该类袋装料包的自动投放十分困难。目前国内外该类料包的投放只有两种方法,一是由人工投放,二是采用投包机投放。人工投放的问题是:1、效率低,2、不安全,3、不卫生,4、劳动强度大。特别是当生产线速度≥160包/分钟时,人工容易晕线,造成投放不及时,少投,不能满足生产需要。目前国内外普遍采用的投包机,其主要特点是采用连体料包,在投放时再切断成单体料包置放在生产线上的另一物体上或者盒子中,由于连体料包的尺寸误差,冷热变形等原因,容易造成检测误差,出现切包(在不该切的位置切断)、连包(几个包连在一起)、堵包(在切刀口位置处阻塞)等故障。故障排除时,需要人工投补或者停线,影响生产效率,达不到减少人工,提高效率的根本目的。



技术实现要素:

针对上述问题,本发明的目的是提供一种食品膜包装料包的自动投包机,解决膜包装的袋装料包材料及规格的多样性,其形状不确定性导致切割不准确的技术问题。

为解决上述技术问题,本发明采用的技术方案是一种食品膜包装料包的自动投包机,包括感应装置本体、总感应装置底座和多个可拆卸的分感应装置底座,所述感应装置本体可拆卸地设置于总感应装置底座上,而分感应装置底座则安装于不同位置。所述总感应装置底座连接切刀。

所述总感应装置底座包括光学接收组件、红外发射组件、距离测量组件和红外光学处理组件。所述分感应装置底座上分别设有激光发射组件。

所述光学接收组件包括分色片、中心开有小孔的平凹透镜和与所述平凹透镜对称排列于光轴上的双曲面凸透镜,所述分色片位于平凹透镜远离双曲面凸镜的一侧;所述光学接收组件接收到的红外线和/或激光经过反射镜以及快速倾斜镜的反射后汇聚成平行光,所述平行光射入平凹透镜远离分色片的一侧,经平凹透镜折射射入双曲面凸镜,并在双曲面凸镜的反射下穿过平凹透镜中心的小孔射入分色片,红外线的红外光谱透过所述分色片进入红外光学处

所述激光发射组件包括回转驱动机构、集成电路和532nm激光器,所述激光器包括激光器头部、激光控制器和激光触发器,所述激光器头部集成硅PIN光电二极管,可以感应发射主波并直接输出主波电信号脉冲,所述激光器头部通过线缆连接所述激光控制器,所述激光控制器提供激光器电源、温控以及触发控制,所述激光触发器设于所述感应装置本体与所述分感应装置底座的连接处,当所述感应装置本体安装于所述总感应装置底座时,所述激光触发器发出触发信号,触发所述激光控制板启动,触发所述激光器头部间隔发射激光。

所述回转驱动机构包括转动轴、支撑架、驱动电机、包络蜗杆、蜗轮转盘和防护罩,所述驱动电机包括第一驱动电机和第二驱动电机,所述第一驱动电机安装于包络蜗杆的一端,驱动包络蜗杆转动,所述包络蜗杆的齿面与蜗轮转盘的齿面相啮合,第一驱动电机驱动包络蜗杆绕其中心轴转动,包络蜗杆带动蜗轮转盘转动,所述转动轴穿过并固定所述激光器,所述转动轴的两端设于支撑架上,所述支撑架安装于蜗轮转盘的上表面,第一驱动电机转动包络蜗杆,包络蜗杆带动蜗轮转盘以及支撑架、激光器转动360度转动,第二驱动电机连接所述转动轴,使得激光器可绕转动轴转动,从而调整激光机发射的激光方向。

所述分感应装置底座上分别设有启动激光器的启动按钮,当感应装置本体放置在分感应装置底座上时,启动按钮按下,激光器启动。

所述距离测量组件包括准直镜、窄带滤光片、信号整形电路、脉冲信号探测器和时间测量芯片,经过分色片反射的激光依次经过准直镜、窄带滤光片、脉冲信号探测器和信号整形电路,准直镜与窄带滤光片对激光光谱进行滤波处理,减少背景噪音。当脉冲信号探测器相应目标光子时,脉冲信号探测器输出相应的脉冲信号,经过信号整形电路处理后输出至时间测量芯片,通过对定时间隔发射激光的脉冲信号发生时刻的精确测量计时,最终测量出激光从感应装置本体至总感应装置底座的飞行时间,进而得到感应装置本体与总感应装置底座之间的距离,得到的距离的数据传输至红外发射组件,红外发射组件根据感应装置本体与总感应装置底座之间的距离调整焦距。

所述红外发射组件包括连续变焦结构和红外发射二极管,所述连续变焦结构包括圆筒形壳体、变倍组镜片、微调组镜片、补偿组镜片、变倍组镜片框架、补偿组镜片框架、微调组镜片框架、电机、微调齿轮圈和微调隔圈,所述圆筒形壳体的中段设有两组四条对称的凸轮槽,分别为第一凸轮槽与第二凸轮槽;

所述第一凸轮槽与第二凸轮槽相应的凸轮曲线斜率满足下式:

其中,Ky为第一凸轮槽对应变焦凸轮曲线的斜率,Kx为第二凸轮槽对应变焦凸轮曲线的斜率,y是第一凸轮槽对应变焦凸轮曲线的升距,l′2=f′1-(d+y-x),f′2是变倍组的焦距,y、x分别是第一凸轮槽、第二凸轮槽对应变焦凸轮曲线的升距,b=(l′2-f′1)-d+x,d是分别设置于第一凸轮槽与第二凸轮槽的两个镜片的距离;所述变倍组镜片、补偿组镜片和微调组镜片沿光轴依次排列,且所述变倍组镜片的部分透镜与微调组镜片分别通过镜片压圈设于所述壳体的两端;所述电机提供镜头运动驱动力,连接所述变倍组镜片框架,带动变倍组镜片框架移动;所述圆筒形壳体内表面与所述微调组镜片框架的接触面沿圆周方向设置微调齿轮圈,所述微调齿轮圈与所述微调组镜片框架粘连,且在电机的带动下,所述微调齿轮圈可相对于圆筒形壳体转动,转动所述微调齿轮圈可调整微调组镜片与其他镜片之间的距离。

所述红外发射二极管依次排列,设置于所述微调组镜片远离补偿组镜片的一侧,并根据感应装置本体与总感应装置底座之间的距离调节红外发射二极管启动的功率;所述红外光学处理组件包括红外接收管,当料包位于感应装置本体前时,红外发射组件发射的红外线被料包遮挡后反射至光学接收组件,所述红外接收管接收到红外光谱后输出电信号,切割料包。

作为优选,所述包络蜗杆的齿面方程为

其中,A=-cosαdcosθ,B=-cosαdsinβsinθ±sinαdcosβ,C=-cosαdcosβsinθ±sinαdsinβ,D=rdcosθ-a0,E=rdsinβsinθ±0.5Sacosβ,F=-rdcosβsinθ±0.5Sacosβ,nx=sinαdcosθ,ny=sinαsinθsinβ+cosαdcosβ,nz=-sinαdsinθcosβ+cosαdsinβ,αd为加工包络蜗杆的砂轮齿形角,rd为加工包络蜗杆的砂轮半径,Sa为加工包络蜗杆的砂轮顶宽,β为加工包络蜗杆的砂轮倾斜角,为蜗杆的转角,

式中有三个待确定的变量:加工过程中刀座回转角度啮合点P沿砂轮侧面方向离砂轮顶部的距离u以及啮合点P所在的砂轮轴截面与ia的夹角θ;在170°至190°范围内得到一组满足包络蜗杆的齿面方程的取值将得到的代入式中即可得到在包络蜗杆上的一个接触点,对应于同一个值,将u在全齿高范围取不同的值,可以由依次共轭条件方程接触不同的θ值,这样就能得到多个接触点,将接触点相连即可组成一条接触线,最后对应于不同的值,可求出不同的接触线,这些接触线就组成了蜗杆螺旋面。

作为优选,取中心距75mm,传动比45,蜗杆头数1的包络蜗杆贴合所述包络蜗杆的齿面方程,经优化后得到包络蜗杆的关键几何参数和尺寸:中心距75mm,传动比45,蜗杆头数1,蜗杆分度圆直径28.36mm,齿顶高2.571mm,齿根高2.846mm,全齿高5.01mm,齿顶间隙0.716mm,蜗杆齿根圆半径21.605mm,蜗杆齿顶圆弧半径31.786m,蜗杆齿根圆弧半径65.779mm,蜗杆喉部分度圆导程角6.32°,齿距角9°,主基圆直径48.69mm,蜗杆包围蜗轮转盘齿数6.5,蜗杆工作半角17.311°,蜗杆工作长度37.529mm,成型面倾角11.3°。

作为优选,所述变倍组镜片包括前变倍镜片和后变倍镜片,所述前变倍镜片为正月牙凸透镜,所述后变倍镜片为双凹透镜,所述前变倍镜片固定于圆筒形壳体的最前端,后变倍镜片安装于镜片框架后通过导钉与第二凸轮槽相固连。

作为优选,所述补偿组镜片为平面镜,所述补偿组镜片安装于镜片框架后通过导钉与第一凸轮槽相固连。

作为优选,所述微调组镜片为正月牙凸透镜,所述微调组镜片框架夹持所述微调组镜片,设于所述圆筒形壳体的一端。

本发明的有益效果:

1、使用者可以随意调整分感应装置底座的位置,从而将感应装置本体放置于不同高度、不同位置,以适应不同的需求。

2、使用一个光学接收组件同时接收激光与红外线,将激光接收装置与红外线接收装置一体化,大大地缩小了感应装置的体积,使得感应装置适应不同规格的总感应装置底座,而且结构简单,方便工作人员进行检修工作。

