承载复合结构的包覆模制的制作方法

文档序号:4450283阅读:219来源:国知局
承载复合结构的包覆模制的制作方法
【专利摘要】一种用于连接到支撑本体或结构的承载复合结构。所述承载结构包括由连续的增强纤维和树脂基体构成的承载元件。所述承载元件具有用来连接到所述支撑本体的附接部分。所述承载复合结构还包括用模制材料形成的连接元件。所述模制材料由不连续纤维和树脂基体组成。所述模制材料模制包覆所述承载元件的附接部分的表面。
【专利说明】承载复合结构的包覆模制

【技术领域】
[0001] 本发明总体上涉及用在承载应用场合中的复合结构。更具体地说,本发明的目标 是增强承载复合结构的被连接到也参与承载载荷的本体或子结构的那部分。

【背景技术】
[0002] 复合材料一般包括作为两个基本组成部分的纤维和树脂基体。复合材料一般具有 相当高的强度重量比。结果,复合材料不断地用在苛刻环境中,诸如用在航空航天领域中, 在这个领域中,复合部件的高强度和较轻的重量是特别重要的。
[0003] 在很多承载复合结构或元件中使用的纤维是单向的而且是连续的。当承载结构相 对于该结构的宽度和厚度来说较长时,这种单向纤维是特别有用的。翼杆、支柱、连杆、框 架、间断件、梁、表皮、面板、喷气发动机叶片和扇叶是各种飞机结构的例子,这些结构可能 较长,并被设计用来承载非常大的负载。
[0004] 主要的设计考虑涉及决定如何将承载结构或元件附接到飞机主体或其他支撑结 构上。总的来说,承载结构在沿着其上一个或多个位置处用螺栓连接或者其他方式牢固地 附接到飞机本体。结构结合部所需的精密配合经常要求对邻接部件的接触表面进行机械加 工。这对于用单向复合材料制造的承载结构来说存在问题,因为这种材料难以在不产生层 间(两个单向层)裂纹的情况下进行机械加工,层间裂纹会导致疲劳断裂。另一个问题是, 为了在结构上有效,承载结构经常需要与基于由承载结构承载的主要的整体负载沿着一个 方向取向的大多数纤维是正交各向异性的。然而,通过多方向的纤维取向(诸如准各向同 性层压件)能够更好地处理由螺栓结合所产生的承载应力。用多方向层来局部增强承载结 构以处理承载应力是设计挑战,而且耗费时间、费用高,曾在制造中用过。
[0005] 解决由于机械加工而变弱的承载结构所产生的问题的一种方法是,在连接位置处 向整个结构添加更多的单向纤维的多方向层。然而,为了提高局部承载强度而必须添加的 单向纤维材料的数量会显著增加承载结构的重量和大小。
[0006] 诸如金属支架和套筒等其他增强系统业已用来增加承载结构在机械加工过的连 接或附接点处的强度。然而,这些类型的增强趋于庞大、沉重而且昂贵。此外,使用金属支 架和套筒会在连接部位处生成局部应力点,这些局部应力点会对结合部的长期强度有不利 影响。
[0007] 虽然现在正用于加强单向纤维承载元件和飞机支撑结构之间的连接点的增强系 统是够用的,但是,仍不断需要开发改进的连接增强装置,这些连接增强装置尽可能地轻、 小,同时仍在连接部位处提供足够的结构强度。


【发明内容】

[0008] 根据本发明,发现了增强单向纤维承载结构上的连接部位的一种特别有效的方 式,其是用包括不连续纤维和树脂基体的结构模制材料包覆模制连接部位。发现了所得到 的由单向纤维元件和包覆模制的连接元件构成的复合结构在承载结构和飞机本体之间提 供了强度极大的连接。连接元件通过压缩模制法模制,因此,其所有表面都受到用于此工艺 的闭合模具控制,这对于确保与邻接结构的紧密连接是非常希望的。另外,包覆模制的连接 元件可以进行机械加工,以提供各种连接取向以及甚至更紧密的公差,而不会牺牲连接元 件的结构强度,这是因为,不同于单向纤维复合物,不连续的纤维模制材料不容易由于机械 加工而分层。
