锅炉蒸汽温度的自动控制方法

文档序号:4491738阅读:557来源:国知局
专利名称:锅炉蒸汽温度的自动控制方法
技术领域
本发明涉及一种锅炉控制技术,特别是指一种锅炉蒸汽温度的自动控制方法。
背景技术
众所周知,锅炉蒸汽温度(以下简称汽温)的控制是一个难题,按目前典型的汽温自动调节方法(以下简称典型法)设计的自动调节系统的运行效果不理想,汽温波动大(±15℃,短时间波动超过±20℃),自动投入率低,不但影响机组的热效率,还威胁汽轮机组的安全运行。其原因是典型法只是取汽温作为调节参数(有的还取减温器前汽温作为前馈参数),并以蒸发量作为修正参数,但都不能克服燃烧因素对汽温的扰动,所以汽温波动势必很大,当蒸发量变化比较大时,波动就超出了允许的范围,只好退出到手动调节。锅炉汽温自动调节非常困难,其根本原因是,燃料量变化之后,锅炉蒸发量(以下简称蒸发量)经过一段较长的滞后时间才变化;当燃料首先变化时,蒸发量滞后一段时间才变化,但由于燃料变化后烟气温度和烟气量迅速随着变化,这样就造成在滞后时间内蒸汽所需要的吸热量与烟气的实际供热量的不平衡;相反,当由于用汽负荷变化而引起蒸发量首先变化时,为了保持锅炉负荷的平衡则必须调节燃料随之变化,而燃料量变化后蒸发量滞后一段时间才变化,这样也造成在滞后时间内蒸汽所需要的吸热量与烟气的实际供热量的不平衡。这两种情况都是燃烧对汽温的扰动,前者是主动的,后者是被动的,都造成汽温大幅度变化。事实上,引起汽温变化的还有燃料特性和锅炉运行特性的变化,但这些变化都是比较缓慢的,可以根据汽温的变化来自动调节。而前述的燃烧对汽温的扰动是动态的、迅速的,而且是强度很大的扰动,必须在扰动发生的同时作出响应,不能等到汽温变化后再调节。另外,在典型法中,不管蒸发量是多少,相同的汽温变化量对应相同的减温水变化量,这样显然不合适,因为蒸汽的细热量与蒸发量和汽温变化量的乘积成正比,不同的蒸发量在相同的汽温变化量时需要的减温水变化量是不同的,典型法自动调节的结果是增加了扰动,所以汽温波动大。
为此,本发明的申请人对典型法进行了改进,可克服典型法的缺点,实际应用证明,自动投入率和汽温控制的稳定程度都比典型法好很多。

发明内容
本发明要解决的技术问题是提供一种运行稳定、汽温控制准确的锅炉蒸汽温度的自动控制方法。
本发明的技术方案是这样的一种锅炉蒸汽温度的自动控制方法,是将过热汽温度偏离设定值的程度换算成需要减温的热量,根据需要减温的热量经过PID运算后调节减温水流量,与测量到的减温器前后水温一起计算得出实际减温的热量,直到实际减温的热量与需要减温的热量平衡为止。
上述的一种锅炉蒸汽温度的自动控制方法中所述的需要减温的热量=汽温修正+负荷修正+燃烧修正,其中汽温修正=蒸汽流量×(过热汽温度-汽温设定),负荷修正=负荷修正系数×蒸汽流量×(过热汽温度-汽温设定),燃烧修正=燃烧修正系数×(实际给煤量-理论需煤量),理论需煤量=蒸汽流量/原煤热值;负荷修正系数为单位质量的蒸汽的温度每变化1℃所需吸收或者释放的热量,燃烧修正系数为单位质量的给煤量的变化所产生的热量并传递给蒸汽的热量的变化。
上述的一种锅炉蒸汽温度的自动控制方法中所述的实际减温热量=减温水流量×(减温后水温-给水温度),本发明的方法与现有技术相比,具有下述优点(1)本发明将自动调节法中各个环节之间的关系都换算为热量的关系,并使之满足相互的平衡,这样的改进对克服汽温波动起到十分积极的作用。
(2)本发明增加了一个燃烧修正环节,这个环节的输出变化量是实际燃料供应量和实际蒸发量所需要的燃料量的函数,而且输出的变化量与实际燃料供应量的变化量成正比、与实际蒸发量所需要的燃料量的变化量成反比。其输出的变化直接调节减温水量变化,用减温水吸收蒸汽的热量变化来补偿蒸汽吸热量与烟气供热量的不平衡,使得汽温未变化之前就有效地遏制了扰动的影响,从而保持汽温的稳定,这就是本发明与典型法的根本区别,对自动调节汽温稳定起到关键作用。
(3)本发明将汽温的变化与蒸发量的乘积换算成吸热量的变化,同时也将减温水量的变化换算成热量的变化,并且按热量平衡关系进行调节,这样就保证了在不同的蒸发量和不同的汽温变化时,减温水变化量都保持热量平衡,从而保证适当的减温水变化量,实现精确调节,因此本发明比典型法更为有效地稳定汽温,可将汽温控制在±5℃,短时间的最大偏差不超过±10℃,完全可满足汽轮机组的正常工作温度要求。