3、建立回转驱动结构的包络蜗杆模型后,针对该模型进行优化,最后使得包络蜗杆具有优良的润滑性能和接触性能,减小包络蜗杆的摩擦、减轻磨损、降低温升,增加包络蜗杆的抗胶合能力,提高包络蜗杆的承载能力。而且,包络蜗杆的齿面与蜗轮转盘的齿面之间接触范围合理,从而延长其使用寿命。

4、使用所述连续变焦结构可保证实现四倍红外连续变焦的同时使得光学系统在整个变焦过程中能够平稳运行,并不会对凸轮产生较大的压力,磨损凸轮曲线,影响光学系统精度。

5、本发明识别料包的成功率高。

附图说明

利用附图对发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。

图1是本发明感应装置本体和总感应装置底座的结构示意图。

图2是本发明光学接收组件的结构示意图。

图3是本发明回转驱动机构中包络蜗杆和蜗轮转盘的结构示意图。

图4是本发明距离测量组件的结构示意图。

图5是本发明食品膜包装料包的自动投包机的结构示意图。

具体实施方式

结合以下实施例对本发明作进一步描述。

实施例一

本发明的装置,包括感应装置本体1、总感应装置底座5和多个可拆卸的分感应装置底座,如图1所示,所述感应装置本体1可拆卸地设置于总感应装置底座5上,而分感应装置底座则安装于不同位置,方便使用者使用。所述总感应装置底座5连接切刀。所述总感应装置底座5包括光学接收组件、红外发射组件22、距离测量组件13和红外光学处理组件12。所述分感应装置底座上分别设有激光发射组件6。

如图2所示,所述光学接收组件可同时接受激光与红外线,或者单独接收激光或红外线。所述光学接收组件包括分色片7、中心开有小孔的平凹透镜8和与所述平凹透镜8对称排列于光轴上的双曲面凸透镜9,所述分色片7位于平凹透镜8远离双曲面凸镜的一侧。所述光学接收组件接收到的红外线和/或激光经过反射镜11以及快速倾斜镜10的反射后汇聚成平行光,所述平行光射入平凹透镜8远离分色片7的一侧,经平凹透镜8折射射入双曲面凸镜,并在双曲面凸镜的反射下穿过平凹透镜8中心的小孔射入分色片7。红外线的红外光谱透过所述分色片7进入红外光学处理组件12,激光经过所述分色片7反射进入所述距离测量组件13。使用一个光学接收组件同时接收激光与红外线,将激光接收装置与红外线接收装置一体化,大大地缩小了感应装置的体积,使得感应装置适应不同规格的总感应装置底座5,而且结构简单,方便工作人员进行检修工作。

所述激光发射组件6包括回转驱动机构14、集成电路和532nm激光器。所述激光器可接外触发信号触发激光出射。所述激光器包括激光器头部、激光控制器和激光触发器。所述激光器头部集成硅PIN光电二极管,可以感应发射主波并直接输出主波电信号脉冲。所述激光器头部通过线缆连接所述激光控制器,所述激光控制器提供激光器电源、温控以及触发控制。所述激光触发器设于所述感应装置本体1与所述分感应装置底座的连接处。当所述感应装置本体1安装于所述总感应装置底座5时,所述激光触发器发出触发信号,触发所述激光控制板启动,触发所述激光器头部间隔发射激光。

如图3所示,所述回转驱动机构14包括转动轴、支撑架、驱动电机、包络蜗杆16、蜗轮转盘17和防护罩。所述驱动电机包括第一驱动电机15和第二驱动电机。所述第一驱动电机15安装于包络蜗杆16的一端,驱动包络蜗杆16转动。所述包络蜗杆16的齿面与蜗轮转盘17的齿面相啮合,第一驱动电机15驱动包络蜗杆16绕其中心轴转动,包络蜗杆16带动蜗轮转盘17转动。所述转动轴穿过并固定所述激光器,所述转动轴的两端设于支撑架上,所述支撑架安装于蜗轮转盘17的上表面,第一驱动电机15转动包络蜗杆16,包络蜗杆16带动蜗轮转盘17以及支撑架、激光器转动360度转动。第二驱动电机连接所述转动轴,使得激光器可绕转动轴转动,从而调整激光机发射的激光方向。在本实施例中,所述激光器内部集成扩束准直镜头,提供高平行度,低发散度激光。

所述包络蜗杆16的齿面方程为

其中,A=-cosαdcosθ,B=-cosαdsinβsinθ±sinαdcosβ,C=-cosαdcosβsinθ±sinαdsinβ,D=rdcosθ-a0,E=rdsinβsinθ±0.5Sacosβ,F=-rdcosβsinθ±0.5Sacosβ,nx=sinαdcosθ,ny=sinαsinθsinβ+cosαdcosβ,nz=-sinαdsinθcosβ+cosαdsinβ,αd为加工包络蜗杆16的砂轮齿形角,rd为加工包络蜗杆16的砂轮半径,Sa为加工包络蜗杆16的砂轮顶宽,β为加工包络蜗杆16的砂轮倾斜角,为蜗杆的转角。

式中有三个待确定的变量:加工过程中刀座回转角度啮合点P沿砂轮侧面方向离砂轮顶部的距离u以及啮合点P所在的砂轮轴截面与ia的夹角θ。

在加工的工作区间内选定一个值,然后在全齿高数值范围内选定一个u的值,根据包络蜗杆16的齿面方程可得出变量θ。对包络蜗杆16的齿面方程作牛顿迭代求解:由加工的实际情况可以判断,满足包络蜗杆16的齿面方程的θ值处在180°附近,因此在170°至190°范围内得到一组满足包络蜗杆16的齿面方程的取值将得到的代入式中即可得到在包络蜗杆16上的一个接触点。对应于同一个值,将u在全齿高范围取不同的值,可以由依次共轭条件方程接触不同的θ值,这样就能得到多个接触点,将接触点相连即可组成一条接触线。最后对应于不同的值,可求出不同的接触线,这些接触线就组成了蜗杆螺旋面。

包络蜗杆16的失效形式有整体失效和齿面失效两种,包络蜗杆16的整体失效往往是由于在传动的过程中经受严重的冲击或者短期的过载,或者沿接触线有比较严重的载荷集中。包络蜗杆16的齿面失效包括接触疲劳点蚀、胶合、磨损、折断等。而包络蜗杆16的整体失效与齿面失效均于包络蜗杆16的接触性能和润滑性能有密切关系,因此,从包络蜗杆16的接触性能和润滑性能触发评价包络蜗杆16的性能。

优良的润滑性能能够减小摩擦、减轻磨损、降低温升,增加包络蜗杆16的抗胶合能力,提高包络蜗杆16的承载能力,从而达到延长其使用寿命的效果。获得优良的润滑性能,其本质上是在蜗杆和涡轮的齿面间建立起一定厚度的润滑油膜,确保齿面在很大压强下,仍然能够处于液体润滑的环境,或者至少在半液体润滑的环境下工作。

对包络蜗杆16润滑性能的评估:根据弹性流体动压润滑理论和道森公式设定油膜厚度几何系数来对油膜厚度进行评估。

kh=vn0.7/(K12N0.43)

vn是相对卷吸速度,vn由下列公式计算得到其中,(v1)o1和(v2)o1是啮合点处包络蜗杆16和蜗轮转盘17的速度,(N)o1是包络蜗杆16瞬时接触线上任一点处的法矢量,|N|=(Nξ2+Nη2)0.5

而且,由于在啮入端蜗杆齿根处的油膜厚度最小,因此选择在啮入端蜗杆齿根处的油膜厚度评价包络蜗杆16的性能。

优良的接触性能是指包络蜗杆16上接触线的分布不可过宽,也不可过窄,当接触线分布不可过宽,也不可过窄。当接触线分布过宽时,包络蜗杆16工作起始角处的接触线处于包络蜗杆16齿面的外侧,表明包络蜗杆16与蜗轮转盘17之间的啮合齿数较少。反之,接触线分布过窄时,接触线会趋向集中在蜗轮转盘17的中心对称面上,这将导致蜗轮转盘17齿面的强度降低。

对包络蜗杆16接触性能的评估:以工作起始角对应的一次接触线在蜗轮转盘17分度圆上的接触点为对象来建立接触性能评估值f(x)=||z1|-b2/2|,其中,|z1|为上述特定一次接触点到蜗轮转盘17中心对称面的距离,b2为蜗轮转盘17齿宽。

利用优化软件优化包络蜗杆16的齿面方程,使得啮入端蜗杆齿根处的油膜厚度几何系数最大,接触性能评估值最小。

建立回转驱动结构的包络蜗杆16模型后,针对该模型进行优化,最后使得包络蜗杆16具有优良的润滑性能和接触性能,减小包络蜗杆16的摩擦、减轻磨损、降低温升,增加包络蜗杆16的抗胶合能力,提高包络蜗杆16的承载能力。而且,包络蜗杆16的齿面与蜗轮转盘17的齿面之间接触范围合理,从而延长其使用寿命。

取中心距75mm,传动比45,蜗杆头数1的包络蜗杆16贴合所述包络蜗杆16的齿面方程,经优化后得到包络蜗杆16的关键几何参数和尺寸:中心距75mm,传动比45,蜗杆头数1,蜗杆分度圆直径28.36mm,齿顶高2.571mm,齿根高2.846mm,全齿高5.01mm,齿顶间隙0.716mm,蜗杆齿根圆半径21.605mm,蜗杆齿顶圆弧半径31.786m,蜗杆齿根圆弧半径65.779mm,蜗杆喉部分度圆导程角6.32°,齿距角9°,主基圆直径48.69mm,蜗杆包围蜗轮转盘17齿数6.5,蜗杆工作半角17.311°,蜗杆工作长度37.529mm,成型面倾角11.3°。