[0009] 根据本发明,提供了一种用于连接到支撑本体或结构的复合结构。所述复合结构 包括由连续的增强纤维和树脂基体组成的承载元件。所述承载元件具有用来连接到所述支 撑本体的附接部分。所述复合结构还包括由不连续纤维和树脂基体构成的连接元件。模制 材料包覆所述承载元件的附接部分的表面模制。
[0010] 作为本发明的一个特征,所述承载元件的附接部分的表面积包括孔或缺口,该孔 或缺口有效地增加了连接元件模制包覆的表面积。发现了在模制过程中模制材料的不连续 纤维和树脂基体流进孔或缺口中,提供了承载元件和连接元件之间特别有效的互锁。
[0011] 作为本发明的进一步特征,连接元件可进行机械加工以包括孔和其他安装表面, 而不会明显减小连接元件的强度,因此不会干扰承载元件。机械加工连接元件的能力是由 于不连续纤维的随机取向,这与在承载元件中使用的连续纤维是相反的。
[0012] 本发明还涵盖了用于制造包覆模制复合结构的方法以及用于将复合结构连接到 诸如飞机本体或其他航空航天支撑本体的方法。另外,本发明涵盖了组装后的复合结构和 支撑本体。具体地说,包括其中附接的复合结构的飞机和其他航空航天飞行器被本发明所 涵盖。
[0013] 本发明的上面所描述的和许多其他的特征以及伴随的优点,通过结合附图参见下 文详细描述而得以更好的理解。

【专利附图】

【附图说明】
[0014] 图1描绘的是用于连接到支撑本体或结构的根据本发明的示例性性复合结构。
[0015] 图2示出了承载元件端部的细节。连接元件以虚线示出。
[0016] 图3是图2的剖视图,示出了穿过承载元件端部的孔的细节,该孔在将连接元件模 制到承载元件的过程中用不连续纤维和树脂填满。
[0017] 图4是图2的剖视图,示出了示出了在承载元件端部中的槽的细节,该槽在模制过 程中用不连续纤维和树脂填满。
[0018] 图5是图1的剖视图,示出了安装孔的细节,该安装孔延伸穿过连接元件的第二部 分,用于将复合结构连接到支撑本体或支撑本体上的支架或其他连接器。
[0019] 图6示出的是一个示例性复合结构,其中,连接元件已机械加工过或模制过以提 供支撑本体或用于支撑本体的连接器插入其中的开口。
[0020] 图7示出的是一个示例性组件,其中,连接元件安装在支撑本体的缺口或用于支 撑本体的连接器内。
[0021] 图8示出的是一个示例性的简化的模具,该模具被示出使用承载元件中的缺口保 持就位。

【具体实施方式】
[0022] 根据本发明的一个示例性复合结构在图1中总体上以"10"表示。复合结构10包 括承载元件12和连接元件14。连接元件14包括模制包覆承载元件12的第一部分16。连 接元件14还包括第二部分18,第二部分18包括用于将复合结构10连接到飞机支撑结构或 本体的孔20。示例性的承载元件包括翼杆、螺旋桨叶片、支柱、地板梁、包括阻挡门连杆的各 种连杆、框架、间断件、梁、表皮、面板、包括外部引导扇叶和风扇叶片的喷气发动机叶片和 扇叶。
[0023] 如图2所示,承载元件12包括附接部分22,连接元件(虚线所示)模制包覆该附 接部分。为了增加可以用于粘合到连接元件14的表面积,并且也为了将连接元件锁定到承 载元件,使附接部分22增加增强表面。例如,在附接部分22中提供孔26和28。孔26和 28不仅增加了可用于连接元件14和附接部分22之间的粘合的表面积,而且还提供了将连 接元件14锁定到附接部分22的有效途径。
[0024] 图3是图2的剖视图,其示出为了在承载元件和连接元件之间提供牢固的锁定机 构,用来形成连接元件的模制材料的不连续纤维和树脂完全地流动经过孔或开口 28。
