聚四氟乙烯层压膜及其制造方法

文档序号:4484101阅读:548来源:国知局

专利名称::聚四氟乙烯层压膜及其制造方法相关申请本申请是1993年8月10日提交的美国专利申请08/104,731的继续申请。发明的背景本发明涉及混有氟塑料作为防渗组分的复合材料(如涂覆产品,层压膜和/或其组合物)。这种复合材料的具体应用包括发电厂和化工设备高温膨胀组件、化学容器盖、内胆和衬里,高温保温罩,防护衣等。以前,用于这种复合材料中的氟塑料有聚四氟乙烯(PTFE)、氟化乙烯-丙烯共聚物(FEP)和全氟烷氧基聚合物(PFA)。虽然这些材料具有优良的化学品耐受性和防渗性,但是它们缺乏韧性(在本文中,术语“韧性”是指一种材料抗多向撕裂的能力)。因此,在目前应用中,本领域中的熟练技术人员需要将这些材料与增强基材一起组合使用。通常,增强基材包括无氟塑料如玻璃纤维织物,在这种材料上以涂层和/或层压膜的形式施加氟塑料。虽然无氟塑料基材向最终复合材料提供了必需的韧性,但是它也伴随着已知的但认为是不可避免的缺点。例如,无氟塑料基材给复合材料带来了不需要的劲度、体积和重量。无氟塑料同时也抗拉伸(在许多应用中这是需要的)。但是最主要的是无氟塑料基材对化学侵蚀和降解的易损性。理论上说,基材可被复合材料中氟塑料组分所保护免遭化学侵蚀。但是在实践中基材的化学保护常遭到损伤,这通常是由于误操作或不可避免的由紧固件引起的撕裂(例如当将复合物装配成各种构件时的攻丝、铆接、钉接等)导致氟塑料组分的意外损伤引起的。一旦氟塑料的防渗性受到损伤,无氟塑料基材暴露在化学侵蚀下,复合物注定要失败。业已开发了包括带氟塑料涂层和/或膜、由氟塑料纤维编成织物的全氟塑料复合物。但是这种具有相对较低拉伸和撕裂强度的复合材料生产成本较高,因此仅适用于一定范围内。本发明的目的是提供一种新的,经改进的PTFE层压膜,它的拉伸和撕裂强度高,柔软性好,并具有优良的化学耐受性和防渗性。本发明的另一个目的是提供一种重量相对较轻的PTFE层压膜,其适合用于需要韧性、化学耐受性和柔软性的场合。本发明再一个目的是提供一种新颖的成本合理的本发明层压膜的制造方法。发明的概述根据本发明,取向的PTFE膜构成了层压膜。较好的是层压前PTFE膜未经烧结并且是单轴向取向的,一般这种膜在制造过程中经挤塑或压延。这种膜在层合过程中被烧结,但保留其取向。故意使至少部分PTFE膜层合时的取向方向不平行,并进行选择以获得多向抗撕裂性。形成的不包括无氟基材的层压膜具有韧性,从而消除了或实际上至少最大程度地降低了现有复合材料所有的许多固有缺点。附图简述图1是方向定位示意图,用于描述本发明不同实施例(下面将要详细描述)中取向膜的相对位置;图2是实施例1取向膜相对位置示意图;图3是本发明典型层压膜横截面简图;图4A和4B是描述在制造本发明层压膜时使用次层压膜(sublaminates)的简图发明的详细描述在下列讨论中,参考在图1中描绘的方位给出单轴向取向膜相互间的相对位置。根据ASTMD751-79测量拉伸强度、厚度和重量。用常规的梯形撕裂试验测量撕裂强度,例如,通过在90°-270°方向割开层压膜,随后测量在0°-180°方向上将割缝拉开所需要的力以获得在0°-180°方向上的撕裂强度。参见图2和图3,典型的本发明层压膜包括许多直接层压在一起(即它们中间没有放入粘结剂或连接剂)的轴向取向PTFE膜A、B、C、D。层压前PTFE膜最好未经烧结,并且最好是单轴向取向,其中至少一层膜的取向方向与至少另一层膜的取向方法成角度放置。典型的膜取向方位描绘在图2中。PTFE膜的厚度常为1-10mils,较好为2-5mils。在升压和升温条件下,在经加热的压板之间使用不同的时间间隔进行层压。所需层压压力只要能满足从膜堆之间挤出夹入的空气并促进相邻膜面对面接触即可。压力在lp.si.