本实施例的油膜厚度几何系数为11.89,接触性能评估值为2.64。

所述分感应装置底座上分别设有启动激光器的启动按钮,当感应装置本体1放置在分感应装置底座上时,启动按钮按下,激光器启动。

具体使用所述感应装置前,固定好分感应装置底座后,调节所述激光器上下左右转动,直至所述激光器发射出的激光对准光学接收组件。所述总感应装置底座5上设有指示灯,所述指示灯用于指示光学接收组件是否接收到激光信号。集成电路具有记忆功能,可储存分感应装置底座固定于某一位置后所述激光器对应光学接收组件的角度。

如图4所示,所述距离测量组件13包括准直镜、窄带滤光片18、信号整形电路20、脉冲信号探测器19和时间测量芯片21,经过分色片7反射的激光依次经过准直镜、窄带滤光片18、脉冲信号探测器19和信号整形电路20,准直镜与窄带滤光片18对激光光谱进行滤波处理,减少背景噪音。所述脉冲信号探测器19为雪崩二极管探测器或光电倍增管探测器。当脉冲信号探测器19相应目标光子时,脉冲信号探测器19输出相应的脉冲信号,经过信号整形电路20处理后输出至时间测量芯片21,通过对定时间隔发射激光的脉冲信号发生时刻的精确测量计时,最终测量出激光从感应装置本体1至总感应装置底座5的飞行时间,进而得到感应装置本体1与总感应装置底座5之间的距离,得到的距离的数据传输至红外发射组件22,红外发射组件22根据感应装置本体1与总感应装置底座5之间的距离调整焦距。

所述红外发射组件22包括连续变焦结构和红外发射二极管,所述连续变焦结构包括圆筒形壳体、变倍组镜片、微调组镜片、补偿组镜片、变倍组镜片框架、补偿组镜片框架、微调组镜片框架、电机、微调齿轮圈和微调隔圈。所述圆筒形壳体的中段设有两组四条对称的凸轮槽,分别为第一凸轮槽与第二凸轮槽。

所述第一凸轮槽与第二凸轮槽相应的凸轮曲线斜率满足下式:

其中,Ky为第一凸轮槽对应变焦凸轮曲线的斜率,Kx为第二凸轮槽对应变焦凸轮曲线的斜率,y是第一凸轮槽对应变焦凸轮曲线的升距,l′2=f′1-(d+y-x),f′2是变倍组的焦距,y、x分别是第一凸轮槽、第二凸轮槽对应变焦凸轮曲线的升距,b=(l′2-f′1)-d+x,d是分别设置于第一凸轮槽与第二凸轮槽的两个镜片的距离。

所述变倍组镜片、补偿组镜片和微调组镜片沿光轴依次排列,且所述变倍组镜片的部分透镜与微调组镜片分别通过镜片压圈设于所述壳体的两端。

所述变倍组镜片包括前变倍镜片和后变倍镜片,在本实施例中,所述前变倍镜片为正月牙凸透镜,所述后变倍镜片为双凹透镜。所述前变倍镜片固定于圆筒形壳体的最前端,后变倍镜片安装于镜片框架后通过导钉与第二凸轮槽相固连。

在本实施例中,所述补偿组镜片为平面镜,所述补偿组镜片安装于镜片框架后通过导钉与第一凸轮槽相固连。

在本实施例中,所述微调组镜片为正月牙凸透镜,所述微调组镜片框架夹持所述微调组镜片,设于所述圆筒形壳体的一端。所述电机提供镜头运动驱动力,连接所述变倍组镜片框架,带动变倍组镜片框架移动。所述圆筒形壳体内表面与所述微调组镜片框架的接触面沿圆周方向设置微调齿轮圈,所述微调齿轮圈与所述微调组镜片框架粘连,且在电机的带动下,所述微调齿轮圈可相对于圆筒形壳体转动,转动所述微调齿轮圈可调整微调组镜片与其他镜片之间的距离。

使用所述连续变焦结构可保证实现四倍红外连续变焦的同时使得光学系统在整个变焦过程中能够平稳运行,并不会对凸轮产生较大的压力,磨损凸轮曲线,影响光学系统精度。

所述红外发射二极管依次排列,设置于所述微调组镜片远离补偿组镜片的一侧,并根据感应装置本体1与总感应装置底座5之间的距离调节红外发射二极管启动的功率。

所述红外光学处理组件12包括红外接收管,当料包位于感应装置本体1感应区域时,红外发射组件发射的红外线被料包遮挡后反射至光学接收组件,所述红外接收管接收到红外光谱后输出电信号,切割料包。

进行静态红外目标测试,固定总感应装置底座5,将分感应装置底座安装于距离总感应装置底座520cm、50cm、80cm处,将感应装置本体1放置于分感应装置底座上,与感应装置本体1一侧设置有摆动装置,所述摆动装置的一端设有模拟物,模拟物间隔移动至感应装置本体1下方20cm处测试感应装置的灵敏度,测试后发现其成功率为99.1%、98.4%、96.8%。

实施例二

本发明的装置,包括感应装置本体1、总感应装置底座5和多个可拆卸的分感应装置底座,如图1所示,所述感应装置本体1可拆卸地设置于总感应装置底座5上,而分感应装置底座则安装于不同位置,方便使用者使用。所述总感应装置底座5连接切刀。所述总感应装置底座5包括光学接收组件、红外发射组件22、距离测量组件13和红外光学处理组件12。所述分感应装置底座上分别设有激光发射组件6。

如图2所示,所述光学接收组件可同时接受激光与红外线,或者单独接收激光或红外线。所述光学接收组件包括分色片7、中心开有小孔的平凹透镜8和与所述平凹透镜8对称排列于光轴上的双曲面凸透镜9,所述分色片7位于平凹透镜8远离双曲面凸镜的一侧。所述光学接收组件接收到的红外线和/或激光经过反射镜11以及快速倾斜镜10的反射后汇聚成平行光,所述平行光射入平凹透镜8远离分色片7的一侧,经平凹透镜8折射射入双曲面凸镜,并在双曲面凸镜的反射下穿过平凹透镜8中心的小孔射入分色片7。红外线的红外光谱透过所述分色片7进入红外光学处理组件12,激光经过所述分色片7反射进入所述距离测量组件13。使用一个光学接收组件同时接收激光与红外线,将激光接收装置与红外线接收装置一体化,大大地缩小了感应装置的体积,使得感应装置适应不同规格的总感应装置底座5,而且结构简单,方便工作人员进行检修工作。

所述激光发射组件6包括回转驱动机构14、集成电路和532nm激光器。所述激光器可接外触发信号触发激光出射。所述激光器包括激光器头部、激光控制器和激光触发器。所述激光器头部集成硅PIN光电二极管,可以感应发射主波并直接输出主波电信号脉冲。所述激光器头部通过线缆连接所述激光控制器,所述激光控制器提供激光器电源、温控以及触发控制。所述激光触发器设于所述感应装置本体1与所述分感应装置底座的连接处。当所述感应装置本体1安装于所述总感应装置底座5时,所述激光触发器发出触发信号,触发所述激光控制板启动,触发所述激光器头部间隔发射激光。

如图3所示,所述回转驱动机构14包括转动轴、支撑架、驱动电机、包络蜗杆16、蜗轮转盘17和防护罩。所述驱动电机包括第一驱动电机15和第二驱动电机。所述第一驱动电机15安装于包络蜗杆16的一端,驱动包络蜗杆16转动。所述包络蜗杆16的齿面与蜗轮转盘17的齿面相啮合,第一驱动电机15驱动包络蜗杆16绕其中心轴转动,包络蜗杆16带动蜗轮转盘17转动。所述转动轴穿过并固定所述激光器,所述转动轴的两端设于支撑架上,所述支撑架安装于蜗轮转盘17的上表面,第一驱动电机15转动包络蜗杆16,包络蜗杆16带动蜗轮转盘17以及支撑架、激光器转动360度转动。第二驱动电机连接所述转动轴,使得激光器可绕转动轴转动,从而调整激光机发射的激光方向。在本实施例中,所述激光器内部集成扩束准直镜头,提供高平行度,低发散度激光。

所述包络蜗杆16的齿面方程为

其中,A=-cosαdcosθ,B=-cosαdsinβsinθ±sinαdcosβ,C=-cosαdcosβsinθ±sinαdsinβ,D=rdcosθ-a0,E=rdsinβsinθ±0.5Sacosβ,F=-rdcosβsinθ±0.5Sacosβ,nx=sinαdcosθ,ny=sinαsinθsinβ+cosαdcosβ,nz=-sinαdsinθcosβ+cosαdsinβ,αd为加工包络蜗杆16的砂轮齿形角,rd为加工包络蜗杆16的砂轮半径,Sa为加工包络蜗杆16的砂轮顶宽,β为加工包络蜗杆16的砂轮倾斜角,为蜗杆的转角。

式中有三个待确定的变量:加工过程中刀座回转角度啮合点P沿砂轮侧面方向离砂轮顶部的距离u以及啮合点P所在的砂轮轴截面与ia的夹角θ。

在加工的工作区间内选定一个值,然后在全齿高数值范围内选定一个u的值,根据包络蜗杆16的齿面方程可得出变量θ。对包络蜗杆16的齿面方程作牛顿迭代求解:由加工的实际情况可以判断,满足包络蜗杆16的齿面方程的θ值处在180°附近,因此在170°至190°范围内得到一组满足包络蜗杆16的齿面方程的取值

将 得到的代入

式中即可得到在包络蜗杆16上的一个接触点。对应于同一个值,将u在全齿高范围取不同的值,可以由依次共轭条件方程接触不同的θ值,这样就能得到多个接触点,将接触点相连即可组成一条接触线。最后对应于不同的值,可求出不同的接触线,这些接触线就组成了蜗杆螺旋面。