[0025] 另一个示例性类型的粘合增强表面是槽30,如图2所示。槽30以与孔26和28相 同的方式起作用,不仅增加了可用于连接元件14和附接部分22之间的粘合的表面积,而且 该槽还提供了将承载元件锁定到连接元件的另一种有效途径。图4是图2的剖视图,其示 出为了在承载元件和连接元件之间提供牢固的锁定机构,以及提供用于在所述两个元件之 间粘合的附加的表面积,用来形成连接元件的模制材料的不连续纤维和树脂完全地流进槽 30中。
[0026] 置于附接部分中以提供粘合增强表面的孔和槽的数量,可以根据具体的承载元件 和预期在结合部处承载的载荷进行改变。孔和/或槽应足够大,以允许模制材料完全地流 动经过这些孔和/或槽,使得位于承载元件两侧的模制材料经过孔或槽连接在一起。图2 所示的孔26、28和槽30是柱形的。不过,取决于设计要求,各种的其他表面形状是可以的。 孔和槽可具有正方形或矩形横截面、三角形横截面或其他多边形横截面形状,以及椭圆形 横截面和任意形状的横截面。孔或槽的横截面形状和最小尺寸受到模制材料在模制过程中 完全地填充开口的能力以及结构设计考虑的限制。
[0027] 模制材料由树脂基体中的不连续纤维构成。这种类型的模制材料通常称为随 机不连续纤维复合材料(DFC)。优选的模制材料是由用树脂浸渍的单向带的随机取向片 段构成的。这种类型的不连续纤维/树脂模制材料通常称为准各向同性碎切预浸渍材 料。准各向同性碎切预浸渍材料是一种形式的随机不连续纤维复合材料,可以从Hexcel Corporation (Dublin, CA)通过商业途径得到,商标为HexMC' HexMCK.模制材料已 经使用于各种目的,包括航空航天物品和高强度模具。例如,请参见美国专利第7510390和 7960674号和美国专利申请第12/856210号。
[0028] 准各向同性(Q-I)碎切预浸渍材料由单向纤维带的片段或"碎片"和树脂基体构 成。Q-I碎切预浸渍材料一般作为由切碎的单向带预浸渍材料的随机取向碎片构成的垫来 提供。被切碎以形成碎片或片段的单向带预浸渍材料包括可以是通常用于航空航天预浸渍 材料中的任意树脂的树脂基体。用热塑性塑料硬化的热固性环氧树脂是优选的,因为当为 了提供附接表面(诸如图1和图5所示附接孔20)而在模制后对连接元件进行机械加工时, 这些树脂趋于更加耐受破裂或剥离。尽管孔20被视作用于将连接元件连接到支撑结构或 本体的示例性附接表面,但是,有多种可以通过连接元件的模制或机械加工形成的其他附 接表面。例如,本发明的优点是,为了提供连接元件到支撑结构匹配表面的锁定接合,可以 将槽和其他类型的凹入部机械加工或模制到连接元件的表面中。这个特征对于将承载元件 通过互锁连接而不是使用螺栓或其他基于紧固件的附接构造连接到其相应支撑结构是有 用的。
[0029] 另外,应该注意,附接孔20,或其他连接构造,不一定要设置在连接元件14的与承 载元件12分开的部分中。例如,附接孔20可以设置为使其同时穿过承载元件12和连接元 件14。在这种构造中,连接元件14的第二部分18和承载元件12上相同位置处的第一部 分16合并在一起。相应地,将明白对于希望没有螺栓经过承载元件12延伸的那些情形来 说,图5所示的附接孔20仅仅是示例性的。进一步,第一、第二部分16、18可占据承载元件 12上的相同物理位置,尤其是在希望螺栓或其他类型紧固件直接连接到承载元件12的那 些情形中。