或其上即认为是合适的,较好的压力范围为40-60p.s.i.。选择层压温度(压板与层压膜的接触温度)以适应各种变化,包括不同的层压膜设计和热性能,被加工的PTFE膜的类型(如烧结的或未烧结的),构成层压膜的膜数量和厚度,在层压机中膜的滞留时间等。但是,在所有情况下,将整个层压膜样品加热至高于其组分膜的熔融温度(对未烧结的PTFE约为650°F,对烧结的PTFE稍微低于约621°F)。从而在粘合线(在该线上相邻膜的分子被搀和)上形成界面区域“z”。将层压温度控制在低于约900°F以避免降解或热干扰层压膜的表面膜。通常,层压温度约为660-760°F,较好为710-730°F。选择层压时间以使样品获得均匀的加热并尽量缩短时间以提高制造效率。层压时间通常为20-70秒,这取决于上述其它方法和设备的变化。通过下列实施例(在这些实施例中对含有各种组合未烧结PTFE膜的层压膜进行层压和烧结)对本发明及其优点作进一步的说明。单轴向取向的PTFE膜来自宾夕法尼亚州GarlocPlastomersofNewtown和罗得岛州DewalIndustriesofSaunderstown。未取向的(切片的)PTFE膜来自DewalIndustries。在下列实施例1-5中,层压膜在720°F、40p.s.i.层压70秒钟。在层压过程中对膜进行烧结,并在层压后保留其各自的取向方向。实施例1依下列次序将四片单轴向取向的未烧结2milPTFE膜A、B、C和D层压在一起制成层压膜。取向膜分别按如下Ao、Bo、Co和Do方向放置Ao0-180°Bo45-225°Co135-315°Do90-270°结果层压膜具有如表1所示的经改进的拉伸和撕裂强度。实施例2制得相同于实施例1的层压膜,但是取向膜分别是3mil单轴向取向的未烧结PTFE膜。形成的膜特点列于表1。实施例3依下列次序将八片单轴向取向的未烧结3milPTFE膜A-H组合在一起制成层压膜。取向膜分别按如下Ao-Ho方向放置Ao和Eo0-180°Bo和Fo45-225°Co和Go135-315°Do和Ho90-270°形成的层压膜特性列于表1。实施例4依下列次序将十六片单轴向取向的未烧结3milPTFE膜A-P组合在一起制成层压膜。取向膜分别按如下Ao-Po方向放置Ao、Eo、Io和Mo0-180°Bo、Fo、Jo和No45-225°Co、Go、Ko和Oo135-315°Do、Ho、Lo和Po90-270°形成的层压膜特性列于表1。实施例5依下列次序将十二片单轴向取向的未烧结8milPTFE膜A-L组合在一起制成层压膜。取向膜分别按如下Ao-Po方向放置Ao、Eo和Io0-180°Bo、Fo和Jo45-225°Co、Go和Ko135-315°Do、Ho和Lo90-270°形成的层压膜特性列于表1。表1*不能用现有的试验设备测量大于250磅/英寸的撕裂强度。实施例6依下列次序将四片单轴向取向的未烧结3milPTFE膜A-D组合在一起制成层压膜。取向膜分别按如下Ao-Do方向排列Ao0-180°Bo45-225°Co135-315°Do90-270°在660°F和60p.s.i.层压45秒钟。形成的层压膜特性列于表2。实施例7将四片单轴向取向的未烧结3milPTFE膜如实施例6排列组合在一起形成层压膜,层压在760°F、60p.s.i.进行20秒钟。形成的层压膜特点列于表2。表2</tables>改进本发明层压膜撕裂强度的物理因子间相互关系还不完全清楚。但是,业已显示出取得优良的撕裂强度是由于本发明层压膜能将撕裂点应力分散至较大的区域。膜在其取向方向上的高拉伸强度与膜在所有方向上的伸长性能组合在一起,有效地阻止撕裂应力点穿越层压膜的移动。业已确信当本发明层压膜受到撕裂时,撕裂应力点沿膜的两个或多个取向轴方向被分布在相对较短的距离。还确信膜在沿取向轴方向的距离限定的小区域内伸长。