基于挤出的数字制造系统中使用的带状液化器的制作方法

文档序号:4464601阅读:217来源:国知局
专利名称:基于挤出的数字制造系统中使用的带状液化器的制作方法
技术领域
本发明涉及用于构建三维(3D)模型的直接数字制造系统。具体地,本发明涉及基于挤出的数字制造系统中使用的挤出头式液化器。
背景技术
基于挤出的数字制造系统(例如,由Stratasys, Inc.,Eden Prairie, MN开发的熔融沉积成型系统)用于通过挤出可流动的消耗造型材料以逐层方式由3D模型的数字表示法构建3D模型。造型材料通过由挤出头携带的挤出端挤出,并被作为一系列条道沉积在 x-y平面中的基板上。挤出的造型材料熔化到先前沉积的造型材料并在温度降低时凝固。 挤出头相对于基板的位置接着沿着ζ轴线(垂直于χ-y平面)增长,并且所述过程接着被重复以形成类似于数字表示的3D模型。
在计算机控制下根据表现3D模型的构建数据执行挤出头相对于基板的运动。所述构建数据通过初始将3D模型的数字表示切成多个水平切片层而获得。接着,主计算机对每一个切片层产生用于淀积造型材料的条道的构建路径以形成3D模型。
在通过淀积造型材料层制造3D模型中,支撑层或结构在建造中典型地被构建在物体的悬垂部分的下面或物体的空腔中,所述悬垂部分或所述空腔本身没有被造型材料支撑。支撑结构可以利用相同的沉积技术构建,其中造型材料通过所述沉积技术沉积。主计算机产生用作用于形成的3D模型的悬垂或自由空间段的支撑结构的额外几何结构。可消耗支撑材料在构建过程期间接着根据生成的几何结构从第二喷嘴沉积。支撑材料在制造期间粘接到造型材料,并且在构建过程完成时被从完成的3D模型移走。发明内容
本发明的一个方面涉及一种在具有驱动机构和热传递部件的基于挤出的数字制造系统中使用的带状液化器。带状液化器包括外液化器部分,所述外液化器部分被构造成从热传递部件接收热能;和通道,所述通道至少部分地由外液化器部分限定。所述通道具有被构造成容纳带状细丝的尺寸,其中带状液化器被构造成通过接收的热能使容纳在通道中的带状细丝熔化到至少可挤出状态以提供熔融流。另外,通道的尺寸被进一步构造成在连接到带状液化器的挤出端中使熔融流从不对称流变为基本上轴向对称流。
本发明的另一个方面涉及一种在具有驱动机构和热传递部件的基于挤出的数字制造系统中使用的带状液化器,其中带状液化器包括具有外表面和内表面的外管,并且其中外管的外表面被构造成与热传递部件接合。带状液化器还包括设置在外管内且具有外表面的芯体部分以及设置在外管与芯体部分之间的填隙部件。填隙部件具有沿着填隙部件的纵向长度延伸的间隙,其中间隙限定在外管的内表面与芯体部分的外表面之间的通道。所述通道具有被构造成容纳带状细丝的尺寸,其中芯体部分的外表面被构造成在驱动机构与带状细丝接合时为带状细丝提供背衬支撑。
本发明的另一个方面涉及一种用于在基于挤出的数字制造系统中构建三维模型4的方法。所述方法包括以下步骤通过带状液化器的通道驱动带状细丝,其中带状液化器还包括至少部分限定所述通道的外液化器部分。所述方法还包括以下步骤使通道中的带状细丝熔化到至少可挤出状态以提供熔融流,其中通道的尺寸使熔融流符合轴向不对称流; 以及从带状液化器的挤出端挤出熔融流,其中熔融流在挤出端中具有基本上轴向对称流。


图1是基于挤出的数字制造系统的正视图,所述系统包括用于使容纳的造型材料和支撑材料的带状细丝熔化的带状液化器;
图2是挤出头的分组件的俯视立体图,所述挤出头包括与驱动机构接合的带状液化器以及热块;
图3是包括带有端口的外管的带状液化器的立体图4A是图3中截得的截面4A-4A的剖视图4B是图3中截得的截面4B-4B的剖视图4C是图3中截得的截面4C-4C的剖视图5是带状液化器的分解立体图6是用于容纳、熔化和挤出带状细丝的与具有可旋转滑轮的驱动机构一起使用的带状液化器的侧视图7是用于容纳、熔化和挤出带状细丝的与具有可旋转的螺纹轴机构的可选驱动机构一起使用的带状液化器的侧视图8A是处于释放的非弯曲状态的带状细丝的剖视图8B是处于弯曲状态的带状细丝的剖视图9是包括开口顶部结构的第一可选的带状液化器的立体图;以及
图10是截面4C-4C的可选剖视图,显示了包括用于容纳带状细丝的非弧形通道的第二可选的带状液化器。
具体实施方式
本发明涉及用于在基于挤出的数字制造系统中使用的带状液化器(riWxm liquef ier),其中带状液化器被构造成容纳造型材料和/或支撑材料的带状细丝。在此使用的术语“带状细丝”表示具有诸如矩形和/或膜状横截面的非圆柱形几何结构的材料的股线(strand)。这是与具有圆形横截面轮廓的“圆柱形细丝”相比较。带状细丝与带状液化器的结合使用允许以减少的响应时间熔化并挤出造型材料和支撑材料。这有益于提高沉积精度并减少构建时间,从而增加用于通过带状液化器构建3D模型和相应的支撑结构的过程效率。
图1是系统10的正视图,所述系统为包括构建室12、台板14、台架16、挤出头18 以及电源20和22的基于挤出的数字制造系统,其中挤出头18可以包括在使用系统10的构建操作期间用于熔化带状细丝(图1中未示出)的连续部分的一个或多个带状液化器(图 1中未示出)。用于系统10的适当的基于挤出的数字制造系统包括由Mratasys,Inc., Eden Prairie,丽开发的熔融沉积成型系统。
构建室12为容纳台板14、台架16以及用于构建3D模型(称为3D模型24)和相应的支撑结构(称为支撑结构26)的挤出头18的封闭环境。台板14为其上构建3D模型 M和支撑结构26的平台,并且根据计算机操作的控制器(称为控制器28)提供的信号沿着垂直的ζ轴线移动。台架16为被构造成根据从控制器观提供的信号使挤出头18在构建室12内在水平x-y平面中移动的导轨系统。水平χ-y平面为由χ轴线和y轴线限定的平面(图1中未示出),其中χ轴线、y轴线和ζ轴线彼此正交。在一个可选实施例中,台板 14可以被构造成在构建室12内在水平的x-y平面中移动,而挤出头18可以被构造成沿着 ζ轴线移动。也可以使用其它类似的装置以使台板14和挤出头18中的一个或两者都可相对于彼此移动。
