限定旋转管材的设备和方法

文档序号:4483142阅读:158来源:国知局
专利名称:限定旋转管材的设备和方法
技术领域
本发明涉及限定旋转管材的设备和方法,更确切地说,本发明涉及在加工开口管工艺中,限定旋转的和平移的挤压材料管的设备和方法。
已知有多种类型的使吹塑薄膜管稳定的设备,包括较小直径辊轮的圆柱形壳体的尺寸定型器必须位于管件固化线以上,以免管件与辊轮粘接和产生表面缺陷。但是,当管件已固化时,这一位置完全消失了尺寸定型器的任何尺寸限制特性。管件越过内部芯轴物理地被伸展到最终直径尺寸,内部芯轴需要一内部加热取出机构,该机构使启动和操作产生困难并增加成本。管件和芯轴之间的接触也会产生表面缺陷。
在授予Herrington的美国专利US-3,976,732和授予Planeta的美国专利US-4,728,277中描述了有空气腔的环。在Herrington的专利中,围绕吹塑管没有多个空气环,而且这些空气环有不同的直径,以便机械地限定吹塑管的直径。空气环呈锥形,而不是圆柱形,这样不能获得稳定的薄膜管径。在Planeta的专利中,公开了一种薄膜处理设备,其中设有多个尺寸稳定装置,这种装置产生沿轴向对齐的空气环,控制吹塑管的形状。各设备都采用两个相反运动平行于管壁的空气流,以产生低压区域使薄膜定位,这不能生产出管径足够稳定不变的薄膜产品。授予Shinmoto等人的美国专利US-4,655,988公开了一种真空系统。缠绕的多个空气引导臂象旋涡一样形成一种结构件,该结构件的内径可用物理方法调正象隔板一样。在引导臂和薄膜之间设有空气缓冲层。但是,这些复杂的空气基座系统依赖于空气冲击吹塑管并围绕吹塑管流动,不能为管件提供连续缓冲作用。
尺寸反馈系统在固化线以上测量吹塑薄膜管的直径,并改变管件内部的空气量,以控制管径。这些设备用声纳或光电传感器监视管径。但是,当管件形成最后管径时,这种方法需要补偿已经出现的尺寸误差。这就导致管件具有变化的直径,其取决于空气控制系统的各个反应。此外,在所有已知的系统中,采用的封闭管件的部分操作方法是用两个辊轮间隙夹紧这种典型的封闭方法。在这些系统中,由于空气量和压力的变化,管径扩大或缩小,测量直径的变化需要进行矫正。利用这些方法在生产开口管的系统中控制管径,操作缓慢,粘度不高。
此外,当采用内部不完全封闭或塞子而不用两个辊轮夹紧管件时,不适于用这些尺寸反馈系统控制管径,这种管径对管内压力和空气量的变化反应非常小。这些压力控制系统无一能快速精确地反应来防止由于泄漏产生的管径变化。因此,在不完全封闭的开口管加工过程中,不适于采用这些系统。还有,在这些方法中,加工条件的波动,例如聚合物性质或温度的变化,能够产生较大的管径和较低的固化线高度。
在管径成型之后,可用定径构件使挤压一吹塑薄膜管定位,并与挤出膜同心设置,用物理方法防止管件膨胀超出定径构件的内径,控制吹塑薄漠管膨胀到所需要的管外径范围内。定径构件包括围绕管件设置的壳体。壳体内设有环形套,其具有呈圆柱形的中央通道,适于容纳管件,使管件沿其纵向轴线朝下纺线方向移动。壳体和套壁构成气体腔,气体腔中的压缩空气与通道分隔开。沿着套内表面的气体层以足够高的压力限制管件,使其达到需要的管外径。同时,管件固化,并防止管件与套接触。气体层形成使所选择的管径精确地保持恒定的空气支承。