包络蜗杆16的失效形式有整体失效和齿面失效两种,包络蜗杆16的整体失效往往是由于在传动的过程中经受严重的冲击或者短期的过载,或者沿接触线有比较严重的载荷集中。包络蜗杆16的齿面失效包括接触疲劳点蚀、胶合、磨损、折断等。而包络蜗杆16的整体失效与齿面失效均于包络蜗杆16的接触性能和润滑性能有密切关系,因此,从包络蜗杆16的接触性能和润滑性能触发评价包络蜗杆16的性能。

优良的润滑性能能够减小摩擦、减轻磨损、降低温升,增加包络蜗杆16的抗胶合能力,提高包络蜗杆16的承载能力,从而达到延长其使用寿命的效果。获得优良的润滑性能,其本质上是在蜗杆和涡轮的齿面间建立起一定厚度的润滑油膜,确保齿面在很大压强下,仍然能够处于液体润滑的环境,或者至少在半液体润滑的环境下工作。

对包络蜗杆16润滑性能的评估:根据弹性流体动压润滑理论和道森公式设定油膜厚度几何系数来对油膜厚度进行评估。

kh=vn0.7/(K12N0.43)

vn是相对卷吸速度,vn由下列公式计算得到其中,(v1)o1和(v2)o1是啮合点处包络蜗杆16和蜗轮转盘17的速度,(N)o1是包络蜗杆16瞬时接触线上任一点处的法矢量,|N|=(Nξ2+Nη2)0.5

而且,由于在啮入端蜗杆齿根处的油膜厚度最小,因此选择在啮入端蜗杆齿根处的油膜厚度评价包络蜗杆16的性能。

优良的接触性能是指包络蜗杆16上接触线的分布不可过宽,也不可过窄,当接触线分布不可过宽,也不可过窄。当接触线分布过宽时,包络蜗杆16工作起始角处的接触线处于包络蜗杆16齿面的外侧,表明包络蜗杆16与蜗轮转盘17之间的啮合齿数较少。反之,接触线分布过窄时,接触线会趋向集中在蜗轮转盘17的中心对称面上,这将导致蜗轮转盘17齿面的强度降低。

对包络蜗杆16接触性能的评估:以工作起始角对应的一次接触线在蜗轮转盘17分度圆上的接触点为对象来建立接触性能评估值f(x)=||z1|-b2/2|,其中,|z1|为上述特定一次接触点到蜗轮转盘17中心对称面的距离,b2为蜗轮转盘17齿宽。

利用优化软件优化包络蜗杆16的齿面方程,使得啮入端蜗杆齿根处的油膜厚度几何系数最大,接触性能评估值最小。

建立回转驱动结构的包络蜗杆16模型后,针对该模型进行优化,最后使得包络蜗杆16具有优良的润滑性能和接触性能,减小包络蜗杆16的摩擦、减轻磨损、降低温升,增加包络蜗杆16的抗胶合能力,提高包络蜗杆16的承载能力。而且,包络蜗杆16的齿面与蜗轮转盘17的齿面之间接触范围合理,从而延长其使用寿命。

取中心距75mm,传动比40,蜗杆头数1的包络蜗杆16贴合所述包络蜗杆16的齿面方程,经优化后得到包络蜗杆16的关键几何参数和尺寸:中心距75mm,传动比40,蜗杆头数1,蜗杆分度圆直径26.25mm,齿顶高2.166mm,齿根高2.784mm,全齿高4.95mm,齿顶间隙0.618mm,蜗杆齿根圆半径20.682mm,蜗杆齿顶圆弧半径30.582mm,蜗杆齿根圆弧半径64.659mm,蜗杆喉部分度圆导程角6.72°,齿距角9°,主基圆直径47.25mm,蜗杆包围蜗轮转盘17齿数4.5,蜗杆工作半角18.225°,蜗杆工作长度38.703mm,成型面倾角10°。

本实施例的油膜厚度几何系数为12.26,接触性能评估值为3.94。

所述分感应装置底座上分别设有启动激光器的启动按钮,当感应装置本体1放置在分感应装置底座上时,启动按钮按下,激光器启动。

具体使用所述感应装置前,固定好分感应装置底座后,调节所述激光器上下左右转动,直至所述激光器发射出的激光对准光学接收组件。所述总感应装置底座5上设有指示灯,所述指示灯用于指示光学接收组件是否接收到激光信号。集成电路具有记忆功能,可储存分感应装置底座固定于某一位置后所述激光器对应光学接收组件的角度。

如图4所示,所述距离测量组件13包括准直镜、窄带滤光片18、信号整形电路20、脉冲信号探测器19和时间测量芯片21,经过分色片7反射的激光依次经过准直镜、窄带滤光片18、脉冲信号探测器19和信号整形电路20,准直镜与窄带滤光片18对激光光谱进行滤波处理,减少背景噪音。所述脉冲信号探测器19为雪崩二极管探测器或光电倍增管探测器。当脉冲信号探测器19相应目标光子时,脉冲信号探测器19输出相应的脉冲信号,经过信号整形电路20处理后输出至时间测量芯片21,通过对定时间隔发射激光的脉冲信号发生时刻的精确测量计时,最终测量出激光从感应装置本体1至总感应装置底座5的飞行时间,进而得到感应装置本体1与总感应装置底座5之间的距离,得到的距离的数据传输至红外发射组件22,红外发射组件22根据感应装置本体1与总感应装置底座5之间的距离调整焦距。

所述红外发射组件22包括连续变焦结构和红外发射二极管,所述连续变焦结构包括圆筒形壳体、变倍组镜片、微调组镜片、补偿组镜片、变倍组镜片框架、补偿组镜片框架、微调组镜片框架、电机、微调齿轮圈和微调隔圈。所述圆筒形壳体的中段设有两组四条对称的凸轮槽,分别为第一凸轮槽与第二凸轮槽。

所述第一凸轮槽与第二凸轮槽相应的凸轮曲线斜率满足下式:

其中,Ky为第一凸轮槽对应变焦凸轮曲线的斜率,Kx为第二凸轮槽对应变焦凸轮曲线的斜率,y是第一凸轮槽对应变焦凸轮曲线的升距,l′2=f′1-(d+y-x),f′2是变倍组的焦距,y、x分别是第一凸轮槽、第二凸轮槽对应变焦凸轮曲线的升距,b=(l′2-f′1)-d+x,d是分别设置于第一凸轮槽与第二凸轮槽的两个镜片的距离。

所述变倍组镜片、补偿组镜片和微调组镜片沿光轴依次排列,且所述变倍组镜片的部分透镜与微调组镜片分别通过镜片压圈设于所述壳体的两端。

所述变倍组镜片包括前变倍镜片和后变倍镜片,在本实施例中,所述前变倍镜片为正月牙凸透镜,所述后变倍镜片为双凹透镜。所述前变倍镜片固定于圆筒形壳体的最前端,后变倍镜片安装于镜片框架后通过导钉与第二凸轮槽相固连。

在本实施例中,所述补偿组镜片为平面镜,所述补偿组镜片安装于镜片框架后通过导钉与第一凸轮槽相固连。

在本实施例中,所述微调组镜片为正月牙凸透镜,所述微调组镜片框架夹持所述微调组镜片,设于所述圆筒形壳体的一端。所述电机提供镜头运动驱动力,连接所述变倍组镜片框架,带动变倍组镜片框架移动。所述圆筒形壳体内表面与所述微调组镜片框架的接触面沿圆周方向设置微调齿轮圈,所述微调齿轮圈与所述微调组镜片框架粘连,且在电机的带动下,所述微调齿轮圈可相对于圆筒形壳体转动,转动所述微调齿轮圈可调整微调组镜片与其他镜片之间的距离。

使用所述连续变焦结构可保证实现四倍红外连续变焦的同时使得光学系统在整个变焦过程中能够平稳运行,并不会对凸轮产生较大的压力,磨损凸轮曲线,影响光学系统精度。

所述红外发射二极管依次排列,设置于所述微调组镜片远离补偿组镜片的一侧,并根据感应装置本体1与总感应装置底座5之间的距离调节红外发射二极管启动的功率。

所述红外光学处理组件12包括红外接收管,当料包位于感应装置本体1感应区域时,红外发射组件发射的红外线被料包遮挡后反射至光学接收组件,所述红外接收管接收到红外光谱后输出电信号,切割料包。

进行静态红外目标测试,固定总感应装置底座5,将分感应装置底座安装于距离总感应装置底座520cm、50cm、80cm处,将感应装置本体1放置于分感应装置底座上,与感应装置本体1的一侧设置有摆动装置,所述摆动装置的一端设有模拟物,模拟物间隔移动至感应装置本体1下方20cm处测试感应装置的灵敏度,测试后发现其成功率为99.6%、97.2%、97.6%。

实施例三

本发明的装置,包括感应装置本体1、总感应装置底座5和多个可拆卸的分感应装置底座,如图1所示,所述感应装置本体1可拆卸地设置于总感应装置底座5上,而分感应装置底座则安装于不同位置,方便使用者使用。所述总感应装置底座5连接切刀。所述总感应装置底座5包括光学接收组件、红外发射组件22、距离测量组件13和红外光学处理组件12。所述分感应装置底座上分别设有激光发射组件6。

如图2所示,所述光学接收组件可同时接受激光与红外线,或者单独接收激光或红外线。所述光学接收组件包括分色片7、中心开有小孔的平凹透镜8和与所述平凹透镜8对称排列于光轴上的双曲面凸透镜9,所述分色片7位于平凹透镜8远离双曲面凸镜的一侧。所述光学接收组件接收到的红外线和/或激光经过反射镜11以及快速倾斜镜10的反射后汇聚成平行光,所述平行光射入平凹透镜8远离分色片7的一侧,经平凹透镜8折射射入双曲面凸镜,并在双曲面凸镜的反射下穿过平凹透镜8中心的小孔射入分色片7。红外线的红外光谱透过所述分色片7进入红外光学处理组件12,激光经过所述分色片7反射进入所述距离测量组件13。使用一个光学接收组件同时接收激光与红外线,将激光接收装置与红外线接收装置一体化,大大地缩小了感应装置的体积,使得感应装置适应不同规格的总感应装置底座5,而且结构简单,方便工作人员进行检修工作。