挤出头18由台架16支撑用于根据从控制器30提供的信号以逐层方式在台板14 上构建3D模型M和支撑结构26。挤出头18包括分组件30和32,所述分组件中的每一个理想地包括本发明的带状液化器。因此,分组件30被构造成容纳造型材料带状细丝的连续部分并通过第一带状液化器(图1中未示出)熔化所述连续部分,而分组件32被构造成容纳支撑材料带状细丝的连续部分并通过第二带状液化器(图1中未示出)熔化所述连续部分。
造型材料带状细丝可以通过通道34被从供应源20供应到分组件30。类似地,支撑材料带状细丝可以通过通道36被从供应源22供应到分组件32。系统10还可以包括被构造成帮助将带状细丝从供应源20和22供给到分组件30和32的附加驱动机构(未示出)。 供应源20和22为用于造型带状细丝和支撑带状细丝的源(例如,卷线筒式容器),并且期望保持在远离构建室12的远位置处。用于供应源20和22的适当组件公开在Swanson等人的美国专利第6,923,634号;Comb等人的美国专利第7,122,246号;以及Taatjes等人的美国专利申请公开出版物第2010/0096485号和第2010/0096489号中。
在构建操作期间,台架16使挤出头18在构建室12内大约在水平χ-y平面中移动, 并且带状细丝被供应给分组件30和32。分组件30热熔化接收的造型材料带状细丝的连续部分,从而允许挤出熔融材料以构建3D模型24。类似地,分组件32热熔化支撑材料带状细丝的连续部分,从而允许挤出熔融材料以构建支撑结构26。带状细丝的上游未熔化部分每一个都可以用作具有粘性泵作用的活塞,以将熔融材料从各自的分组件30和32中挤出。
挤出的造型材料和支撑材料接着被沉积到台板14上以利用基于层的添加技术构建3D模型M和支撑结构26。支撑结构沈被理想地沉积以沿着ζ轴线提供用于3D模型 M的层的悬垂区域的垂直支撑件。这允许3D模型M被构建成具有各种几何结构。在所述构建操作完成之后,产生的3D模型24/支撑结构沈可以被从构建室12移除,并且支撑结构26可以被从3D模型M移除。
图2是挤出头18的分组件30的俯视立体图,其中分组件30的以下论述同样可应用到分组件32 (图1所示)。如图2所示,分组件30包括带状液化器38、热块40和驱动机构42,其中驱动机构42通过带状液化器38供给带状细丝44的连续部分。在显示的实施例中,带状液化器38包括在顶端48与底端50之间延伸的一系列环形管。顶端48和底端50 为带状液化器38的沿着纵向轴线46的相对端部,其中顶端48被构造成容纳处于弯曲状态的带状细丝44。当分组件30安装在系统10中(图1所示)时,纵向轴线46对应于垂直的 ζ轴线。如图2所示,带状液化器38的环形管沿着纵向轴线46延伸通过驱动机构42和热块40。
带状液化器38还包括挤出端52,所述挤出端为位于底端50处并被构造成以期望的条道宽度挤出带状细丝44的熔融材料的小直径末端。在一个实施例中,挤出端52在底端50处可移除地固定到环形管中的一个或多个,从而允许可互换地使用多个挤出端52。对于挤出端52适当的末端内径的实例从大约125微米(大约0. 005英寸)到大约510微米 (大约0.020英寸)的范围。
热块40为热传递部件,所述热传递部件延伸带状液化器38的大约至少一部分并被构造成将热量传导到带状液化器38和接收的带状细丝44。用于热块40的适当的热传递部件的实例包括Swanson等人的美国专利第6,004, 124号;Comb的美国专利第6,547, 995 号;LaBossiere等人的美国公开出版物第2007/0228590号;以及Batchelder等人的美国专利申请公开出版物第2009/0273122号中公开的部件。在可选实施例中,热块40可以被替换成沿着纵向轴线46产生热梯度的许多不同的热传递部件。
驱动机构42包括支撑板M、基块56和滑轮58,其中滑轮58可旋转地固定在支撑板M与基块56之间。支撑板M和基块56是驱动机构42的支撑部件,并且支撑板M和基块56中的一个或两者都可以固定到挤出头18 (图1所示)。滑轮58为借助于内螺纹面 (图2中未示出)通过带状液化器38驱动带状细丝44的连续部分的可旋转部件。用于驱动机构42的适当的细丝驱动机构的实例包括Batchelder等人的美国专利申请公开出版物第2009/0274540号和第2009/0273122号中公开的驱动机构。
在系统10 (图1所示)中的构建操作期间,带状细丝44理想地弯曲到弯曲状态以与带状液化器38对准。弯曲的带状细丝44可以接着在顶端48处被装载到带状液化器38 中(由箭头60表示)以与滑轮58的内螺纹面接合。滑轮58接着根据从控制器观(图1 所示)提供的信号旋转(由箭头62表示)。滑轮58的旋转使滑轮58的内螺纹面相应地旋转,从而通过带状液化器38驱动带状细丝44的连续部分。
在带状细丝44通过带状液化器38时,热块40产生的热梯度使带状液化器38内的带状细丝44材料熔化到至少可挤出状态。由驱动机构42正在驱动的带状细丝44的未熔化部分用作作用于未熔化部分与带状液化器38的壁之间的熔融材料上的具有粘性泵的活塞,从而将熔融材料从挤出端52中挤出。挤出的材料可以接着作为条道沉积,以便以逐层方式形成3D模型M。
如图2中进一步所示,带状液化器38的顶端48沿着纵向轴线46相对于驱动机构 42位于上游位置。因此,带状细丝44可以在与驱动机构42接合之前在入口区(称为入口区64)处进入带状液化器38,并且在与驱动机构42接合期间和在与驱动机构42接合之后可以由带状液化器38持续支撑。这降低采用挤出头18中断构建操作的风险,并且由于支持带状细丝44而没有弯折而可以获得较高的驱动力。
带状液化器38和带状细丝44的横截面轮廓与圆柱形细丝和液化器相比允许以减少的响应时间使带状细丝44熔化并将带状细丝44从挤出头18中挤出。如美国临时专利申请第61/247,067号;以及美国专利申请第12/612,333号中的名称为“Non-cylindrical Filament For Use In Extrusion-Based Digital Manufacturing Systems,,所说明,认为带状液化器38和带状细丝44的横截面轮廓有效地去除与具有圆形横截面的圆柱形细丝相关联的芯体。这允许以减少的响应时间使带状细丝44熔化并将带状细丝44从挤出头18 中挤出,这可以相应地增加用于构建3D模型M和/或支撑结构沈的系统10的过程效率。