定径构件可作为生产开口薄膜管的设备中的部件,如在1991年3月21日与本申请同期递交的美国专利申请07/673,285中详细描述的内容,其中说明书可作为参考。生产开口管薄膜的设备包括支架,安装在支架上的挤出模,安装在支架上位于挤出模下行线一侧的传送机构,和安装在支架上位于传送机构下行线一侧的管切割器。用固定的挤压机,从挤出模连续地向下行线方向挤出热塑性材料,形成具有大致呈圆柱形中央纵向内腔的管件。传送机构设有驱动辊轮,其位置便于接触管件和朝着下行线方向牵引管件。驱动器使挤出模和传送机构一起相对于管切割器旋转。这样,在管件和管切割器之间产生相对旋转。管切割器相对于下纺线方向偏置一定角度,当管件朝下纺线方向移动时,切割器将管件切割成,有所需宽度的连续的细长片材或带条。空气封闭件安装在支架上,基本上封闭管件的内腔,以防止空气穿过内腔开口端泄漏。管件加压器控制管件中央纵向内腔中的空气量,使管件横向向外膨胀到所需要的尺寸范围内。


图1是本发明设备中主要元件的示意图;
图2是图1所示设备的正视图,其表示挤出模,定径构件,空气封闭件,传送机构和管切割器的安置方案;
图3是放大的正视图,表示图2中所示的挤出模和定径构件,图中有局部剖视说明上述部件的细部构造;
图4是图3中所示定径构件的放大的剖面图;
图5是图2所示设备的管件传感控制系统的示意图。
首先,参照图1,设计的设备10用于连续生产细长片材或带条12。这种带条12可以是单层或多层材料,例如覆盖粘接剂的胶带。通常,设备10包括可转动的挤压可流动材料的挤出模14,如热塑性聚合材料,以形成泡沫状件和管件16。可流动材料从一个或多个挤压机20经导管或通道18移动到挤出模14。转节器22可使通道18将可流动材料送入旋转着的挤出模14中,例如挤压机20可生产基材上覆盖有粘接剂的材料。一台挤压机20生产基材,另一台挤压机20生产粘接剂材料。管件16离开挤出模14后,穿过限定管径大小的定径器24,定径器24使管径保持不变。设置在管件16内的管口封闭件26位于定径器24的下游方,装有多个辊轮30的传送机构28位于管口封闭件26的下游方。管件16接着越过芯轴32,切刀或管件切割器34将管件16切割成为至为一条细长的带条12。当挤出模14和管件16相对于管切割器34旋转时,管切割器34连续将管件16切割成带条12。然后带条12绕过惰轮36,接着缠绕在缠绕器上,例如水平缠绕器38。
本文中所述“下行线”是指材料运行的方向,例如,当设备10进行生产时是管件16的运行方向。附图中下行线方向是由挤出模14向上,正如图1中代号40的箭头所指示的方向。下行线并不意味与垂直或水平方向有任何关系。
挤出模14可以是用于吹塑薄膜加工中的常规加热装置,最好是属于共挤多层管件16的这种类型,例如多层管件具有聚合物基材层和压敏粘接剂层(“PSA”),或其它粘接剂层附着在管件16的外侧,如美国专利US-3,342,657;US-4,643,657和US-4,753,767;日本专利JP-昭开63-151429以及英国专利GB-1,553,881(本文中参考了上述文件),它们描述了多种吹塑挤出模。
挤出模14可以旋转,并可安装在运转台42的中央,运转台安装在支架44上。运转台42的运转速度可达115rpm。输送线直接在模具下方,位于旋转轴线的中央,并与转节器22相连接。转节器22可以是任何商业上能买到的部件,在温度达到288℃(550°F)和压力达到41×106N/M2(6000psi)条件下,可用它处理高粘度流体。转节器22的固定端用另一条输送线48连接到固定挤压机20,所以可流动的材料能从挤压机20输送到旋转模14。挤出模14由电加热,通过滑环组件实现线路连接,滑环组件与输送管线同心安装,并与运转轴线同心。在操作过程中,这种设置方案可使挤出模14完全运转。这种运转运动可传递到挤出的管件16上。
挤出模14最好包括芯轴50和包围芯轴50的环形开口52。可流动材料穿过环形开口52基本上被连续挤压,以形成圆柱形管件16,随着形成管件16,管件16沿其纵中心轴线朝下行线方向移动。穿过芯轴50和挤出模14设有空气通道54。空气通道54的一端通过空气导管58与压缩空气源56相连通。传送流体。空气通道54的另一端与管件16的内腔60的中心相连通。在设备10开始运行期间,穿过空气通道54使压缩空气进入管件16内腔60中央,以使管件16扩大或膨胀。在设备10正常运行操作期间,用适当的阀机构(未图示)封闭空气通道,与非膨胀管件不同,管件膨胀产生出吹塑成型的管件。