[0030] 模制材料的树脂基体可以由一般用于结构应用场合的任意热固性或热塑性树脂 构成。优选地,未固化树脂基体的数量会在模制材料全部重量的25?45重量百分比之间。 树脂基体可以是用在结构复合材料中的热塑性树脂或环氧树脂、双马来酰亚胺树脂、聚酰 亚胺树脂、聚酯树脂、乙烯酯树脂、氰酸脂树脂、酚醛树脂中的任意树脂。示例性热塑性树脂 包括聚苯硫醚(PPS)、聚砜(PS)、聚醚醚酮(PEEK)、聚醚酮酮(PEKK)、聚醚砜(PES)、聚醚酰 亚胺(PEI)、聚酰胺-酰亚胺(PAI)。用诸如PES、PEI和/或PAI等热塑性塑料硬化的环 氧树脂是优选的树脂基体。一般出现在航空航天工业中使用的那类单向带中的树脂是优选 的。在美国专利第7754322和7968179号和美国专利申请第12/764636号中描述了适合于 用作树脂基体的示例性热塑性塑料硬化的树脂。
[0031] 用于制造模制材料的单向碎片的树脂含量也可以在整个预浸渍材料重量的25和 45重量百分比之间变化。树脂含量在35和40重量百分比之间的碎片是优选的。当形成准 各向同性碎切预浸渍材料时,一般不向预浸渍材料碎片中添加额外的树脂。存在于初始单 向带预浸渍材料中的树脂足以将碎片粘合在一起以形成模制材料。
[0032] 准各向同性(Q-I)碎切预浸渍材料可以通过购买或制造希望宽度的单向预浸渍 材料带或绳来制造。接着,将带或绳切碎成希望长度的碎片,并按层随机铺设这些碎片,然 后,将其压在一起形成模制材料。当被压在一起时,单个的随机取向的单向预浸渍材料碎片 由于存在预浸渍材料树脂而自然地粘合在一起。然而,用于获得模制材料的优选方法是购 买HexMC^ 1或等同的可通过商业途径得到的准各向同性碎切预浸渍材料,这些材料作为 材料片供应,这些材料片接着用作模制材料形成希望的连接元件,该连接元件被模制在承 载元件上。
[0033] 其他类型的不连续纤维模制材料可以用来形成连接元件,只要这些材料满足用于 将承载元件连接到支撑结构的必要的强度和机械加工能力要求。这些模制材料一般包括用 树脂浸渍的随机取向的切碎的纤维。但是,为了确保模制材料强度足够高并且既能够模制 又能够机械加工,优选的是使用切碎的单向纤维或带。单向纤维在任何地方都可以包含从 几百根长丝到12000根长丝或是更多。单向纤维一般供应为由按单一方向取向的连续纤维 构成的带。
[0034] 单向带是用于形成模制材料的优选类型预浸渍材料。单向带可以从商业渠道获 得,或者可以使用已知的预浸渍材料形成工艺加成。单向带的尺寸可以根据要制造的具体 连接件广泛地变化。例如,单向带的宽度(垂直于单向纤维的尺寸)可以从0.2cm变化到 2. 5cm,或者更大。带一般会是从0.004到0.012英寸(0.01到0.03cm)厚,而单向带的长 度(平行于单向纤维的尺寸)可以从0.5英寸(1.3cm) -直变化到2英寸(5. lcm),或者更 大,取决于承载元件的大小和形状和希望的连接元件,以及任何粘合增强表面的大小和形 状和针对结合部的结构载荷要求。碎片包括的单向纤维可以是碳、玻璃、芳族聚酰胺、聚乙 烯或通常用于航空航天工业中的任何纤维类型。优选碳纤维。碎片在垫中是随机取向的, 其铺设得较为平整。这为垫提供了横向上各向同性的性能。
[0035] -个示例性的优选准各向同性碎切预浸渍材料是HexMC? 8522/AS4。这种准各 向同性碎切预浸渍材料被供应为46cm宽、0. 20cm厚的连续垫卷,,HexPly? 8522/AS4单向 纤维预浸渍材料用来制造准各向同性垫中随机取向的碎片。HexPly? 8522/AS4预浸渍材 料是0. 016cm厚并具有每平方米约145克的纤维面重量的碳纤维/环氧树脂单向带。该带 的树脂含量是38重量百分比,其中树脂(8552)是热塑性塑料硬化的环氧树脂。带被分开 以提供0. 85cm的条,然后被切碎以提供5cm长的碎片。碎片密度是约1. 52g/cm3。当使用 这种类型的模制材料时,孔26、28的直径应该是至少1/8英寸(0. 32cm)的直径,以确保孔 在高压模制过程中完全被模制材料填充。