例如,减少的响应时间可以增加造型材料和支撑材料的沉积条道的起停位置的精度。在用于形成3D模型(例如,3D模型的层的构建操作期间,挤出头(例如,挤出头 18)在水平χ-y平面中移动并沉积熔融造型材料。在完成给定的沉积图案之后,挤出头停止淀积造型材料。这将伴随停止将细丝供给到挤出头的液化器中,从而停止细丝的粘性泵作用。
然而,挤出头使将细丝供给到液化器停止的时间与造型材料实际上停止从挤出头挤出的时间之间的响应时间不是瞬时的。相反,具有基于诸如液化器的热特性、细丝的成分以及如下所述的细丝和液化器通道的横截面轮廓的因素的延迟。类似地,还具有与从零流量状态转变到稳定状态流动相关联的响应时间延迟。需要大的响应时间的液化器和细丝增加这些延迟,从而潜在地降低沉积精度。然而,减少响应时间可以提高产生的3D模型的美感和结构质量,特别是在构建含有细微特征的3D模型时更是如此。
例如,系统10的减少的响应时间可以在靠近沉积开始和停止点的适当位置处以闸道的方式(gate)使台架16加速。这可以增加隐藏每一个层的接缝的能力,从而可以增加部件质量。另外,响应时间确定在台架16在x-y平面中移动大约一个拐角时台架16可以偏离恒定切向速度多远。因此,减少的响应时间允许挤出头18获得更大的拐弯加速度和减速度。这可以以与赛车的拐弯性能对于减少整个空转时间很重要的相同方式减少构建3D 模型和支撑结构所需的制造时间。
图3是带状液化器38的放大立体图,所述带状液化器包括外管66、芯管68和填隙部件70。如图所示,填隙部件70沿圆周方向设置在外管66与芯管68之间,使得外管66、 芯管68和填隙部件70限定沿着纵向轴线46在顶端48与底端50之间延伸的通道72。如以下论述,通道72为带状液化器38的容纳带状细丝44(图2所示)的部分。
外管66、芯管68和填隙部件70每一个可以由许多材料制成,所述材料理想地能够承受来自热块40的热能和构建室12(图1所示)的任何升温。用于制造外管66、芯管68 和填隙部件70中的每一个的适当材料包括导热金属材料,例如,不锈钢。
外管66为带状液化器38的包括外表面74的外液化器部分,所述外表面沿着纵向轴线46在顶端48与底端50之间延伸。在所示实施例中,外管66具有圆柱形横截面。在可选实施例中,外管66可以替换为具有不同横截面几何形状的管。因此,在此使用的术语 “管”包括许多中空几何结构,例如,圆柱形几何结构、椭圆形几何结构、多边形几何结构(例如,矩形和方形几何结构)、轴向渐缩几何结构等。外表面74为外管66的接触热块40以沿着带状液化器38产生热梯度的部分。热梯度在带状细丝44中沿着纵向轴线46建立温度分布图,从而在带状细丝44被驱动穿过带状液化器38时使带状细丝44的连续部分熔化。
如图3中进一步所示,外管66还包括端口 76和加热长度78。端口 76为在入口区64与加热长度78之间穿过外管66的侧向开口。如以下论述,端口 76允许滑轮58 (图 2所示)在带状细丝44被装载到通道72中之后与带状细丝44接合。这允许滑轮58的内螺纹面朝向加热长度78驱动带状细丝44。
端口 76的尺寸可以根据带状细丝44的尺寸以及使用的驱动机构(例如,驱动机构42)变化。例如,端口 76沿着纵向轴线46的长度(称为端口长度80)可以根据滑轮58 的内螺纹面的尺寸变化。端口长度80的适当长度的实例在大约1.25毫米(大约0.05英寸)至大约25.0毫米(大约1.0英寸)的范围内,并且特别适当的长度64在从大约5.1毫米(大约0.2英寸)至大约12. 7毫米(大约0.5英寸)的范围内。
加热长度78为沿着外管66的区域,在该区域中存在通过热块40(图2所示)产生的热梯度以用于熔化带状细丝44。加热长度78理想地在端口 76下方沿着外管66的纵向长度延伸,从而防止带状细丝44在与滑轮58接合时熔化。因此,加热长度78理想地沿着外管66的纵向长度在端口 76与底端50/挤出端52之间延伸。在一个实施例中,挤出头 18(图1所示)还可以包括气流歧管(未示出),所述气流歧管被构造成朝向顶端48和/ 或端口 76引导冷却空气以进一步降低热梯度在端口 76处影响带状细丝44的风险。
用于使加热长度78存在于端口 76与底端50之间的适当尺寸(称为长度82)可以根据热块40的传热性能、外管66的厚度和材料以及带状细丝44的厚度、材料和驱动速率变化。对于长度82的适当长度的实例在大约13毫米(大约0. 5英寸)至大约130毫米 (大约5. 0英寸)之间的范围,并且特别适当的长度88在从大约25毫米(大约1. 0英寸) 至大约51毫米(大约2.0英寸)的范围内。
芯管68为带状液化器38的芯体部分并在外管66内设置在顶端48与底端50之间。如图所示,芯管68包括在端口 76处暴露的外表面84。虽然显示为中空管,但是也可以代替芯管68使用各种可选的芯体部分,例如,非中空被填充芯体部分。这些实施例在带状细丝44与驱动机构40接合时可以有益于加强用于带状细丝44的侧向支撑。尽管如此, 用于芯体部分的中空管(例如,芯管68)的使用有利于减少带状液化器38的重量,并且可以允许在中空管内保持电部件和/或热部件。例如,一个或多个附加的热传递部件(未示出)可以固定在芯管68内,以帮助热块40沿着纵向轴线46产生热梯度。在这些实施例中, 芯管68理想地具有在带状细丝44与驱动机构42接合时足以支撑带状细丝44的壁厚(例如,至少大约0. 25毫米(大约0. 01英寸))。此外,正如以上对外管66的讨论,芯管68还可以被替换为具有不同横截面几何形状的管。
填隙部件70为固定在外管66与芯管68之间的C形部件,并且还在顶端48与底端50之间延伸。如以下论述,填隙部件70包括在顶端48与底端50之间延伸的间隙并基本上与端口 76对准。填隙部件70的在外管66与芯管68之间的间隙限定通道72,所述通道具有弧形横截面且基本上与端口 76对准。该结构允许驱动机构42在带状细丝44延伸穿过通道72的同时接合带状细丝44,其中外表面84在端口 76处的部分可以用作在带状细丝44与驱动机构42接合时用于带状细丝44的侧向背衬支撑部(backing support)。