可提供两台固定的挤压机20,以使熔化,混合和传送可流动材料和任何粘接材料,通过转节器22将它们输送到挤出模14。这些挤压机20可以是任何合适的装置,例如螺旋操作的挤压机,它具有从动螺旋可使材料熔化并推送过加热桶,送到挤出模14。挤压机20不随着挤出模14旋转。
驱动器64安装在支架44上,以便使挤出模14和传送机构28相对于管切割器34旋转。显然,当挤出模14和传送机构28转动时,切割器34最好保持静止状态,当挤出模14和传送机构28保持静止状态时,管切割器34可转动。这样,在管件16和管切割器34之间产生相对运转,当管件16向下行线方向运动时,能使切割器34将管件16切割成基本上连续的具有所需宽度的片材。驱动器64可以是具有转速计的直流伺服电机,借助输入电压信号可控制模具14的旋转速度。
传送机构28被安装在支架44上,并位于挤出模14的下行线处,由它牵引管件16朝下行线方向移动。传送机构28牵引未倾斜和未封闭的开口管件16,因此可在管件的下行线一方通向管件。此外,传送机构28从开口的柔性管侧面驱动管件16,而不象现有技术中使用的方法那样从管件的顶部密封处进行驱动。
传送机构28包括4个驱动辊轮30,它们位于管件16的下行线一方,衔接并牵引管件16。驱动辊轮30安装在运转台68上,因此通过驱动辊轮30的相同运动能独立控制管件16朝下行线运动的速度和管件16的转速。可用分开设置的电机控制管件16向下行线移动的速度和管件16的转速。运转马达74通过驱动链76转动运转台68以提供转速。驱动马达78通过传动带(未图示)驱动或转动辊轮30以提供薄片移动速度。
确定管径的定径构件24安装在支架44上,并位于挤出模14和传送机构28之间,其具有两个重要功能。一是使管件16定位,并让管件16与设备10中的其它部件对准,二是在管件16由挤出模14成型后,控制管件16膨胀到所需的管外径范围以内。所述实施例的定径器24呈圆柱形,具有两个开口端,可使管件16从其内侧通过。只要在固化线86的范围内沿着管件16的轴线定径器的周向尺寸接近不变,定径构件也可是长宽比很小的椭圆形或多边形物体。设置定位构件24,以便采用物理方法限制吹塑薄膜管件16在固化线86上或下的区域范围内不产生过量的径向或横向膨胀,在固化线上,管件的可流动材料固化。所谓“固化”,在这里是指材料从液态转变为固态。更准确地说,固化线86是管状薄膜冷却到一确定温度的位置,在这一温度,管状薄膜进一步沿轴向拉伸的阻力大于在管件16的内、外侧之间的压力差施加的力。在固化线86的下行线,管件16不再膨胀。
参照附图3和4,定径构件24是一圆柱形管,其设置在挤出模14的下行线一方,并与挤出模14同心。定径构件24包括壳体90,在壳体90内设有环形套。环形套92有基本上呈圆柱形的中央通道94,通道94容纳管件16,使管件16沿着自身的纵向轴线朝下行线方向移动,同时以物理方法限制横向运动。环形套92的高度取决于管件16所经历的加工条件的变化量,但变化的最大范围是管件半径的1~6倍。管件16的固化线86位于环形套92的顶部和底部之间。环形套92的内径大致等于或稍大于所需的最终管径,从而环形套内孔形成通道94。
环形套92必须允许使熔融的管材滑动通过,而不发生严重的摩擦或划伤。因此,套92内壁的摩擦系数应当很小。受压力作用的管件16的直径接近于环形套92的内径。在优选的实施例中采用了压缩空气层或表面98。这个支承空气层98通过分别减小或增大环形套92内表面的空气压力,还可作为加大或减小管径的调节机构。在此实施例中,环形套包括将空气腔100与通道94分隔开的壁96。空气入口102使压缩空气从压缩空气源(未图示)进入空气腔100。