[0036] 其他的示例性准各向同性碎切预浸渍材料可以用其他的HexPly?单向预浸渍材 料带制造,诸如EMC 116/AS4 (环氧树脂/碳纤维)、8552/頂7 (热塑性塑料硬化的环氧树脂 /碳纤维)、3501-6/T650 (环氧树脂/碳纤维)和M21/M7 (热塑性塑料硬化的环氧树脂/ 碳纤维)。Μ21/ΙΜ7是一种优选的单向预浸渍材料带,其可以被切碎,并用于形成不连续纤 维模制材料,其用于形成根据本发明的连接元件。
[0037] 承载元件12优选地用单向纤维制造,所述单向纤维大小和类型可根据要制造的 具体类型的承载元件变化。单向纤维可以是预浸渍材料绳或带的形式,或者可以是干单向 纤维,该干单向纤维在形成承载元件的过程中用树脂浸渍。用于形成模制材料的相同类型 的纤维和树脂也可以用在形成承载元件中。区别是承载元件中的单向纤维是连续的,而且 按单向型式一致地取向。
[0038] 优选的是,承载元件在用模制材料包覆模制附接部分之前完全地形成并固化。但 是,如果希望,对还没有完全固化的承载元件进行包覆模制也是可以的。用来从单向纤维和 树脂基体形成承载元件的过程和工艺是已知的。虽然不是必要的,但是优选的是,当模制材 料和承载元件共同固化时,用于形成承载元件的相同树脂也被用作模制材料中的树脂。用 于形成粘合增强表面的孔和槽优选地被机械加工在充分固化的承载元件中。但是,如果希 望,粘合增强表面可以在铺设和固化/模制过程中在承载元件中形成。
[0039] 连接元件优选地使用传统高压模制过程模制包覆固化的承载元件。针对用于模 制材料中的环氧树脂的一般高压固化温度的范围是从170°C到225°C。优选的固化温度的 范围是从190°C到205°C。在固化温度下,模具内的内部压力优选地高于500psi,而低于 2000psi。在一个优选实施方式中,连接元件首先被成形为具有接近最终连接元件的形状的 "预成型件"。预成型件在承载元件的附接端上加工就位,或者可以在承载元件的附接部分 上设置就位前形成。一旦预成型件已完全固化(一般在固化温度下5分钟到1小时),就从 模具上移除包覆模制的承载元件并冷却。如果需要,连接元件可以接着机械加工以提供用 于附接到支撑结构的孔或其他表面。
[0040] 优选地,为了增加树脂的粘度以有助于维持预成型件的形状并在随后的高压模制 过程中保持预成型件就位,预成型件在被放进模具中之前可以是"分阶段的"。分阶段涉及 在环境压力下将预成型件加热到165°c到180°C的温度刚好足够的时间,以显著增加树脂 粘度。在分阶段温度下,在5到15分钟量级的阶段时间是优选的。分阶段的预成型件优选 地在被放进模具中之前被冷却到室温用以最终固化。另外,预成型件中的树脂粘度当预成 型件被加入到固化温度时趋向于下降,然后当树脂固化时迅速增加。这种与模具加压相结 合的粘度下降确保树脂和不连续纤维一致地流进形成粘合增强表面的孔和槽中。
[0041] 重要的是,模具要在包覆模制操作过程中牢固地保持就位。当使用高压时,这是一 个特别的问题,因为模具趋于被吹离承载结构的端部,除非其牢固地被保持就位。根据本发 明,优选的是,为了将承载结构固定在模具内,在承载结构上提供锁定表面或结构。例如,为 了提供用以在模制过程中固定承载结构的表面,在承载结构的侧面设置槽50。参见图8, 一 个简化的模具52被示出在承载元件12的适当位置上。该模具包括上半部54和下半部56, 二者用夹紧表面60和62在一端上夹紧在一起。