在分组件30 (图1和图2所示)的制造期间,带状液化器38可以固定在热块40 内,使得端口 76在热块40的上方延伸。如上所述,这理想地将加热长度78限制到端口 76 下方的位置。带状液化器38可以以各种方式固定在热块40内。在一个实施例中,热块40 可以被分开(或者以另外方式开口)以允许直接进入热块40内。带状液化器38可以接着插入热块40内,并且热块40可以重新装配(或者以其它方式闭合)以在带状液化器38的外管66与热块40之间提供良好的导热接触。挤出端52还可以在底端50处被固定到外管 66。带状液化器38还可以以允许滑轮58的内螺纹面在端口 76处与带状液化器38接合的方式固定到驱动机构42。
在操作期间,通道72的尺寸被构造成使带状细丝44的熔融材料的熔融流符合 (conform to)轴向不对称流,在该实例中所述轴向不对称流为弧形图案流。然而,该熔融流在到达挤出端52时变成用于挤出的基本上轴向对称流。这与圆柱形液化器相反,在所述圆柱形液化器中,熔融流在圆柱形液化器和挤出端中保持为轴向对称流。
图4A-4C是在图3中分别截取的部分4A_4A、4B_4B和4C-4C的剖视图。图4A所示的截面显示入口区64。如图所示,外管66还包括内表面86,其中内表面86限定外管66 的内径(称为内径86d)。对于内径86d适当的平均直径的实例在从大约3. 8毫米(大约 0. 15英寸)到大约10. 2毫米(大约0. 40英寸)的范围内,并且特别适当的直径在从大约 5.1毫米(大约0.20英寸)到大约7. 6毫米(大约0. 30英寸)的范围内。
相应地,外表面74限定外管66的外径(称为外径74d)。外径74d可以根据外管 66的壁厚和内径86d变化,并且理想地允许外管66穿过驱动机构42的支撑板M、滑轮58 和基块56(图2所示)插入且由支撑板M和基块56中的一个或两者保持。因此,用于液化器管66的适当的平均壁厚(即,外径74与内径86d之间的差值)的实例在从大约1.3 毫米(大约0.05英寸)到大约7. 6毫米(大约0.30英寸)的范围内,并且特别适当的厚度在从大约2. 5毫米(大约0. 10英寸)到大约5. 1毫米(大约0. 20英寸)的范围内。
如图4A中进一步所示,芯管68的外表面84限定芯管68的外径(称为外径84d)。 因此,外管66的内径86d与芯管68的外径84d之间的差值相应地限定通道72的厚度(称为通道厚度88)。对于通道厚度88的适当尺寸的实例在从大约0. 25毫米(大约0. 01英寸)到大约2.5毫米(大约0. 10英寸)的范围内,并且特别适当的厚度在从大约0.51毫米(大约0.02英寸)到大约2.0毫米(大约0.08英寸)的范围内,以及更加特别适当的厚度在从大约0. 76毫米(大约0.03英寸)到大约1.8毫米(大约0.07英寸)的范围内。 由于通道72部分地由填隙部件70中的间隙限定,因此填隙部件70还具有对应于通道厚度 88的厚度。
在所示实施例中,通道72还具有跨越填隙部件70中的间隙延伸的弧形宽度,所述弧形宽度理想地对应于弯曲状态下的带状细丝44的尺寸。所述弧形宽度可以通过自通道 72的径向同心点起的角度(称为角度α)进行测量,例如图4A中所示。用于角度α的适当角度的实例在从大约30度到大约180度的范围内,并且特别适当的角度在从大约45度到大约130度的范围内,而且更加特别适当的角度在从大约60度到大约90度的范围内。
可选地,通道72的宽度可以根据矩形几何形状而不是其弧形几何形状进行测量。 用于通道72的宽度的适当尺寸的实例在从大约1. 0毫米(大约0. 04英寸)到大约12. 7 毫米(大约0.50英寸)的范围内,并且特别适当的宽度在从大约3.0毫米(大约0.12英寸)到大约10. 1毫米(大约0. 40英寸)的范围内,而且更加特别适当的宽度在从大约3. 8 毫米(大约0.15英寸)到大约6. 4毫米(大约0.25英寸)的范围内。
如上所述,带状液化器38与带状细丝44的纵横比可以选择为有效地去除与具有圆形横截面的细丝原料相关的芯体。这允许带状液化器38与具有相同的体积流量的圆柱形液化器相比获得减少的响应时间。具体地,如美国临时专利申请第61/247,067号;以及美国专利申请第12/612,333号中公开的名称为“Non-Cylindrical Filament For Use In Extrusion-Based Digital Manufacturing Systems”,高纵横比特别适用于减少响应速率。 因此,通道72的宽度与通道厚度88的适当纵横比的实例包括大约2 1或更大的纵横比。
在一些情况中,过大的纵横比可能将不希望的高负载放置在外表面84和带状细丝44上,并且还可能增加带状细丝44与通道72之间的摩擦阻力。因此,通道72的宽度与通道厚度88的特别适当的纵横比的实例在从大约2. 5 1到大约20 1的范围内,并且特别适当的纵横比在从大约3 1到大约10 1的范围内,而且更加特别适当的纵横比在从大约31到大约81的范围内。
通过比较热能在给定液化器内扩散的M^1可以获得与圆柱形液化器的另外的区别。热能以两个维度的方式扩散到容纳在圆柱形液化器内的圆柱形细丝,其中热能的大约50%沿着第一维度(例如,沿着χ轴线)扩散,而热能的大约50%沿着第二维度(例如,沿着y轴线)扩散。然而,比较起来,大多数热能仅沿着一个维度扩散到液化器38中的带状细丝44。实际上,该单一维度扩散带状细丝44与液化器38的纵横比亚增加。因此,对于上述适当的纵横比,至少热能的大约60%仅以一个维度扩散,更理想地至少热能的大约65%仅以一个维度扩散,并且更加理想地至少热能的大约70%仅以一个维度扩散。
在一个实施例中,芯管68的外表面84和/或外管66的内表面86可以是平滑的和/或被抛光以减少带状细丝44的滑动摩擦。在另外的实施例中,外表面84和内表面86 的在入口区64处的一个或多个部分可以包括低表面能量涂层以进一步减小与带状细丝44 的摩擦力。适当的涂层材料包括氟化聚合物(例如,聚四氟乙烯、氟化乙丙烯、和全氟烷氧基聚合物)、菱形状碳材料及其组合。