所述激光发射组件6包括回转驱动机构14、集成电路和532nm激光器。所述激光器可接外触发信号触发激光出射。所述激光器包括激光器头部、激光控制器和激光触发器。所述激光器头部集成硅PIN光电二极管,可以感应发射主波并直接输出主波电信号脉冲。所述激光器头部通过线缆连接所述激光控制器,所述激光控制器提供激光器电源、温控以及触发控制。所述激光触发器设于所述感应装置本体1与所述分感应装置底座的连接处。当所述感应装置本体1安装于所述总感应装置底座5时,所述激光触发器发出触发信号,触发所述激光控制板启动,触发所述激光器头部间隔发射激光。

如图3所示,所述回转驱动机构14包括转动轴、支撑架、驱动电机、包络蜗杆16、蜗轮转盘17和防护罩。所述驱动电机包括第一驱动电机15和第二驱动电机。所述第一驱动电机15安装于包络蜗杆16的一端,驱动包络蜗杆16转动。所述包络蜗杆16的齿面与蜗轮转盘17的齿面相啮合,第一驱动电机15驱动包络蜗杆16绕其中心轴转动,包络蜗杆16带动蜗轮转盘17转动。所述转动轴穿过并固定所述激光器,所述转动轴的两端设于支撑架上,所述支撑架安装于蜗轮转盘17的上表面,第一驱动电机15转动包络蜗杆16,包络蜗杆16带动蜗轮转盘17以及支撑架、激光器转动360度转动。第二驱动电机连接所述转动轴,使得激光器可绕转动轴转动,从而调整激光机发射的激光方向。在本实施例中,所述激光器内部集成扩束准直镜头,提供高平行度,低发散度激光。

所述包络蜗杆16的齿面方程为

其中,A=-cosαdcosθ,B=-cosαdsinβsinθ±sinαdcosβ,C=-cosαdcosβsinθ±sinαdsinβ,D=rdcosθ-a0,E=rdsinβsinθ±0.5Sacosβ,F=-rdcosβsinθ±0.5Sacosβ,nx=sinαdcosθ,ny=sinαsinθsinβ+cosαdcosβ,nz=-sinαdsinθcosβ+cosαdsinβ,αd为加工包络蜗杆16的砂轮齿形角,rd为加工包络蜗杆16的砂轮半径,Sa为加工包络蜗杆16的砂轮顶宽,β为加工包络蜗杆16的砂轮倾斜角,为蜗杆的转角。

式中有三个待确定的变量:加工过程中刀座回转角度啮合点P沿砂轮侧面方向离砂轮顶部的距离u以及啮合点P所在的砂轮轴截面与ia的夹角θ。

在加工的工作区间内选定一个值,然后在全齿高数值范围内选定一个u的值,根据包络蜗杆16的齿面方程可得出变量θ。对包络蜗杆16的齿面方程作牛顿迭代求解:由加工的实际情况可以判断,满足包络蜗杆16的齿面方程的θ值处在180°附近,因此在170°至190°范围内得到一组满足包络蜗杆16的齿面方程的取值将得到的代入式中即可得到在包络蜗杆16上的一个接触点。对应于同一个值,将u在全齿高范围取不同的值,可以由依次共轭条件方程接触不同的θ值,这样就能得到多个接触点,将接触点相连即可组成一条接触线。最后对应于不同的值,可求出不同的接触线,这些接触线就组成了蜗杆螺旋面。

包络蜗杆16的失效形式有整体失效和齿面失效两种,包络蜗杆16的整体失效往往是由于在传动的过程中经受严重的冲击或者短期的过载,或者沿接触线有比较严重的载荷集中。包络蜗杆16的齿面失效包括接触疲劳点蚀、胶合、磨损、折断等。而包络蜗杆16的整体失效与齿面失效均于包络蜗杆16的接触性能和润滑性能有密切关系,因此,从包络蜗杆16的接触性能和润滑性能触发评价包络蜗杆16的性能。

优良的润滑性能能够减小摩擦、减轻磨损、降低温升,增加包络蜗杆16的抗胶合能力,提高包络蜗杆16的承载能力,从而达到延长其使用寿命的效果。获得优良的润滑性能,其本质上是在蜗杆和涡轮的齿面间建立起一定厚度的润滑油膜,确保齿面在很大压强下,仍然能够处于液体润滑的环境,或者至少在半液体润滑的环境下工作。

对包络蜗杆16润滑性能的评估:根据弹性流体动压润滑理论和道森公式设定油膜厚度几何系数来对油膜厚度进行评估。

kh=vn0.7/(K12N0.43)

vn是相对卷吸速度,vn由下列公式计算得到其中,(v1)o1和(v2)o1是啮合点处包络蜗杆16和蜗轮转盘17的速度,(N)o1是包络蜗杆16瞬时接触线上任一点处的法矢量,|N|=(Nξ2+Nη2)0.5

而且,由于在啮入端蜗杆齿根处的油膜厚度最小,因此选择在啮入端蜗杆齿根处的油膜厚度评价包络蜗杆16的性能。

优良的接触性能是指包络蜗杆16上接触线的分布不可过宽,也不可过窄,当接触线分布不可过宽,也不可过窄。当接触线分布过宽时,包络蜗杆16工作起始角处的接触线处于包络蜗杆16齿面的外侧,表明包络蜗杆16与蜗轮转盘17之间的啮合齿数较少。反之,接触线分布过窄时,接触线会趋向集中在蜗轮转盘17的中心对称面上,这将导致蜗轮转盘17齿面的强度降低。

对包络蜗杆16接触性能的评估:以工作起始角对应的一次接触线在蜗轮转盘17分度圆上的接触点为对象来建立接触性能评估值f(x)=||z1|-b2/2|,其中,|z1|为上述特定一次接触点到蜗轮转盘17中心对称面的距离,b2为蜗轮转盘17齿宽。

利用优化软件优化包络蜗杆16的齿面方程,使得啮入端蜗杆齿根处的油膜厚度几何系数最大,接触性能评估值最小

建立回转驱动结构的包络蜗杆16模型后,针对该模型进行优化,最后使得包络蜗杆16具有优良的润滑性能和接触性能,减小包络蜗杆16的摩擦、减轻磨损、降低温升,增加包络蜗杆16的抗胶合能力,提高包络蜗杆16的承载能力。而且,包络蜗杆16的齿面与蜗轮转盘17的齿面之间接触范围合理,从而延长其使用寿命。

取中心距70mm,传动比40,蜗杆头数1的包络蜗杆16贴合所述包络蜗杆16的齿面方程,经优化后得到包络蜗杆16的关键几何参数和尺寸:中心距70mm,传动比40,蜗杆头数1,蜗杆分度圆直径27.75mm,,齿顶高2.139mm,齿根高2.751mm,全齿高4.89mm,齿顶间隙0.611mm,蜗杆齿根圆半径22.248mm,蜗杆齿顶圆弧半径32.028mm,蜗杆齿根圆弧半径63.876mm,蜗杆喉部分度圆导程角6.28°,齿距角9°,主基圆直径46.5mm,蜗杆包围蜗轮转盘17齿数4.5,蜗杆工作半角18.225°,蜗杆工作长度38.234mm,成型面倾角10.5°。

本实施例的油膜厚度几何系数为13.80,接触性能评估值为1.87。

所述分感应装置底座上分别设有启动激光器的启动按钮,当感应装置本体1放置在分感应装置底座上时,启动按钮按下,激光器启动。

具体使用所述感应装置前,固定好分感应装置底座后,调节所述激光器上下左右转动,直至所述激光器发射出的激光对准光学接收组件。所述总感应装置底座5上设有指示灯,所述指示灯用于指示光学接收组件是否接收到激光信号。集成电路具有记忆功能,可储存分感应装置底座固定于某一位置后所述激光器对应光学接收组件的角度。

如图4所示,所述距离测量组件13包括准直镜、窄带滤光片18、信号整形电路20、脉冲信号探测器19和时间测量芯片21,经过分色片7反射的激光依次经过准直镜、窄带滤光片18、脉冲信号探测器19和信号整形电路20,准直镜与窄带滤光片18对激光光谱进行滤波处理,减少背景噪音。所述脉冲信号探测器19为雪崩二极管探测器或光电倍增管探测器。当脉冲信号探测器19相应目标光子时,脉冲信号探测器19输出相应的脉冲信号,经过信号整形电路20处理后输出至时间测量芯片21,通过对定时间隔发射激光的脉冲信号发生时刻的精确测量计时,最终测量出激光从感应装置本体1至总感应装置底座5的飞行时间,进而得到感应装置本体1与总感应装置底座5之间的距离,得到的距离的数据传输至红外发射组件22,红外发射组件22根据感应装置本体1与总感应装置底座5之间的距离调整焦距。

所述红外发射组件22包括连续变焦结构和红外发射二极管,所述连续变焦结构包括圆筒形壳体、变倍组镜片、微调组镜片、补偿组镜片、变倍组镜片框架、补偿组镜片框架、微调组镜片框架、电机、微调齿轮圈和微调隔圈。所述圆筒形壳体的中段设有两组四条对称的凸轮槽,分别为第一凸轮槽与第二凸轮槽。

所述第一凸轮槽与第二凸轮槽相应的凸轮曲线斜率满足下式:

其中,Ky为第一凸轮槽对应变焦凸轮曲线的斜率,Kx为第二凸轮槽对应变焦凸轮曲线的斜率,y是第一凸轮槽对应变焦凸轮曲线的升距,l′2=f′1-(d+y-x),f′2是变倍组的焦距,y、x分别是第一凸轮槽、第二凸轮槽对应变焦凸轮曲线的升距,b=(l′2-f′1)-d+x,d是分别设置于第一凸轮槽与第二凸轮槽的两个镜片的距离。

所述变倍组镜片、补偿组镜片和微调组镜片沿光轴依次排列,且所述变倍组镜片的部分透镜与微调组镜片分别通过镜片压圈设于所述壳体的两端。

所述变倍组镜片包括前变倍镜片和后变倍镜片,在本实施例中,所述前变倍镜片为正月牙凸透镜,所述后变倍镜片为双凹透镜。所述前变倍镜片固定于圆筒形壳体的最前端,后变倍镜片安装于镜片框架后通过导钉与第二凸轮槽相固连。

在本实施例中,所述补偿组镜片为平面镜,所述补偿组镜片安装于镜片框架后通过导钉与第一凸轮槽相固连。

在本实施例中,所述微调组镜片为正月牙凸透镜,所述微调组镜片框架夹持所述微调组镜片,设于所述圆筒形壳体的一端。所述电机提供镜头运动驱动力,连接所述变倍组镜片框架,带动变倍组镜片框架移动。所述圆筒形壳体内表面与所述微调组镜片框架的接触面沿圆周方向设置微调齿轮圈,所述微调齿轮圈与所述微调组镜片框架粘连,且在电机的带动下,所述微调齿轮圈可相对于圆筒形壳体转动,转动所述微调齿轮圈可调整微调组镜片与其他镜片之间的距离。

使用所述连续变焦结构可保证实现四倍红外连续变焦的同时使得光学系统在整个变焦过程中能够平稳运行,并不会对凸轮产生较大的压力,磨损凸轮曲线,影响光学系统精度。

所述红外发射二极管依次排列,设置于所述微调组镜片远离补偿组镜片的一侧,并根据感应装置本体1与总感应装置底座5之间的距离调节红外发射二极管启动的功率。

所述红外光学处理组件12包括红外接收管,当料包位于感应装置本体1感应区域时,红外发射组件发射的红外线被料包遮挡后反射至光学接收组件,所述红外接收管接收到红外光谱后输出电信号,切割料包。

进行静态红外目标测试,固定总感应装置底座5,将分感应装置底座安装于距离总感应装置底座520cm、50cm、80cm处,将感应装置本体1放置于分感应装置底座上,与感应装置本体1的一侧设置有摆动装置,所述摆动装置的一端设有模拟物,模拟物间隔移动至感应装置本体1下方20cm处测试感应装置的灵敏度,测试后发现其成功率为98.3%、99.8%、97.3%。

实施例四

本发明的装置,包括感应装置本体1、总感应装置底座5和多个可拆卸的分感应装置底座,如图1所示,所述感应装置本体1可拆卸地设置于总感应装置底座5上,而分感应装置底座则安装于不同位置,方便使用者使用。所述总感应装置底座5连接切刀。所述总感应装置底座5包括光学接收组件、红外发射组件22、距离测量组件13和红外光学处理组件12。所述分感应装置底座上分别设有激光发射组件6。

如图2所示,所述光学接收组件可同时接受激光与红外线,或者单独接收激光或红外线。所述光学接收组件包括分色片7、中心开有小孔的平凹透镜8和与所述平凹透镜8对称排列于光轴上的双曲面凸透镜9,所述分色片7位于平凹透镜8远离双曲面凸镜的一侧。所述光学接收组件接收到的红外线和/或激光经过反射镜11以及快速倾斜镜10的反射后汇聚成平行光,所述平行光射入平凹透镜8远离分色片7的一侧,经平凹透镜8折射射入双曲面凸镜,并在双曲面凸镜的反射下穿过平凹透镜8中心的小孔射入分色片7。红外线的红外光谱透过所述分色片7进入红外光学处理组件12,激光经过所述分色片7反射进入所述距离测量组件13。使用一个光学接收组件同时接收激光与红外线,将激光接收装置与红外线接收装置一体化,大大地缩小了感应装置的体积,使得感应装置适应不同规格的总感应装置底座5,而且结构简单,方便工作人员进行检修工作。

所述激光发射组件6包括回转驱动机构14、集成电路和532nm激光器。所述激光器可接外触发信号触发激光出射。所述激光器包括激光器头部、激光控制器和激光触发器。所述激光器头部集成硅PIN光电二极管,可以感应发射主波并直接输出主波电信号脉冲。所述激光器头部通过线缆连接所述激光控制器,所述激光控制器提供激光器电源、温控以及触发控制。所述激光触发器设于所述感应装置本体1与所述分感应装置底座的连接处。当所述感应装置本体1安装于所述总感应装置底座5时,所述激光触发器发出触发信号,触发所述激光控制板启动,触发所述激光器头部间隔发射激光。

如图3所示,所述回转驱动机构14包括转动轴、支撑架、驱动电机、包络蜗杆16、蜗轮转盘17和防护罩。所述驱动电机包括第一驱动电机15和第二驱动电机。所述第一驱动电机15安装于包络蜗杆16的一端,驱动包络蜗杆16转动。所述包络蜗杆16的齿面与蜗轮转盘17的齿面相啮合,第一驱动电机15驱动包络蜗杆16绕其中心轴转动,包络蜗杆16带动蜗轮转盘17转动。所述转动轴穿过并固定所述激光器,所述转动轴的两端设于支撑架上,所述支撑架安装于蜗轮转盘17的上表面,第一驱动电机15转动包络蜗杆16,包络蜗杆16带动蜗轮转盘17以及支撑架、激光器转动360度转动。第二驱动电机连接所述转动轴,使得激光器可绕转动轴转动,从而调整激光机发射的激光方向。在本实施例中,所述激光器内部集成扩束准直镜头,提供高平行度,低发散度激光。

所述包络蜗杆16的齿面方程为

其中,A=-cosαdcosθ,B=-cosαdsinβsinθ±sinαdcosβ,C=-cosαdcosβsinθ±sinαdsinβ,D=rdcosθ-a0,E=rdsinβsinθ±0.5Sacosβ,F=-rdcosβsinθ±0.5Sacosβ,nx=sinαdcosθ,ny=sinαsinθsinβ+cosαdcosβ,nz=-sinαdsinθcosβ+cosαdsinβ,αd为加工包络蜗杆16的砂轮齿形角,rd为加工包络蜗杆16的砂轮半径,Sa为加工包络蜗杆16的砂轮顶宽,β为加工包络蜗杆16的砂轮倾斜角,为蜗杆的转角。

式中有三个待确定的变量:加工过程中刀座回转角度啮合点P沿砂轮侧面方向离砂轮顶部的距离u以及啮合点P所在的砂轮轴截面与ia的夹角θ。

在加工的工作区间内选定一个值,然后在全齿高数值范围内选定一个u的值,根据包络蜗杆16的齿面方程可得出变量θ。对包络蜗杆16的齿面方程作牛顿迭代求解:由加工的实际情况可以判断,满足包络蜗杆16的齿面方程的θ值处在180°附近,因此在170°至190°范围内得到一组满足包络蜗杆16的齿面方程的取值将得到的代入式中即可得到在包络蜗杆16上的一个接触点。对应于同一个值,将u在全齿高范围取不同的值,可以由依次共轭条件方程接触不同的θ值,这样就能得到多个接触点,将接触点相连即可组成一条接触线。最后对应于不同的值,可求出不同的接触线,这些接触线就组成了蜗杆螺旋面。

包络蜗杆16的失效形式有整体失效和齿面失效两种,包络蜗杆16的整体失效往往是由于在传动的过程中经受严重的冲击或者短期的过载,或者沿接触线有比较严重的载荷集中。包络蜗杆16的齿面失效包括接触疲劳点蚀、胶合、磨损、折断等。而包络蜗杆16的整体失效与齿面失效均于包络蜗杆16的接触性能和润滑性能有密切关系,因此,从包络蜗杆16的接触性能和润滑性能触发评价包络蜗杆16的性能。

优良的润滑性能能够减小摩擦、减轻磨损、降低温升,增加包络蜗杆16的抗胶合能力,提高包络蜗杆16的承载能力,从而达到延长其使用寿命的效果。获得优良的润滑性能,其本质上是在蜗杆和涡轮的齿面间建立起一定厚度的润滑油膜,确保齿面在很大压强下,仍然能够处于液体润滑的环境,或者至少在半液体润滑的环境下工作。

对包络蜗杆16润滑性能的评估:根据弹性流体动压润滑理论和道森公式设定油膜厚度几何系数来对油膜厚度进行评估。

kh=vn0.7/(K12N0.43)

vn是相对卷吸速度,vn由下列公式计算得到其中,(v1)o1和(v2)o1是啮合点处包络蜗杆16和蜗轮转盘17的速度,(N)o1是包络蜗杆16瞬时接触线上任一点处的法矢量,|N|=(Nξ2+Nη2)0.5

而且,由于在啮入端蜗杆齿根处的油膜厚度最小,因此选择在啮入端蜗杆齿根处的油膜厚度评价包络蜗杆16的性能。

优良的接触性能是指包络蜗杆16上接触线的分布不可过宽,也不可过窄,当接触线分布不可过宽,也不可过窄。当接触线分布过宽时,包络蜗杆16工作起始角处的接触线处于包络蜗杆16齿面的外侧,表明包络蜗杆16与蜗轮转盘17之间的啮合齿数较少。反之,接触线分布过窄时,接触线会趋向集中在蜗轮转盘17的中心对称面上,这将导致蜗轮转盘17齿面的强度降低。

对包络蜗杆16接触性能的评估:以工作起始角对应的一次接触线在蜗轮转盘17分度圆上的接触点为对象来建立接触性能评估值f(x)=||z1|-b2/2|,其中,|z1|为上述特定一次接触点到蜗轮转盘17中心对称面的距离,b2为蜗轮转盘17齿宽。