环形套92呈多孔形,这种套的多孔性能允许压缩空气以空气腔100穿过套92的套壁96到达通道94,沿着套92的内壁表面形成空气层98。空气层以相当大的压力将管件16限定到所需的外径尺寸,同时管件16固化,而且,空气层98能防止管件16与套92相互接触,因此在管件16上不会出现表面缺陷。当部分管件16朝套92膨胀时,空气受到限制,并且邻近管件部分的空气压力增大,迫使管件16横向向内移动,离开套92的内壁,而且将管件16稳定在通道94的中央。在所述实施例中,套壁96的多孔性材料是微孔材料,它的气体渗透率在压力降9.95KN/M2条件下接近于5.49LPM/CM2,在压力降29.85KN/M2条件下接近于13.2LPM/CM2。这种微孔材料可以是多孔性的金属或塑料。但是,其它具有各种孔径的多孔材料也可使用。只要能获得所需的压力降,任何尺寸的孔均可得到应用。定径构件24有带单个腔的连续多孔内表面。空气层98也是连续的表面,而不是形成多个分开的空气流。这样可采用较低的空气流速率形成空气层98,并可在定径构件24和吹塑管件16之间形成较小的间隙。结果是获得的最终管径比已知的管径调节装置获得的管径更均匀一致,这是因为在管件固化期间,管件16保持在不变的位置上。还有,在定径构件24内可有温度变化范围。
因此,定径构件24采用空气浮动的原理基于三个力的平衡作用在管件16外侧区域,而不是作用在定径构件24内侧的压力产生作用力;管件16内部压力产生的作用力;以及拉伸聚合物材料管件16产生的作用力。管件16在定径构件24中移动到这三个力平衡的位置处。直到三个作用力达到平衡,采用静压力推开管件16,而不是用动压文氏效应将管件16吸入定径构件24。通过一定距离加强冷却和增加生产率也能将管件16从定径构件24内侧推开。
定径构件24相对于挤出模14可安装到支架44上,这样定径构件24在预先确定的范围内,在中央通道94中调正固化线86的位置。只要固化线保持在壳体90以内,就将生产出同一直径的管件16。套92的纵向轴线与通道94的纵向中心轴线大致平行,其长度是通道94直径的1/2到3倍之间。
此外,在已知的加工系统中,工艺缺陷使管径变化。当使用定径构件24时,工艺缺陷仅仅在上行线上改变形成最终直径的管件16的形状,并使固化线朝下行线移动。但是,因为管件16保持在定径构件24内,管件16的直径保持不变。对于较大的缺陷,如针孔,过量密封,漏洞或薄膜疏孔,借助简单的开关控制系统即可得到补偿,开关控制系统安装在定径构件24的基座上,利用管件16中排出或向内注入空气,监视和控制管件形状。另外,也可采用另一种简单的控制系统,测量直径、比较管内的空气压力和空气层98的压力,良好地控制和调正管径。
因此,定径构件24优于已有的旧方法增加了管径的稳定性,而且增加了管件16的稳定性。还增加了测量系统测量管径的精确度。当加工条件有较大变化时,定径构件24能将吹塑薄膜的管径控制在很小的变化范围内,例如管径的0.5%。
如图5所示,管件传感控制系统108在管件16进入定径装置24的通道94之前感应部分管件16,并监视管件16的形状。然后管件传感系统108向管件压力调节器110发射信号,压力调节器可以由人工设定数值的比例控制器。当感应的部分管件超出预定范围时,根据发射信号,管件传感系统108调正管件16内的空气量,使固化线86移动,并调正管径。