图4B所示的截面显示端口 76,在所示实施例中,所述端口具有基本上与通道72对准的弧形宽度。在可选实施例中,通道72的弧形宽度可以大于端口 76的弧形宽度。端口 76的弧形宽度的角度(称为角度β)可以根据滑轮58的内螺纹面之间的接合以及通道72 的弧形宽度变化。因此,用于角度β的适当角度的实例在从大约30度到大约180度的范围内,并且特别适当的角度在从大约45度到大约130度的范围内,而且更加特别适当的角度在从大约60度到大约90度的范围内。
图4C所示的截面显示加热长度78,在所示的实施例中,加热长度78处的通道72 具有与入口区64 (图4Α所示)和端口 76 (图4Β所示)处的尺寸相同的尺寸。因此,在该实施例中,通道72在顶端48与底端50之间沿着纵向轴线46具有基本上相同的尺寸。在可选实施例中,通道72的厚度(称为通道厚度89)和/或弧形宽度可以沿着纵向轴线46 变化。例如,通道72的通道厚度89和宽度中的一个或两者在沿着加热长度78朝向底端50 向下移动时可以逐渐减小。
用于通道厚度89的适当平均厚度的实例包括上述的用于通道厚度88 (图4Α所示)的厚度,其中通道厚度89可以与通道厚度88相同或者可以沿着纵向长度46朝向底端 50逐渐减小。类似地,用于弧形宽度的适当角度(称为角度Θ)的实例包括上述用于角度 α (图4Α所示)的角度,其中角度θ可以与角度α相同或者可以沿着纵向长度46朝向底端50逐渐减小。
图5是带状液化器38的分解立体图,显示了用于制造带状液化器38的技术。带状液化器38可以通过初始绕着芯管68的外表面84插入填隙部件70 (例如,将滑动芯管68 插入填隙部件70中,如箭头90所示)制造。填隙部件70可以绕着外表面84以各种方式固定,例如通过摩擦配合、粘附剂和/或焊接操作固定。
填隙部件70包括部分限定通道72的间隙(称为间隙92),如上所述。另外,填隙部件70在带状液化器38的底端50处的部分渐缩以装配在挤出端52内,其中间隙92的弧形宽度还可以相应地缩小。芯管68还包括位于带状液化器38的底端50处的圆锥形末端1194,所述圆锥形末端也渐缩以装配在填隙部件70和挤出端52内。圆锥形末端94还理想的是为密封末端以防止熔融材料回流到芯管68的中空孔区中。
组装后的芯管68/填隙部件70可以接着被插入外管66(箭头96所示)中,间隙 92理想地与端口 76对准。外管66可以以各种方式绕着芯管68/填隙部件70固定,例如通过摩擦配合、粘附剂和/或焊接操作固定。这提供了通道72,所述通道由芯管68的外表面 84、外管66的内表面86和间隙92处的填隙部件70限定并从顶端48延伸到底端50处的挤出端52。
外管66、芯管68、填隙部件70可以可选地以各种方式组装。例如,填隙部件70可以在芯管68插入外管66内之前插入外管66内。此外,芯管68可以初始被插入外管66内, 并且填隙部件70可以接着插入外管66与芯管68之间。另外,挤出端52可以在底端50处可移除地固定到外管66(例如,拧到外管66上)。在另外的可选实施例中,外管66、芯管 68、填隙部件70中的一个或多个可以一体形成(例如,挤压或铸造)在一起而不是形成为随后组装的独立部件。产生的带状液化器38可以接着安装在挤出头18的分组件30中,如上所述。
如上所述,通道72的尺寸被构造成使带状细丝44的熔融材料的熔融流符合作为轴向不对称流类型的弧形图案流。然而,如图5所示,挤出端52和圆锥形末端94的尺寸提供将熔融流从弧形图案流变成轴向对称流以从挤出端52挤出的尺寸。这与圆柱形液化器相反,在所述圆柱形液化器中,熔融流在圆柱形液化器和挤出端中保持为轴向对称流。
图6是与驱动机构42的滑轮58 (图2所示)一起使用以用于熔化并挤出带状细丝 44的材料以构建3D模型M (或者可选地构建支撑结构26,图1所示)的带状液化器38的侧视图。热块40以及驱动机构42的支撑板M和基块56为了便于说明在图6中被省略。 如图所示,滑轮58包括内表面98,所述内表面为滑轮58的内螺纹面并在端口 76处与带状细丝44接合。用于内表面98的适当的内螺纹面的实例在Batchelder等人的美国专利申请公开出版物第2009/0274540号和第2009/0273122号中公开。
在形成3D模型M的构建操作期间,带状细丝44在顶端48处被装载到液化器38 的通道72中。如上所述,带状细丝理想地弯曲成具有基本上与通道72的弧形横截面一致的弯弓形横截面。在一个实施例中,带状细丝44在位于供应源20中(图1所示)以及通过通道34(图1所示)供给时可以处于释放的非弯曲状态。带状细丝42在到达带状液化器38的顶端48时可以弯曲(例如,手动弯曲)成期望的弯弓形横截面并供给到通道72中。 由于带状细丝44的连续部分被拉入通道72中,因此通道72的弧形横截面可以使带状细丝 44的连续部分自动弯曲并符合通道72的尺寸。
滑轮58的旋转允许内表面98沿着纵向轴线46穿过通道72朝向加热长度78向下驱动带状细丝44的连续部分。当在加热长度78处通过通道72时,由热块40 (图2所示)产生的热梯度使带状细丝44的材料熔化成可挤出状态。带状细丝44的位于加热长度 78上游的未熔化的连续部分由滑轮58和内表面98驱动,并用作具有作用于未熔化部分与通道72之间的熔融材料的粘性泵的活塞,从而通过挤出端52挤出带状细丝44的熔融材料。如上所述,通道72的横截面尺寸,特别是在上述适当的纵横比范围内的尺寸,允许以减少的响应时间挤出带状细丝44的材料。挤出的材料接着被沉积为条道,以便以逐层方式构建3D模型24。
还如上所述,入口区64沿着纵向轴线46相对于滑轮58位于上游位置。因此,带状细丝44在与内表面98接合之前进入通道72,并且在与内表面98接合期间以及之后由芯管68的外表面84(图3-5所示)持续支撑。这有效地消除了可能发生在具有单独驱动机构和液化器的挤出头的潜在问题(例如,对准和弯折),从而减低中断采用挤出头18(图1 所示)进行的构建操作的风险。