利用优化软件优化包络蜗杆16的齿面方程,使得啮入端蜗杆齿根处的油膜厚度几何系数最大,接触性能评估值最小。

建立回转驱动结构的包络蜗杆16模型后,针对该模型进行优化,最后使得包络蜗杆16具有优良的润滑性能和接触性能,减小包络蜗杆16的摩擦、减轻磨损、降低温升,增加包络蜗杆16的抗胶合能力,提高包络蜗杆16的承载能力。而且,包络蜗杆16的齿面与蜗轮转盘17的齿面之间接触范围合理,从而延长其使用寿命。

取中心距65mm,传动比40,蜗杆头数1的包络蜗杆16贴合所述包络蜗杆16的齿面方程,经优化后得到包络蜗杆16的关键几何参数和尺寸:中心距65mm,传动比40,蜗杆头数1,蜗杆分度圆直径24.36mm,,齿顶高1.856mm,齿根高2.426mm,全齿高3.59mm,齿顶间隙0.4121mm,蜗杆齿根圆半径21.351mm,蜗杆齿顶圆弧半径28.103mm,蜗杆齿根圆弧半径61.367mm,蜗杆喉部分度圆导程角4.36°,齿距角9°,主基圆直径38.12mm,蜗杆包围蜗轮转盘17齿数5,蜗杆工作半角16.358°,蜗杆工作长度29.569mm,成型面倾角9.62°。

本实施例的油膜厚度几何系数为14.21,接触性能评估值为1.76。

所述分感应装置底座上分别设有启动激光器的启动按钮,当感应装置本体1放置在分感应装置底座上时,启动按钮按下,激光器启动。

具体使用所述感应装置前,固定好分感应装置底座后,调节所述激光器上下左右转动,直至所述激光器发射出的激光对准光学接收组件。所述总感应装置底座5上设有指示灯,所述指示灯用于指示光学接收组件是否接收到激光信号。集成电路具有记忆功能,可储存分感应装置底座固定于某一位置后所述激光器对应光学接收组件的角度。

如图4所示,所述距离测量组件13包括准直镜、窄带滤光片18、信号整形电路20、脉冲信号探测器19和时间测量芯片21,经过分色片7反射的激光依次经过准直镜、窄带滤光片18、脉冲信号探测器19和信号整形电路20,准直镜与窄带滤光片18对激光光谱进行滤波处理,减少背景噪音。所述脉冲信号探测器19为雪崩二极管探测器或光电倍增管探测器。当脉冲信号探测器19相应目标光子时,脉冲信号探测器19输出相应的脉冲信号,经过信号整形电路20处理后输出至时间测量芯片21,通过对定时间隔发射激光的脉冲信号发生时刻的精确测量计时,最终测量出激光从感应装置本体1至总感应装置底座5的飞行时间,进而得到感应装置本体1与总感应装置底座5之间的距离,得到的距离的数据传输至红外发射组件22,红外发射组件22根据感应装置本体1与总感应装置底座5之间的距离调整焦距。

所述红外发射组件22包括连续变焦结构和红外发射二极管,所述连续变焦结构包括圆筒形壳体、变倍组镜片、微调组镜片、补偿组镜片、变倍组镜片框架、补偿组镜片框架、微调组镜片框架、电机、微调齿轮圈和微调隔圈。所述圆筒形壳体的中段设有两组四条对称的凸轮槽,分别为第一凸轮槽与第二凸轮槽。

所述第一凸轮槽与第二凸轮槽相应的凸轮曲线斜率满足下式:

其中,Ky为第一凸轮槽对应变焦凸轮曲线的斜率,Kx为第二凸轮槽对应变焦凸轮曲线的斜率,y是第一凸轮槽对应变焦凸轮曲线的升距,l′2=f′1-(d+y-x),f′2是变倍组的焦距,y、x分别是第一凸轮槽、第二凸轮槽对应变焦凸轮曲线的升距,b=(l′2-f′1)-d+x,d是分别设置于第一凸轮槽与第二凸轮槽的两个镜片的距离。

所述变倍组镜片、补偿组镜片和微调组镜片沿光轴依次排列,且所述变倍组镜片的部分透镜与微调组镜片分别通过镜片压圈设于所述壳体的两端。

所述变倍组镜片包括前变倍镜片和后变倍镜片,在本实施例中,所述前变倍镜片为正月牙凸透镜,所述后变倍镜片为双凹透镜。所述前变倍镜片固定于圆筒形壳体的最前端,后变倍镜片安装于镜片框架后通过导钉与第二凸轮槽相固连。

在本实施例中,所述补偿组镜片为平面镜,所述补偿组镜片安装于镜片框架后通过导钉与第一凸轮槽相固连。

在本实施例中,所述微调组镜片为正月牙凸透镜,所述微调组镜片框架夹持所述微调组镜片,设于所述圆筒形壳体的一端。所述电机提供镜头运动驱动力,连接所述变倍组镜片框架,带动变倍组镜片框架移动。所述圆筒形壳体内表面与所述微调组镜片框架的接触面沿圆周方向设置微调齿轮圈,所述微调齿轮圈与所述微调组镜片框架粘连,且在电机的带动下,所述微调齿轮圈可相对于圆筒形壳体转动,转动所述微调齿轮圈可调整微调组镜片与其他镜片之间的距离。

使用所述连续变焦结构可保证实现四倍红外连续变焦的同时使得光学系统在整个变焦过程中能够平稳运行,并不会对凸轮产生较大的压力,磨损凸轮曲线,影响光学系统精度。

所述红外发射二极管依次排列,设置于所述微调组镜片远离补偿组镜片的一侧,并根据感应装置本体1与总感应装置底座5之间的距离调节红外发射二极管启动的功率。

所述红外光学处理组件12包括红外接收管,当料包位于感应装置本体1感应区域时,红外发射组件发射的红外线被料包遮挡后反射至光学接收组件,所述红外接收管接收到红外光谱后输出电信号,切割料包。

进行静态红外目标测试,固定总感应装置底座5,将分感应装置底座安装于距离总感应装置底座520cm、50cm、80cm处,将感应装置本体1放置于分感应装置底座上,与感应装置本体1的一侧设置有摆动装置,所述摆动装置的一端设有模拟物,模拟物间隔移动至感应装置本体1下方20cm处测试感应装置的灵敏度,测试后发现其成功率为98.2%、97.3%、99.3%。

实施例五

本发明的装置,包括感应装置本体1、总感应装置底座5和多个可拆卸的分感应装置底座,如图1所示,所述感应装置本体1可拆卸地设置于总感应装置底座5上,而分感应装置底座则安装于不同位置,方便使用者使用。所述总感应装置底座5连接切刀。所述总感应装置底座5包括光学接收组件、红外发射组件22、距离测量组件13和红外光学处理组件12。所述分感应装置底座上分别设有激光发射组件6。

如图2所示,所述光学接收组件可同时接受激光与红外线,或者单独接收激光或红外线。所述光学接收组件包括分色片7、中心开有小孔的平凹透镜8和与所述平凹透镜8对称排列于光轴上的双曲面凸透镜9,所述分色片7位于平凹透镜8远离双曲面凸镜的一侧。所述光学接收组件接收到的红外线和/或激光经过反射镜11以及快速倾斜镜10的反射后汇聚成平行光,所述平行光射入平凹透镜8远离分色片7的一侧,经平凹透镜8折射射入双曲面凸镜,并在双曲面凸镜的反射下穿过平凹透镜8中心的小孔射入分色片7。红外线的红外光谱透过所述分色片7进入红外光学处理组件12,激光经过所述分色片7反射进入所述距离测量组件13。使用一个光学接收组件同时接收激光与红外线,将激光接收装置与红外线接收装置一体化,大大地缩小了感应装置的体积,使得感应装置适应不同规格的总感应装置底座5,而且结构简单,方便工作人员进行检修工作。

所述激光发射组件6包括回转驱动机构14、集成电路和532nm激光器。所述激光器可接外触发信号触发激光出射。所述激光器包括激光器头部、激光控制器和激光触发器。所述激光器头部集成硅PIN光电二极管,可以感应发射主波并直接输出主波电信号脉冲。所述激光器头部通过线缆连接所述激光控制器,所述激光控制器提供激光器电源、温控以及触发控制。所述激光触发器设于所述感应装置本体1与所述分感应装置底座的连接处。当所述感应装置本体1安装于所述总感应装置底座5时,所述激光触发器发出触发信号,触发所述激光控制板启动,触发所述激光器头部间隔发射激光。

如图3所示,所述回转驱动机构14包括转动轴、支撑架、驱动电机、包络蜗杆16、蜗轮转盘17和防护罩。所述驱动电机包括第一驱动电机15和第二驱动电机。所述第一驱动电机15安装于包络蜗杆16的一端,驱动包络蜗杆16转动。所述包络蜗杆16的齿面与蜗轮转盘17的齿面相啮合,第一驱动电机15驱动包络蜗杆16绕其中心轴转动,包络蜗杆16带动蜗轮转盘17转动。所述转动轴穿过并固定所述激光器,所述转动轴的两端设于支撑架上,所述支撑架安装于蜗轮转盘17的上表面,第一驱动电机15转动包络蜗杆16,包络蜗杆16带动蜗轮转盘17以及支撑架、激光器转动360度转动。第二驱动电机连接所述转动轴,使得激光器可绕转动轴转动,从而调整激光机发射的激光方向。在本实施例中,所述激光器内部集成扩束准直镜头,提供高平行度,低发散度激光。