图1是本发明的控制方框图。
具体实施例方式
参阅图1所示,本发明的一种锅炉蒸汽温度的自动控制方法,其特征是将过热汽温度偏离设定值的程度换算成需要减温的热量,根据需要减温的热量经过PID运算后调节减温水流量,与测量到的减温器前后水温一起计算得出实际减温的热量,直到实际减温的热量与需要减温的热量平衡为止。
事实上,汽温偏离设定值时需要减温的热量主要由蒸汽流量和汽温偏差决定,所以,设计了一个“负荷修正”环节,根据蒸汽流量和汽温的高低按下式估算需要减去多少热量负荷修正=负荷修正系数×蒸汽流量×(过热汽温度-汽温设定)运行中,影响汽温变化的主要原因是燃烧的实际热负荷(即给煤量)与蒸汽流量之间的平衡关系,所以,还设计了一个“燃烧修正”环节,修正量的大小按下面各式估算理论需煤量=蒸汽流量/原煤热值燃烧修正=燃烧修正系数×(实际给煤量-理论需煤量)需要减温热量=汽温修正+负荷修正+燃烧修正实际减温热量=减温水流量×(减温后水温-给水温度)为了实现无扰切换,手动状态时“温度修正PID调节”的输出=实际减温热量-燃烧修正-负荷修正“跟踪PI调节”的输出=执行器的阀位实际开度实施例在佛山市顺德区金纺集团热电站中,四台35T/h的燃煤锅炉上采用本发明的方法进行过热蒸汽温度控制,具体的控制参数为负荷修正系数=1.0,燃烧修正系数=4.0,温度修正PIP=400、I=500,跟踪PIP=80I=6,蒸汽的控制温度设定为445℃。这样就比采用常规的控制的方式要好很多,其中过热蒸汽的温度在四台锅炉上基本稳定在435℃±5℃的范围内(其中在锅炉负荷的变化超过30%的情况下)。在负荷变化很大的时候,偶尔会在435℃±10℃的范围内变化,相比起采用常规的控制模式,它通常的变化在435℃±15℃的范围,而且还常常超出,技术上要好很多。
权利要求
1.一种锅炉蒸汽温度的自动控制方法,其特征是将过热汽温度偏离设定值的程度换算成需要减温的热量,根据需要减温的热量经过PID运算后调节减温水流量,与测量到的减温器前后水温一起计算得出实际减温的热量,直到实际减温的热量与需要减温的热量平衡为止。
2.根据权利要求1所述的一种锅炉蒸汽温度的自动控制方法,其特征是所述的需要减温的热量=汽温修正+负荷修正+燃烧修正,其中汽温修正=蒸汽流量×(过热汽温度-汽温设定),负荷修正=负荷修正系数×蒸汽流量×(过热汽温度-汽温设定),燃烧修正=燃烧修正系数×(实际给煤量-理论需煤量),理论需煤量=蒸汽流量/原煤热值;负荷修正系数为单位质量的蒸汽的温度每变化1℃所需吸收或者释放的热量,燃烧修正系数为单位质量的给煤量的变化所产生的热量并传递给蒸汽的热量的变化。
3.根据权利要求1所述的一种锅炉蒸汽温度的自动控制方法,其特征是所述的实际减温热量=减温水流量×(减温后水温-给水温度)。
全文摘要
本发明公开了一种锅炉蒸汽温度的自动控制方法,旨在提供一种运行稳定、汽温控制准确的锅炉控制方法,是将过热汽温度偏离设定值的程度换算成需要减温的热量,根据需要减温的热量经过PID运算后调节减温水流量,与测量到的减温器前后水温一起计算得出实际减温的热量,直到实际减温的热量与需要减温的热量平衡为止;本发明用于锅炉的汽温控制。
文档编号F22G5/00GK101074772SQ20071002879
公开日2007年11月21日 申请日期2007年6月25日 优先权日2007年6月25日
发明者周振华, 陈雁 申请人:周振华, 陈雁
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1