图7是与用于熔化并挤出带状细丝44的材料以构建3D模型M的可选的细丝驱动机构的可旋转轴100 —起使用的液化器管32的侧视图。热块40(图2所示)为了便于说明在图7中被省略。在该实施例中,可旋转轴100包括螺纹面102,所述螺纹面为在端口 76处与带状细丝44接合的外螺纹面。可旋转轴100的旋转允许螺纹面102沿着纵向轴线 46穿过通道72朝向加热长度78向下驱动带状细丝44的连续部分。带状细丝44的材料接着以加热长度78在通道72中被熔化,从而允许从挤出端52挤出熔融材料,以便以逐层方式构建3D模型M。
在该实施例中,入口区64也沿着纵向轴线46相对于螺纹面102位于上游位置。因此,带状细丝44在与螺纹面102接合之前进入通道72,并且在与螺纹面102接合期间以及之后由芯管68的外表面84(图3-5所示)持续支撑。这有效地消除了可能发生在具有单独驱动机构和液化器的挤出头上的潜在问题(例如,对准和弯折)。因此,带状液化器38适于与各种不同的驱动机构一起使用,其中所述驱动机构可以在带状细丝44(例如,在端口 76处)被芯管68支撑之后接合带状细丝44。
图8A和8B是沿垂直于纵向轴线46 (图2所示)的平面截得的带状细丝44的剖视图,其中图8A示出了处于释放的非弯曲状态的带状细丝44,图8B示出了处于弯曲状态的带状细丝44。如图8A所示,带状细丝44具有通常对应于通道72的通道厚度88和弧形宽度(图4A所示)的宽度104和厚度106。带状细丝44还具有可以根据供应源20(图1所示)中剩余的带状细丝44的量变化的连续长度。
宽度104可以根据通道72的尺寸以及带状细丝44弯曲的程度变化。用于宽度 104的适当尺寸的实例在从大约1. 0毫米(大约0. 04英寸)到大约10. 2毫米(大约0. 40 英寸)的范围内,并且特别适当的宽度在从大约2.5毫米(大约0. 10英寸)到大约7.6毫米(大约0.30英寸)的范围内,而且更加特别适当的宽度在从大约3.0毫米(大约0.12 英寸)到大约5.1毫米(大约0.20英寸)的范围内。
用于厚度106的适当尺寸理想地允许带状细丝44在处于弯曲状态的同时插入通道72中。例如,厚度106理想地小到足以允许带状细丝44轴向弯曲到弯曲状态(如箭头 108所示)并沿着其长度弯曲以将带状细丝44卷入供应源20中并通过通道34 (图1所示) 供给带状细丝44。例如,在一个实施例中,带状细丝44理想地能够承受大于t/r的弹性应变,其中“t”为带状细丝44在弯曲平面中的横截面厚度(例如,厚度106),“r”是弯曲半径 (例如,供应源20或22中的弯曲半径和/或穿过通道34或36的弯曲半径)。
厚度106理想地厚到足以为带状细丝44提供适当的结构整体性,从而减低带状细丝44保持在供应源20或22中时以及通过系统10 (例如,通过通道30或3 供给时破裂或断裂的风险。用于厚度106的适当尺寸的实例在从大约0. 08毫米(大约0. 003英寸)到大约1.5毫米(大约0.06英寸)的范围内,并且特别适当的厚度在从大约0.38毫米(大约0.015英寸)到大约1.3毫米(大约0.05英寸)的范围内,而且更加特别适当的厚度在从大约0.51毫米(大约0.02英寸)到大约1.0毫米(大约0.04英寸)的范围内。
当带状细丝42弯曲以对准通道72时,带状细丝44还理想地具有基本上与顶端48 处的通道72的纵横比相对应的宽度104与厚度106的纵横比,如图8B所示。宽度104与厚度106的适当纵横比的实例包括大约2 1或更大的纵横比,并且特别适当的纵横比在从大约2. 5 1至大约20 1的范围内,而且更加特别适当的纵横比在从大约3 1至大约10 1的范围内,进一步更特别适当的纵横比在从大约3 1至大约8 1的范围内。
带状细丝44可以由各种可挤出的造型材料和支撑材料制造以分别构建3D模型M 和支撑结构26 (图1所示)。用于带状细丝44的适当的造型材料包括聚合材料和金属材料。 在一些实施例中,适当的造型材料包括具有非晶特性的材料,例如,热塑性材料、非晶金属材料及其组合。用于带状细丝34的适当的热塑性材料的实例包括丙烯腈-丁二烯-苯乙烯 (ABS)共聚物、聚碳酸酯、聚砜、聚醚砜、聚芳砜、聚醚酰亚胺、非晶聚酰胺、其修改变体(例如。ABS-M30共聚物)、聚苯乙烯及其混合物。适当的非晶金属材料包括公开在Batchelder 的美国专利申请公开出版物第2009/(^63582号中的材料。
用于带状细丝44的适当的支撑材料包括具有非晶特性的材料(例如,热塑性材料),并且所述材料理想地可在构建3D模型M和支撑结构沈之后从相应的造型材料移去。用于带状细丝44的适当的支撑材料的实例包括在贸易指定(trade designations) “WATERWORKS”和“SOLUBLE SUPPORTS”下市场上可从 Mratasys,Inc. ,Eden I^rairieJN买到的水溶性支撑材料;在贸易指示“BASS”下可在市场上从Mratasys,Inc., Eden Prairie, MN买到的破坏支撑材料,以及公开在Crump等人的美国专利第5,503,785 号;Lombardi等人的美国专利第6,070, 107号和第6,228,923号;Priedeman等人的美国专利第6,790,403号;以及Hopkins等人的美国专利申请公开出版物第2010/0096072号中公开的材料。
带状细丝44的成分还可以包括另外的添加剂,例如,增塑剂、流变改性剂、惰性填料、着色剂、稳定剂及其组合。支撑材料中使用的适当添加的增塑剂的实例包括临苯二甲酸二烷基酯、环烷酞酸盐、苯甲基及芳香基酞酸盐、烷氧基酞酸盐、烷基/磷酸芳基酯、聚乙二醇酯、己二酸盐酯、柠檬酸盐酯、甘油酯及其组合。适当的惰性填料的实例包括碳酸钙、碳酸镁、玻璃球、石墨、炭黑、碳纤维、玻璃纤维、滑石、硅灰石、云母、矾土、硅石、高岭土、碳化硅、 复合材料(例如,球状及丝状复合材料)及其组合。在其中成分中包括附加的添加剂的实施例中,附加的添加剂的适当的结合浓度的实例根据成分的整个重量在从大约重量比至大约10%重量比的成分范围内,并且特别适当的浓度在从大约重量比至大约5%重量比的范围内。