所述包络蜗杆16的齿面方程为

其中,A=-cosαdcosθ,B=-cosαdsinβsinθ±sinαdcosβ,C=-cosαdcosβsinθ±sinαdsinβ,D=rdcosθ-a0,E=rdsinβsinθ±0.5Sacosβ,F=-rdcosβsinθ±0.5Sacosβ,nx=sinαdcosθ,ny=sinαsinθsinβ+cosαdcosβ,nz=-sinαdsinθcosβ+cosαdsinβ,αd为加工包络蜗杆16 的砂轮齿形角,rd为加工包络蜗杆16的砂轮半径,Sa为加工包络蜗杆16的砂轮顶宽,β为加工包络蜗杆16的砂轮倾斜角,为蜗杆的转角。

式中有三个待确定的变量:加工过程中刀座回转角度啮合点P沿砂轮侧面方向离砂轮顶部的距离u以及啮合点P所在的砂轮轴截面与ia的夹角θ。

在加工的工作区间内选定一个值,然后在全齿高数值范围内选定一个u的值,根据包络蜗杆16的齿面方程可得出变量θ。对包络蜗杆16的齿面方程作牛顿迭代求解:由加工的实际情况可以判断,满足包络蜗杆16的齿面方程的θ值处在180°附近,因此在170°至190°范围内得到一组满足包络蜗杆16的齿面方程的取值将得到的代入式中即可得到在包络蜗杆16上的一个接触点。对应于同一个值,将u在全齿高范围取不同的值,可以由依次共轭条件方程接触不同的θ值,这样就能得到多个接触点,将接触点相连即可组成一条接触线。最后对应于不同的值,可求出不同的接触线,这些接触线就组成了蜗杆螺旋面。

包络蜗杆16的失效形式有整体失效和齿面失效两种,包络蜗杆16的整体失效往往是由于在传动的过程中经受严重的冲击或者短期的过载,或者沿接触线有比较严重的载荷集中。包络蜗杆16的齿面失效包括接触疲劳点蚀、胶合、磨损、折断等。而包络蜗杆16的整体失效与齿面失效均于包络蜗杆16的接触性能和润滑性能有密切关系,因此,从包络蜗杆16的接触性能和润滑性能触发评价包络蜗杆16的性能。

优良的润滑性能能够减小摩擦、减轻磨损、降低温升,增加包络蜗杆16的抗胶合能力,提高包络蜗杆16的承载能力,从而达到延长其使用寿命的效果。获得优良的润滑性能,其本质上是在蜗杆和涡轮的齿面间建立起一定厚度的润滑油膜,确保齿面在很大压强下,仍然能够处于液体润滑的环境,或者至少在半液体润滑的环境下工作。

对包络蜗杆16润滑性能的评估:根据弹性流体动压润滑理论和道森公式设定油膜厚度几何系数来对油膜厚度进行评估。

kh=vn0.7/(K12N0.43)

vn是相对卷吸速度,vn由下列公式计算得到其中,(v1)o1和(v2)o1是啮合点处包络蜗杆16和蜗轮转盘17的速度,(N)o1是包络蜗杆16瞬时接触线上任一点处的法矢量,|N|=(Nξ2+Nη2)0.5

而且,由于在啮入端蜗杆齿根处的油膜厚度最小,因此选择在啮入端蜗杆齿根处的油膜厚度评价包络蜗杆16的性能。

优良的接触性能是指包络蜗杆16上接触线的分布不可过宽,也不可过窄,当接触线分布不可过宽,也不可过窄。当接触线分布过宽时,包络蜗杆16工作起始角处的接触线处于包络蜗杆16齿面的外侧,表明包络蜗杆16与蜗轮转盘17之间的啮合齿数较少。反之,接触线分布过窄时,接触线会趋向集中在蜗轮转盘17的中心对称面上,这将导致蜗轮转盘17齿面的强度降低。

对包络蜗杆16接触性能的评估:以工作起始角对应的一次接触线在蜗轮转盘17分度圆上的接触点为对象来建立接触性能评估值f(x)=||z1|-b2/2|,其中,|z1|为上述特定一次接触点到蜗轮转盘17中心对称面的距离,b2为蜗轮转盘17齿宽。

利用优化软件优化包络蜗杆16的齿面方程,使得啮入端蜗杆齿根处的油膜厚度几何系数最大,接触性能评估值最小。

取中心距80mm,传动比40,蜗杆头数1的包络蜗杆16贴合所述包络蜗杆16的齿面方程,经优化后得到包络蜗杆16的关键几何参数和尺寸:中心距80mm,传动比40,蜗杆头数1,蜗杆分度圆直径28.56mm,,齿顶高3.026mm,齿根高3.198mm,全齿高4.26mm,齿顶间隙0.516mm,蜗杆齿根圆半径23.157mm,蜗杆齿顶圆弧半径30.258mm,蜗杆齿根圆弧半径69.236mm,蜗杆喉部分度圆导程角6.35°,齿距角8°,主基圆直径45.3mm,蜗杆包围蜗轮转盘17齿数5,蜗杆工作半角18.625°,蜗杆工作长度38.652mm,成型面倾角11.2°。

本实施例的油膜厚度几何系数为11.26,接触性能评估值为3.29。

所述分感应装置底座上分别设有启动激光器的启动按钮,当感应装置本体1放置在分感应装置底座上时,启动按钮按下,激光器启动。

具体使用所述感应装置前,固定好分感应装置底座后,调节所述激光器上下左右转动,直至所述激光器发射出的激光对准光学接收组件。所述总感应装置底座5上设有指示灯,所述指示灯用于指示光学接收组件是否接收到激光信号。集成电路具有记忆功能,可储存分感应装置底座固定于某一位置后所述激光器对应光学接收组件的角度。

如图4所示,所述距离测量组件13包括准直镜、窄带滤光片18、信号整形电路20、脉冲信号探测器19和时间测量芯片21,经过分色片7反射的激光依次经过准直镜、窄带滤光片18、脉冲信号探测器19和信号整形电路20,准直镜与窄带滤光片18对激光光谱进行滤波处理,减少背景噪音。所述脉冲信号探测器19为雪崩二极管探测器或光电倍增管探测器。当脉冲信号探测器19相应目标光子时,脉冲信号探测器19输出相应的脉冲信号,经过信号整形电路20处理后输出至时间测量芯片21,通过对定时间隔发射激光的脉冲信号发生时刻的精确测量计时,最终测量出激光从感应装置本体1至总感应装置底座5的飞行时间,进而得到感应装置本体1与总感应装置底座5之间的距离,得到的距离的数据传输至红外发射组件22,红外发射组件22根据感应装置本体1与总感应装置底座5之间的距离调整焦距。

所述红外发射组件22包括连续变焦结构和红外发射二极管,所述连续变焦结构包括圆筒形壳体、变倍组镜片、微调组镜片、补偿组镜片、变倍组镜片框架、补偿组镜片框架、微调组镜片框架、电机、微调齿轮圈和微调隔圈。所述圆筒形壳体的中段设有两组四条对称的凸轮槽,分别为第一凸轮槽与第二凸轮槽。

所述第一凸轮槽与第二凸轮槽相应的凸轮曲线斜率满足下式:

其中,Ky为第一凸轮槽对应变焦凸轮曲线的斜率,Kx为第二凸轮槽对应变焦凸轮曲线的斜率,y是第一凸轮槽对应变焦凸轮曲线的升距,l′2=f′1-(d+y-x),f′2是变倍组的焦距,y、x分别是第一凸轮槽、第二凸轮槽对应变焦凸轮曲线的升距,b=(l′2-f′1)-d+x,d是分别设置于第一凸轮槽与第二凸轮槽的两个镜片的距离。

所述变倍组镜片、补偿组镜片和微调组镜片沿光轴依次排列,且所述变倍组镜片的部分透镜与微调组镜片分别通过镜片压圈设于所述壳体的两端。

所述变倍组镜片包括前变倍镜片和后变倍镜片,在本实施例中,所述前变倍镜片为正月牙凸透镜,所述后变倍镜片为双凹透镜。所述前变倍镜片固定于圆筒形壳体的最前端,后变倍镜片安装于镜片框架后通过导钉与第二凸轮槽相固连。

在本实施例中,所述补偿组镜片为平面镜,所述补偿组镜片安装于镜片框架后通过导钉与第一凸轮槽相固连。

在本实施例中,所述微调组镜片为正月牙凸透镜,所述微调组镜片框架夹持所述微调组镜片,设于所述圆筒形壳体的一端。所述电机提供镜头运动驱动力,连接所述变倍组镜片框架,带动变倍组镜片框架移动。所述圆筒形壳体内表面与所述微调组镜片框架的接触面沿圆周方向设置微调齿轮圈,所述微调齿轮圈与所述微调组镜片框架粘连,且在电机的带动下,所述微调齿轮圈可相对于圆筒形壳体转动,转动所述微调齿轮圈可调整微调组镜片与其他镜片之间的距离。

使用所述连续变焦结构可保证实现四倍红外连续变焦的同时使得光学系统在整个变焦过程中能够平稳运行,并不会对凸轮产生较大的压力,磨损凸轮曲线,影响光学系统精度。

所述红外发射二极管依次排列,设置于所述微调组镜片远离补偿组镜片的一侧,并根据感应装置本体1与总感应装置底座5之间的距离调节红外发射二极管启动的功率。

所述红外光学处理组件12包括红外接收管。当料包位于感应装置本体1前时,红外发射组件22发射的红外线被料包遮挡后反射至光学接收组件,所述红外接收管接收到红外光谱后输出电信号,切割料包。

进行静态红外目标测试,固定总感应装置底座5,将分感应装置底座安装于距离总感应装置底座520cm、50cm、80cm处,将感应装置本体1放置于分感应装置底座上,与感应装置本体1的一侧设置有摆动装置,所述摆动装置的一端设有模拟物,模拟物间隔移动至感应装置本体1下方20cm处测试感应装置的灵敏度,测试后发现其成功率为97.6%、98.1%、97.3%。

最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1