管件传感控制系统108是光电控制系统,包括利用两个红外光线(IR)传感器114,116的简单开关控制系统。在所述实施例中,两个红外光线传感器114,116安装在定径构件24的上行线一例。IR红外光线传感器114,116监视管件16的形状,并能将信号送往压力调节器110,由人工设定目标压力,以便调正管件16的纵向内腔60中央的空气量。当部分管件16进入通道94,管件外径大于第一预定尺寸时,第一IR红外光线传感器114产生感应。然后,第一IR红外光线传感器114向电磁阀118传送反馈信号,指示管件外径过大。接着电磁阀118开启,减小管件内腔60内的空气量。当部分管件进入通道94,管件外径小于第二预定尺寸,第二预定尺寸小于第一预定尺寸,此时第二IR红外光线传感器116产生感应。第二红外光线传感器116接着向另一个电磁阀120传送反馈信号,指示管径小于预定直径。在这种情况下,电磁阀120开启,使管件16的内腔60中的空气量增加。如果任一传感器114或116连续操作,那么说明设定的空气压力值不是过高就是过低,这时应当对压力调节器110的设定值进行人为调正。
脉冲发生器122与传送机构28的一个辊轮30相连,并向传送机构28的驱动马达78的数字控制器传送反馈信号。这个信号也以某一频率发射到伏特计(F/V)124,向伺服电动机126,128和130提供基准电压,这些伺服电动机分别控制挤出模14,传送机构28以及管件切割器34的运转。这些伺服电动机126,128,130的基准电压可得到调正,或者通过放大器132放大,以便控制朝下行线送进速度和运转速度之间的关系。因此,由宽度测量器134测量切口宽度。调正量或放大量的数值可围绕设定数值自动调正,以保持切口宽度不变。
管口封闭件26安装在支架44上,以便封闭管件16的内腔60,防止空气从内腔60的开口端泄漏,并且有助于控制管件16内的压力。封闭件26是带有弹性外边缘的盘形物。
管件切割器34安装在支架44上,位于传送机构28的下行线,以便将管件16切割成为连续的细长带条12。切割器34也限定管件16的内腔60的开口端,而且管件切割器34相对于下行线方向偏置一定角度。根据薄片材料的性能,管件切割器34可采用刻痕、剪切、刀切开口系统。
按下述方式操纵设备10可生产出细长带材12。首先,用挤压机20挤压可流动材料,如象聚乙烯那样的聚烯烃,使可流动材料朝下行线方向穿过旋转模14的环形孔口,形成有端部开口的管件16,管件16具有大致呈圆柱形的中央纵向内腔60。当管件16成型时,管件16的中央纵向内腔60受流体,最好是空气,压力作用,在预定范围内使管件16横向向外膨胀到所需的外径尺寸。由传送机构28朝下行线方向输送管件16,传送机构28接触并牵引管件16,而且与挤出模14同步旋转。
通过使管件16穿过不旋转的定径构件24,控制管件16的位置和外径。定径构件24具有环形微孔套92,致使获得所需外径的管件16在套92中固化,迫使压缩空气穿过微孔套92进入定径构件24的中央通道94,形成很薄的空气层98,这一空气层98沿套92具有高于四周空气的压力,管件16被限制在套92内。沿着套92的内表面空气以足够大的压力形成空气薄层98,使限制管件16达到需要的外径尺寸,同时管件16固化,并防止管件16与套92接触。朝着套92内壁膨胀的邻近部分管件16的空气压力增加,限制空气流动,迫使管件16横向向内移动,离开套92的内壁,在中央通道94中使管件16处于稳定状态。
当受感应的部分管件16超出需要尺寸范围时,在部分管件16进入定径构件的通道94之前,传感控制系统对管件16的外径产生感应,从而调正管件16内部的空气压力,使管件16膨胀或收缩。当进入通道94的管件16的外径大于第一预定尺寸或小于第二预定尺寸时,产生光电感应的光电传感装置114,116完成上述操作步骤。当管件16的外径大于第一预定尺寸时,发射反馈信号降低管件16内的空气压力。当管件16的外径小于第二预定尺寸时,发射反馈信号增加管件16内的空气压力。