[0042] 模具半部54和56包括锁定片64和66,锁定片64和66包括孔,锁定销68和70 插过孔用于与承载元件12中的槽50接合。发现这种具体的锁定构造提供了模具到承载元 件极其牢固的锁定,对于结构12的承载能力没有过分影响。仅仅是为了说明的目的,图1 所示槽50的大小相对于承载元件的大小来说是较大的。一般来说,槽50相对承载结构的 整体大小来说会是较小的。锁定槽的具体大小将取决于承载结构的大小、使用的模制压力 和包覆模制的连接元件的大小而变化。在所有情况中,选择槽的大小使得承载元件的整体 结构性能仍然满足设计标准。
[0043] 业已发现,模制材料的性质是只有相当少量的树脂沿着模具缝和模具与承载结构 交汇的地方从模具逸出。为了将从模具逸出的树脂保持在最小量,优选的是,模具半部之间 的间隙和模具和承载结构之间的间隙在〇. 010英寸以下的量级,更优选的是〇. 005英寸以 下。
[0044] 多种其他的锁定构造用来将模具固定到承载结构。例如,可以在承载结构上形成 隆起部分,其与形成在模具锁定片中的相应下凹表面相互锁定。另外,槽可以布置横跨承载 元件的顶面和/或底面用于与模具接合,取代设置在侧面的槽,诸如槽50。形成在承载结构 上或承载结构中的锁定结构强度应足够大以在模具和承载元件之间提供牢固连接,以防止 二者在高压模制过程中被强迫分开,这才是重要的。
[0045] 参见图6,根据本发明的简化了的复合结构被示出连接到简化了的支撑结构和本 体(以虚线用"31"示出)。承载元件32已经包覆模制有连接元件34。在这个具体实施方 式中,连接元件34包括开口 36,为了接收支撑结构31,开口 36已机械加工或模制在连接元 件34中。另外,开口 38已机械加工或模制在连接元件34中以提供支撑结构31利用以虚 线用"40"示出的螺栓或销到连接元件34的联结。
[0046] 在图7中示出了一个替换方式的示例性类型的结合部,在该结合部处,支撑本体 或结构42已进行了机械加工或模制以接收连接元件44。连接元件44已模制包覆承载元件 46的附接部。
[0047] 为了提供连接元件44到支撑结构42的螺栓连接,附接开口 48已机械加工或模制 在连接元件44中。各种连接结构和连接元件之间的各种各样的可能连接都是可以的。图 6和图7中所示的简化的实施方式仅仅是示例性的。实际的支撑结构一般会是相当复杂的 形状,这种形状是使用模制或铸造和机械加工的组合来形成的,取决于用来形成支撑结构 的材料类型。一般用在这种高强度情形中的材料包括各种钢、铝和复合材料。
[0048] 一般的包覆模制连接元件也会是比图6和图7所示的简化表达更为复杂的形状和 结构。根据本发明用模制材料包覆模制承载元件提供了强化承载元件同时还提供了承载元 件和支撑结构件牢固、高强度连接的双重优点。另外,模制的连接元件既可以模制也可以机 械加工以形成连接到支撑结构所需的复杂形状。
[0049] 通过上述描述了本发明的示例性优选实施方式,本领域技术人员应注意到,这些 在本发明公开范围内仅仅是示例性的,可在本发明范围内作出各种其他替换方式、改变和 改进。相应地,本发明不受上述实施方式的限制,而仅仅受后面权利要求的限制。
【权利要求】
1. 一种用于连接到支撑本体的复合结构,所述复合结构包括: 承载元件,所述承载元件包括连续的增强纤维和树脂基体,所述承载元件具有用来连 接到所述支撑本体的附接部分,所述附接部分包括具有表面积的表面;和 连接元件,所述连接元件包括树脂基体中的不连续纤维,其中,所述连接元件包括第一 部分和第二部分,所述第一部分是包覆所述承载元件的附接部分的表面模制的,所述第二 部分用于连接到所述支撑本体。