带状细丝44还理想地表现出允许带状细丝44用作系统10中的消耗材料的物理特性。在一个实施例中,带状细丝44的成分沿着其长度基本上是同质的。另外,带状细丝 44的成分理想地表现出适合用于构建室12中的玻璃转变温度。大气压力下对于带状细丝 44的成分的适当的玻璃转变温度的实例包括大约80°C或更大的温度。在一些实施例中,适当的玻璃转变温度包括大约100°C或更大。在另外的实施例中,适当的玻璃转变温度包括大约120°C或更大。
带状细丝44还理想地表现出低压缩性,使得所述带状细丝的轴向压缩不会造成带状细丝44卡在液化器内。用于带状细丝44的聚合物成分的适当的杨氏模量值的实例包括大约0.2吉帕斯卡(GPa)(大约30,000磅/平方英寸(psi))或更大的模量值,其中杨氏模量值依据ASTM D638-08测得。在一些实施例中,适当的杨氏模量在从大约1. OGPa(大约 145, OOOpsi)到大约5. OGPa(大约725,OOOpsi)的范围内。在另外的实施例中,适当的杨氏模量值在从大约1. 5GPa (大约200,OOOpsi)到大约3. OGPa (大约440,OOOpsi)的范围内。
用于带状细丝44的适当的带状细丝以及用于制造带状细丝44的适当技术的另外的实例包括公开在美国临时专利申请第61/M7,067号;以及美国专利申请第12/612,333 号中的名禾尔为 “Non-Cylindrical Filament For Use In Extrusion-Based Digital Manufacturing Systems”的带状细丝和技术;以及如美国临时专利申请第61/247,078 号;和美国专利申请第12/612,342号中所公幵的名称为“Consumable Materials Having Topographical Surface Patterns For Use In Extrusion-Based Digital Manufacturing Systems"的具有地形表面图案的带状细丝。
图9和图10显示了带状液化器观(图2-7所示)的适当的可替换带状液化器的实例,其中上述实施例同样可应用到以下实例。如图9所示,带状液化器138为带状液化器 38的第一可选方案,其中相应的附图标记被增加“ 100”。在该实施例中,对应于入口区64和端口 76的入口区和端口被省略。相反,芯管168在顶端148处延伸超过外管166和填隙部件170。在该实施例中,驱动机构(例如,驱动机构42)可以在通道172的上方在芯管168 的外表面184处接合带状细丝44。这允许驱动机构以与上述关于带状液化器38所述的相同方式在外表面184用作用于带状细丝的侧向背衬支撑部的同时驱动带状细丝44的连续部分进入通道172。
在所示的实施例中,用于使加热长度178存在于通道172的入口与底端150之间的适当尺寸(称为长度18 也可以根据热块40(图2所示)的热传递特性、外管166的厚度和材料、以及带状细丝44的厚度、材料和驱动速率变化。用于长度182的适当长度的实例包括以上关于长度82(图3所示)的长度。
在一个可选实施例中,填隙部件170也可以关于芯管168向上延伸。在另外的可选实施例中,外管166、芯管168和填隙部件170中的一个或多个可以包括应变仪,如 Batchelder等人的美国专利申请公开出版物第2009/0273122号中所述。这有利于在系统 10的操作期间监测施加到外管166、芯管168和/或填隙部件170的负载。
图10为带状液化器238的剖视图,所述带状液化器为带状液化器38 (图2_7所示)和带状液化器138(图9所示)的另一个可选方案。所述剖视图对应于图3中截得的截面4A-4A,并且相应的附图标记增加“200”。如图所示,带状液化器238包括限定通道272 的外管沈6、芯体部分268和填隙部件270,其中通道272具有矩形横截面而不是弧形横截
用于外管沈6、芯体部分沈8、填隙部件270和通道272的适当尺寸包括以上对于带状液化器38的各个部件所述的尺寸。例如,用于外表面274的适当的平均宽度(称为宽度27 )、用于外表面观4的适当的平均宽度(称为宽度^ )、和用于内表面观6的适当的平均宽度(称为宽度分别包括以上关于外径74d、外径84d和内径86d(图4A所示)所述的平均宽度。外管266、芯体部分268和填隙部件270的尺寸可以沿着χ轴线和y 轴线基本上相同(即,如图10所示的方形横截面),或者可以根据带状液化器238的具体设计不同(例如,矩形)。相应地,用于通道272的适当的宽度(称为宽度272w)包括以上关于通道72的弧形宽度所述的宽度,并且用于通道272的适当的厚度(称为厚度272t)包括以上关于厚度88 (图4A所示)所述的厚度。
在所示的实施例中,芯体部分268被填充而不是具有中空的孔区。这有利于确保芯体部分268可以承受从驱动机构(例如,图2所示的驱动机构42)施加到外表面观4的侧应力而不会弯折或变形。在可选的实施例中,芯体部分268可以为具有适当的壁厚的中空芯管。
带状液化器238为本发明的适当的带状液化器的一个实例,所述带状液化器被构造成容纳处于释放的非弯曲状态的带状细丝44,如上面图8A中所示。带状液化器238和带状细丝44的尺寸也有效地消除与具有圆形横截面的圆柱形细丝相关的芯体。这允许带状液化器238与具有相同体积流量的圆柱形液化器相比也获得减少的响应时间。
另外,通道272的尺寸被构造成使带状细丝44的熔融材料的熔融流符合也为轴向不对称流的矩形图案流。然而,在到达挤出端252(未示出)时,该熔融流变化到基本上轴向对称流以与上述用于图5中的带状液化器38相同的方式挤出。这也与圆柱形液化器相反,其中熔融流在圆柱形液化器和挤出端中保持为轴向对称流。
在本发明的另外的实施例中,上述圆柱形细丝和非圆柱形细丝也可以是中空的。 由于为塑料的横截面面积由于缺少芯体而减小,因此中空细丝的液压直径也可以小于物理直径。因此,用于本发明的中空细丝的适当的液压直径的实例包括上述的实例。此外,液化器还可以包括用于中空细丝的配合芯体,使得挤出物被从内侧以及外侧加热。