穿过定位构件24以后,牵引管件16越过管口封闭件26,管口封闭件26将压力保持在管件16的上行线部分,同时在封闭件26内控制穿过通道。最后在空气作用下,管件16浮动地支承在芯轴32上,接着,与下行线方向偏置一定角度的切割器34将管件16切割成连续的细长带条12。挤出模14,传送机构28和切割器34的转速,以及管件16朝下行线移动的速度由传感控制系统108控制,以便改变细长带条12的宽度。
权利要求
1.生产细长带材的方法,其步骤包括朝下行线方向挤压可流动材料通过模具的环形开口(52),形成大致呈圆柱形具有纵向内腔(60)的端部开口管件(16);用空气挤压管件(16)的中央纵向内腔(60),使管件(16)的外径横向向外膨胀到预定的尺寸范围内;用传送机构(28)朝下行线方向输送管件(16),传送机构(28)具有至少一个驱动辊轮(30),驱动辊轮(30)与管件(16)相接触并进行牵引;在管件(16)的开口处用切割器(34)将管件(16)切割成为连续的细长带条,切割器(34)与下行线方向偏置一定角度,在管件(16)被切割以前,它依然保持开口形状;当管件(16)朝下行线移动,由挤出模(14)和传送机构(28)一起使管件(16)相对于切割器(30)旋转时,在管件(16)和切割器(34)之间产生相对转动,因此由切割器(34)将管件(16)切割成为连续的、具有所需宽度的带条;防止压力流体通过内腔(6a)的开口端泄漏;以及使管件(16)朝下行线方向移动,穿过环形套(92),当管件(16)在环形套(92)内时,管件(16)固化以前,管外径达到最终尺寸,其尺寸大小在所需的范围以内。
2.根据权利要求1所述的方法,其特征是环形套(92)是微孔体,并具有中央通道(94);进一步的加工方法包括以下步骤迫使压缩空气穿过有微孔的套(92)进入中央通道(94),以形成很薄的空气层(98),沿微孔套(92),薄空气层(98)的压力高于四周的空气压力;在通道(94)内用薄空气层(98)限制部分管件(16),其中套(92)有足够大的孔隙度,可使气体从气体腔(100)穿过套(92)进入通道(94),沿套(92)的内表面形成的空气层(98)以相当高的压力限制管件(16),使它达到需要的外径尺寸,同时,管件(16)固化,并防止管件(16)与套(92)相互接触,套(92)的孔隙度又足够小,以致邻近部分管件(16)的气体压力增加,管件(16)朝套(92)膨胀,限制气流迫使管件(16)横向向内移动,离开套(92)的内壁,在中央通道(94)内使管件(16)处于稳定状态。
3.根据权利要求2所述的方法,其特征是进一步的加工步骤包括当被感应的部分管件(16)的尺寸超出所需的范围时,在管件(16)进入通道以前,传感控制系统对部分管件(16)产生感应,并发射信号调节管件(16)内气体的压力,使管件(16)膨胀或收缩。
4.根据权利要求3所述的方法,其特征是感应部分管件(16)的步骤包括当进入通道(94)的管件(16)的外径大于第一预定尺寸时,光电传感器对部分管件(16)产生感应,并发射反馈信号降低管件(16)内的空气压力;此时管外径大于第一预定尺寸;当进入通道(94)的管件(16)的外径小于第二预定尺寸,第二预定尺寸小于第一预定尺寸时,光电传感器对部分管件(16)产生感应,并发射反馈信号增加管件(16)内的压力,此时管件(16)的外径小于第二预定尺寸。
5.根据权利要求1所述的方法,其特征是进一步的加工步骤包括相对挤出模(14)设置环形套(92),以致管件材料在通道(94)中固化。