膜的伸长会导致在该限定的区域内发生少量的脱层。具有许多取向PTFE层的层压膜的最大撕裂强度最终取决于层压膜的拉伸强度,这是由于这种层压膜能有效地将撕裂应力更改为拉伸应力。本发明层压膜的另一个优点是层压膜伸长的能力,以及因受到环境压力而变形的能力(归结于蠕变)。蠕变是除载负后立即发生变形以外,在给定的环境中受应力作用经特定时间所发生的总体变形。例如,膨胀连接件受到内部压力而变形,并因此增加曲率半径(由于材料在连接组件之间空隙中伸长而形成)的能力服从众所周知的周应力关系而减小材料上的压力。具体地说,应力可定义如下F=(P×D)/2或者F=P×R其中F是材料上的周应力,P是连接件内的压力,R是材料形成的曲率半径。业已发现本发明层压膜具有足够的蠕变以便安全地按环境的要求变形,而且不会变形至损害层压膜的结构强度或防渗性的程度。本发明层压膜具有抗撕裂性,同时具有在受到施加在层压膜上的应力时而伸长的能力。这种独特的特性组合很可能导致本发明层压膜被推广至不能使用现有材料的场合。为便于比较,收集了烧结的未取向PTFE膜的数据。将该数据转列如下。表3还收集了单层取向PTFE膜以及无角度放置的PTFE膜层压膜的数据。该数据转列于表4。表4<表4中单层PTFE膜是烧结的,而构成层压膜的膜在层压前是未烧结的但在层压过程中被烧结。除切片PTFE外所有的膜都是单轴向取向的。比较本发明实施例和表3、表4的膜和层压膜可见,本发明层压膜在所有方向上都显示出经改进的撕裂和拉伸强度。就涉及大量堆积的PTFE膜的较厚层压膜而言,成层堆放单片膜成为难以接受的劳动强度并耗费时间。另外,最终层压前,堆积的膜容易受到偶然的移动,从而破坏膜取向的最佳排列。可通过制造未烧结膜的次层压膜,随后将其相互堆积进行最终烧结,接着层压成最终产品而将这些问题降至最小。例如,如图4A所示,可制得许多次层压膜10、12、14和16,并且可储存之以便以后需要时使用。每个次层压膜包括适当角度放置的单轴向取向未烧结PTFE膜A、B、C、D,以适当的滞留时间在低于构成膜的熔融温度和压力下将这些膜层压在一起。具体的次层压条件是温度约为250-350°F,较好约为300°F,压力约40p.s.i.,滞留时间为20-25秒。形成的次层压膜具有足够的结构强度以经受住随后储存和加工过程中的脱层,但是用其它方法可使之快速脱层而不使单层膜变形、伸长或降解。此外,次层压膜在很大程度上无伴随烧结而来的内应力,从而如有必要,可将次层压膜细分成更小的片而不产生变形。如图4B所示,在“如有必要”的基础上,可快速高效地将次层压膜组合在一起,形成具有单层膜堆积和层压制得产品的所有特征和优点的相对较厚的最终产品。用下列实施例8和9具体说明次层压膜和这种次层压膜组合而成的层压膜。实施例8将四片单轴向取向的未烧结PTFE膜A-D如下放置组合在一起制成次层压膜Ao0-180°Bo45-225°Co135-315°Do90-270°在300°F和40p.s.i.层压25秒钟制成次层压膜。形成的次层压膜显示出上述特性。实施例9将四片实施例8的次层压膜组合在一起形成层压膜。在720°F,60p.s.i.层压70秒钟形成层压膜。形成的层压膜具有下列特性厚度(英寸)0.060重量(盎司/码2)91.2拉伸强度(磅/英寸)0-180°382-34890-270°275-330撕裂强度(磅/英寸)0-180°>25090-270°>250本发明层压膜不仅优于具有累赘的织物基材的层压膜,并且它的潜在应用还包括无数至今仍不适合于氟塑料层压膜的场合。事实上任何需要改变层压膜形状以适合其环境而不损害其强度和防渗性的应用都是本发明韧性PTFE膜的潜在应用。这种应用包括,例如真空模塑层压膜或膨胀连接层压膜。在设计和选择膨胀连接件时,由本发明层压膜制得的膨胀连接件对定向的,旋转的或角度的容许误差的能力是很重要的。