中空细丝的一个潜在的另外的优点在于当中空细丝通过由混合物迅速挤出制造时,理想地是该细丝在保持在供应组件(例如,卷线筒)上之前被快速冷却。该快速冷却过程可以引起另外的实心细丝的直径变化,所述直径变化可以沿着细丝的长度变化。比较起来,如果中空细丝被快速冷却,则中空细丝的内表面的直径可以变化,从而使外表面更一致。
为圆筒形壳体的中空细丝的另一个潜在的另外的优点符合细丝驱动机构。实心细丝可以接近于不可压缩,使得如果细丝直径略小或略大,则驱动辊或驱动齿可以获得很小或很大的牵引力。然而,中空细丝提供顺从性,使得细丝直径的小变化被中空细丝的压缩量的变化补偿。
中空细丝的另一个潜在的另外的优点是减小液化器的入口中的热传导。当实心细丝固定时,热量可以缓慢地沿着细丝的中心传导到液化器的加热部分上方的壁相对较冷的区域。如果细丝在该处熔化,则所述细丝趋向于抵靠较冷的壁凝固,从而潜在地使大的轴向力再次使细丝运动。然而,热传导到中空细丝的速率由于缺少芯体将慢于沿实心细丝传导的速率。
虽然已经参照优选实施例说明了本发明,但是本领域的技术人员将会认识到在不背离本发明的精神和范围的情况下可以对形式和细节做出改变。
权利要求
1.一种带状液化器,所述带状液化器用于在具有驱动机构和热传递部件的基于挤出的数字制造系统中使用,所述带状液化器包括外液化器部分,所述外液化器部分被构造成从所述热传递部件接收热能;和通道,所述通道至少部分地由所述外液化器部分限定,所述通道具有被构造成容纳带状细丝的尺寸,其中所述带状液化器被构造成通过接收的热能使容纳在所述通道中的所述带状细丝熔化到至少可挤出状态以提供熔融流,并且其中所述狭槽的尺寸还被构造成在连接到所述带状液化器的挤出端中使熔融流从轴向不对称流变为基本上轴向对称流。
2.根据权利要求1所述的带状液化器,其中,所述通道的尺寸限定弧形横截面。
3.根据权利要求1所述的带状液化器,其中,所述通道的尺寸限定具有宽度和厚度的横截面,其中所述宽度与所述厚度的纵横比大约为2 1或更大。
4.根据权利要求3所述的带状液化器,其中,所述宽度与所述厚度的纵横比在2.5 1 到大约20 1的范围内。
5.根据权利要求1所述的带状液化器,其中,所述外液化器部分包括端口,所述端口被构造成提供用于所述驱动机构与容纳在所述通道中的带状细丝接合的入口。
6.根据权利要求1所述的带状液化器,还包括芯体部分,所述芯体部分设置在所述外液化器部分内且还部分地限定所述通道,所述芯体部分被构造成在所述驱动机构与所述带状细丝接合时为所述带状细丝提供背衬支撑。
7.根据权利要求6所述的带状液化器,还包括填隙部件,所述填隙部件设置在所述外液化器部分与所述芯体部分之间,所述填隙部件限定进一步限定所述通道的间隙。
8.一种带状液化器,所述带状液化器用于在具有驱动机构和热传递部件的基于挤出的数字制造系统中使用,所述带状液化器包括外管,所述外管具有外表面和内表面,其中所述外管的所述外表面被构造成与所述热传递部件接合;芯体部分,所述芯体部分设置在所述外管内并具有外表面;和填隙部件,所述填隙部件设置在所述外管与所述芯体部分之间,所述填部件具有沿着所述填隙部件的纵向长度延伸的间隙,其中所述间隙限定在所述外管的内表面与所述芯体部分的外表面之间的通道,所述通道具有被构造成容纳带状细丝的尺寸,并且其中所述芯体部分的所述外表面被构造成在所述驱动机构与所述带状细丝接合时为所述带状细丝提供背衬支撑。
9.根据权利要求8所述的带状液化器,其中,所述通道的尺寸限定弧形横截面。
10.根据权利要求9所述的带状液化器,其中,所述弧形横截面具有从径向同心点以一角度延伸的弧形宽度,其中所述角度在大约30度至大约180度的范围内。
11.根据权利要求10所述的带状液化器,其中,所述角度在大约45度至大约130度的范围内。
12.根据权利要求8所述的带状液化器,其中,所述外管包括端口,所述端口被构造成提供用于所述驱动机构与容纳在所述通道中的带状细丝接合的入口。
13.根据权利要求12所述的带状液化器,其中,所述端口基本上与所述通道对准。
14.根据权利要求8所述的带状液化器,其中,所述芯体部分包括芯管。
15.一种用于在基于挤出的数字制造系统中构建三维模型的方法,所述方法包括以下步骤通过带状液化器的通道驱动带状细丝,所述带状液化器还包括至少部分地限定所述通道的外液化器部分;使所述通道中的所述带状细丝熔化到至少可挤出状态以提供熔融流,其中所述通道的尺寸使熔融流符合轴向不对称流;和从所述带状液化器的挤出端挤出所述熔融流,其中所述熔融流在所述挤出端中具有基本上轴向对称流。
16.根据权利要求15所述的方法,其中,所述通道的尺寸限定弧形横截面。
17.根据权利要求15所述的方法,其中,所述通道的尺寸限定具有宽度和厚度的横截面,其中所述宽度与所述厚度的纵横比大约为2 1或更大。
18.根据权利要求17所述的方法,其中,所述宽度与所述厚度的纵横比在2.5 1至大约20 1的范围内。
19.根据权利要求15所述的方法,其中,所述外液化器部分包括端口,并且其中所述方法还包括以下步骤使驱动机构与容纳在所述通道内的带状细丝在所述端口处接合。
20.根据权利要求15所述的方法,其中,使所述通道中的所述带状细丝熔化的步骤包括以下步骤将热能扩散到所述带状细丝中,其中所述热能的至少大约65%仅在一个维度上被扩
全文摘要
本发明公开了一种带状液化器(38),所述带状液化器包括被构造成从热传递部件(40)接收热能的外液化器部分(66);和至少部分由外液化器部分(66)限定的通道(72),其中通道(72)具有被构造成容纳带状细丝(44)的尺寸,并且其中带状液化器(38)被构造成通过接收的热能使容纳在通道(72)中的带状细丝(44)熔化到至少可挤出状态以提供熔融流。通道(72)的尺寸进一步被构造成在连接到带状液化器(38)的挤出端(52)中使熔融流从轴向不对称流变为基本上轴向对称流。
文档编号B29C47/10GK102548736SQ201080043872
公开日2012年7月4日 申请日期2010年9月21日 优先权日2009年9月30日
发明者J·塞缪尔·巴彻尔德, S·斯科特·克伦普, 威廉·J·斯万松 申请人:斯特拉塔西斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1