6.一种定径构件(24),管件(16)成型以后,用这种定径构件控制挤出一吹塑薄膜管膨胀到所需的外径尺寸范围,定径构件包括围绕管件(16)设置的壳体(90);壳体(90)内设有环形套(92),环形套(92)内具有大致呈圆柱形的中央通道(94),它适于接收管件(16),并使管件(16)沿其纵向轴线朝下行线方向移动,壳体(90)和套(92)有低摩擦系数的壁(96),当管件(16)在环形套(92)内时,管件(16)固化以前,管件(16)外径达到最终尺寸,其尺寸大小在所需范围以内;将管件(16)尺寸控制在上下两个极限之间的装置。
7.根据权利要求6所述的定径构件,其特征是控制装置包括气体腔(100),气体腔(100)由壳体(90)和套壁(92)限定,将气体腔(100)和通道(94)分隔开;定径构件(24)也包括气体入口(102),以便将压缩空气从压缩空气源送入气体腔(100);其中套(92)有足够大的孔隙度,以使气体从气体腔(100)穿过套(92)进入通道(94),沿套(92)内表面形成的气体层(98)以足够大的压力限制管件(16),使其达到所需的外径尺寸,同时,管件(16)固化并防止管件(16)与套(92)接触,套(92)又有足够小的孔隙度,致使朝套(92)膨胀的部分管件(16)附近的气体压力增大,限制气流,迫使管件横向向内移动离开套(92)的内壁,在中央通道(94)中使管件(16)保持稳定状态。
8.根据权利要求6所述的定径构件,其特征是套(92)用有微孔的材料制成,在压力降为9.95KN/M2条件下,这种材料的气体流动速率大约为,5.49LPM/CM2,在压力降为29.85KN/M2条件下,约为13.2LPM/CM2。
9.根据权利要求6所述的定径构件,其特征是包括传感装置(108),在管件(16)进入通道94以前,由传感装置(108)感应部分管件(16),还包括加压装置(110),以增加管件(16)内的压力,调正管件(16)内的空气量从而调正管径,当受应感的部分管件(16)超出所需的范围时,其中传感装置(108)向加压装置(110)传送信号,使加压装置(110)运转。
10.根据权利要求9所述的定径构件,其特征是管件的传感装置(108)包括第一光电传感器(114),当进入通道(94)的管件(16)的外径大于第一预定尺寸时,第一光电传感器(114)感应部分管件(16);当管件外径大于第一预定尺寸时,向管件加压装置(110)发射反馈信号;第二光电传感器(116),当进入通道(94)的管件(16)的外径小于第二预定尺寸时,第二光电传感器(116)感应部分管件(16),第二预定尺寸小于第一预定尺寸,当管件外径小于第二预定尺寸时,向管件加压装置(110)发射反馈信号。
11.根据权利要求6所述的定径构件,其特征是还包括定位装置,以便相对于挤出模可调正地安装定径构件(24),因此定径构件(24)能够沿上行线或下行线可调正地设置在预定范围内,致使管件(16)在壳体(90)的通道(94)内固化,大致平行于通道(94)的中心纵向轴线上的长度在通道(94)的直径的1/2和三倍范围内。
全文摘要
本发明公开了连续生产旋转细长带材,用于加工开口管件的定径构件。管件成型后,定径构件控制挤出—吹塑薄膜管膨胀,使其达到所需的外径尺寸。定径构件包括围绕管件设置的壳体,壳体内设有环形套,环形套具有大致呈圆柱形的中内通道,用中内通道接收管件,使管件沿其纵向轴线朝下行线方向移动。壳体与套壁形成空气腔,用压缩空气与通道隔开。沿套的内表面空气层以足够大的压力限制管件,使其达到所需的外径尺寸,同时管件固化并防止管件与套内表面接触。
文档编号B29C55/28GK1066022SQ9210296
公开日1992年11月11日 申请日期1992年3月21日 优先权日1991年3月21日
发明者史蒂文·J·勒尼尤斯, 约翰·W·劳克斯, 罗纳德·P·斯旺森, 尤金·威尔 申请人:明尼苏达州采矿制造公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1