在本领域中的熟练技术人员应该能理解除了PTFE膜外,本发明层压膜可包括氟塑料膜,并且本发明层压膜可与非氟塑料材料组合在一起。还可理解PTFE膜不需要全部由PTFE组成,它可以包括其它基材(如研碎的玻璃纤维,金属或含氟弹性体)的量使得这种基材的存在不影响已知的本发明的优点。在本领域中的熟练技术人员应该理解在不偏离本发明的范围的情况下,可对上述实例进行许多改进。权利要求1.一种柔性氟塑料层压膜,其包括在压力和高于所述膜的熔融温度下直接层压在一起的许多轴向取向的聚四氟乙烯膜,层压后所述膜保留轴向取向,并且至少一层所述膜的取向方向与至少另一层所述膜的取向方向成角度放置。2.如权利要求1所述的层压膜,其特征在于层压膜是烧结的。3.如权利要求1或2所述的层压膜,其特征在于所述膜在层压前是未烧结的4.如权利要求1所述的层压膜,其特征在于所述膜是单轴取向的。5.如权利要求1所述的层压膜,其特征在于所述膜的厚度为1-10mil。6.如权利要求1所述的层压膜,其特征在于相邻膜间的粘合线上存在分子界面。7.一种柔性的氟塑料层压膜,其包括在压力和高于所述膜的熔融温度下直接层压在一起的许多未烧结的轴向取向的聚四氟乙烯膜,在所述层压膜中相邻膜间的粘合线由分子界面区域所限定,在层压过程中所述膜被烧结并且在层压后保留轴向取向,并至少一些所述膜的取向方向与至少另一些膜的取向方向成角度放置。8.一种制造柔性氟塑料层压膜的方法,包括(a)以直接面对面相互接触的方法堆积许多轴向取向的聚四氟乙烯膜,其中至少一层所述膜的取向方向与至少另一层膜的取向方向成角度放置;(b)在高于所述膜的熔融温度的温度下将由此堆积的膜置于压力下,所放置的时间足以使所述膜产生层压,层压后所述膜保留轴向取向。9.如权利要求8所述的方法,其特征在于将所述膜加热至约660-760°F的温度进行层压。10.如权利要求8所述的方法,其特征在于将所述膜置于至少1p.s.i.的压力下进行层压。11.如权利要求8所述的方法,其特征在于层压时间约为20-70秒。12.如权利要求8所述的方法,其特征在于在相邻膜之间的粘合线上产生分子界面区域。13.如权利要求8所述的方法,其特征在于层压前所述膜是未烧结的,并且所述膜在层压过程中被烧结。14.如权利要求13所述的方法,其特征在于层压前,至少部分所述膜被完整地与次层压膜组合。15.如权利要求14所述的方法,其特征在于在升温和升压下将所述膜一起挤压,挤压的时间足以使相邻膜之间的界面产生粘合,所述粘合使得次层压膜快速脱层而不发生变形、伸长或降解。16.如权利要求15所述的方法,其特征在于将所述膜置于约40p.s.i.的压力下形成所述次层压膜。17.如权利要求15所述的方法,其特征在于将所述膜加热至约250-300°F的温度制得所述次层压膜。18.如权利要求15所述的方法,其特征在于将所述膜置于升温升压条件下约15-25秒制得所述次层压膜。19.一种制造柔性氟塑料层压膜的方法,包括(a)以直接面对面相互接触的方法堆积许多单轴向取向的聚四氟乙烯膜,其中至少一层所述膜的取向方向与至少另一层膜的取向方向成角度放置;(b)将由此堆积的膜置于压力下同时将其加热至高于所述膜的熔融温度的温度,加热的时间足以形成层压膜而不破坏所述膜的取向。全文摘要一种柔性的氟塑料层压膜,包括在升温和压力条件下层压的许多单轴向取向聚PTFE膜,并且至少一层所述膜的取向方向与至少另一层膜的取向方向成角度放置。层压后膜保留其取向。文档编号B29C65/02GK1159166SQ94195153公开日1997年9月10日申请日期1994年8月8日优先权日1994年8月3日发明者S·W·蒂皮特,R·C·利巴斯申请人:涂敷纺织品股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1