2. 如权利要求1所述的复合结构,其中,所述连续的增强纤维是单向的。
3. 如权利要求1所述的复合结构,其中,所述连接增强部包括多个碎片,所述碎片包括 单向纤维。
4. 如权利要求1所述的复合结构,其中,所述承载元件的附接部分包括增加所述附接 部分的表面积的至少一个粘合增强表面。
5. 如权利要求1所述的复合结构,其中,所述粘合增强表面限定了穿过所述附接部分 的孔,其中,所述孔基本上用所述不连续纤维和用于所述不连续纤维的所述树脂基体充满。
6. 如权利要求1所述的复合结构,其中,所述连接元件的第二部分包括一个或多个表 面,所述一个或多个表面被机械加工或模制过以提供用于将所述复合结构连接到所述支撑 本体的表面。
7. 如权利要求6所述的复合结构,其中,所述连接元件的第二部分包括已机械加工在 所述连接增强部中的孔。
8. 如权利要求6所述的复合结构,其中,所述连接元件的第二部分被机械加工过,以提 供用于与所述支撑本体上的相应匹配表面接合的匹配表面。
9. 一种组件,包括如权利要求1所述的复合结构和所述连接元件连接于其上的支撑本 体。
10. 如权利要求9所述的组件,其中,所述本体是航空航天飞行器的一部分。
11. 一种用于连接到支撑本体的复合结构的制造方法,所述方法包括下面的步骤: 提供承载元件,所述承载元件包括连续的增强纤维和树脂基体,所述承载元件具有用 来连接到所述支撑本体的附接部分,所述附接部分包括具有表面积的表面;和 形成连接元件,所述连接元件包括树脂基体中的不连续纤维,其中,所述连接元件包括 第一部分和第二部分,所述第一部分是包覆所述承载元件的附接部分的表面模制的,所述 第二部分用于连接到所述支撑本体。
12. 如权利要求11所述的复合结构的制造方法,其中,所述连续的增强纤维是单向的。
13. 如权利要求13所述的复合结构的制造方法,其中,所述连接增强部包括多个碎片, 所述碎片包括单向纤维。
14. 如权利要求11所述的复合结构的制造方法,其中,所述承载元件的附接部分包括 增加所述附接部分的表面积的至少一个粘合增强表面。
15. 如权利要求11所述的复合结构的制造方法,其中,所述粘合增强表面限定了穿过 所述附接部分的孔,其中,所述孔基本上用所述不连续纤维和用于所述不连续纤维的所述 树脂基体充满。
16. 如权利要求11所述的复合结构的制造方法,还包括步骤:模制或机械加工所述连 接元件的第二部分,从而提供用于将所述复合结构连接到所述支撑本体的一个或多个表 面。
17. 如权利要求16所述的复合结构的制造方法,其中,所述连接元件的第二部分包括 已机械加工在所述连接增强部中的孔。
18. 如权利要求16所述的复合结构的制造方法,其中,所述连接元件的第二部分被机 械加工或模制过,以提供用于与所述支撑本体上的相应匹配表面接合的匹配表面。
19. 一种组件的制造方法,包括下面步骤: 提供如权利要求1所述的复合结构;和 将所述复合结构的连接元件连接到支撑本体。
20. 如权利要求19所述的组件的制造方法,其中,所述支撑本体是航空航天飞行器的 一部分。
【文档编号】B29C65/00GK104302467SQ201380024422
【公开日】2015年1月21日 申请日期:2013年5月3日 优先权日:2012年5月15日
【发明者】B·布尔西耶 申请人:赫克赛尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1