在衬底处理中利用弯液面的设备和方法

文档序号:4588292阅读:204来源:国知局
专利名称:在衬底处理中利用弯液面的设备和方法
技术领域
本发明涉及半导体晶片处理,尤其涉及用于更有效地应用流体到晶片表面和从晶片表面去除流体、同时减少污染和降低晶片处理成本的设备和技术。
背景技术
在半导体芯片制造工艺中,众所周知的是,需要使用例如清洁和干燥等操作来处理晶片。在属于这些类型的每种操作中,对于晶片都需要操作工艺有效地应用和去除流体。
例如,在已经执行制造操作,但在晶片表面上留下不想要的残留物时,必须执行晶片清洁。这种制造操作的实例包括等离子体蚀刻(例如,钨回蚀(WEB))和化学机械抛光(CMP)。在CMP中,将晶片放在将晶片表面推压靠着转动的传送带的保持器中。这种传送带使用包含化学材料和研磨材料的浆料来形成抛光。令人遗憾的是,这种工艺往往在晶片表面处积聚浆料颗粒和残留物。如果在晶片上留下不想要的残留物材料和颗粒,则这些残留物材料和颗粒尤其可能造成例如晶片表面上的刮擦和金属化特性之间不适当的相互作用等缺点。在某些情形下,这种缺点可导致晶片上的器件变得不能工作。为了避免丢弃具有不能工作的器件的晶片的不当成本,因此有必要在留下不想要的残留物的制造操作后充分而有效地清洁晶片。
在已经对晶片进行湿清洁(wet clean)后,必须有效地干燥晶片,以防止水或清洁流体残留物在晶片上留下残留物。如果如小滴形成时经常发生的一样,使得晶片表面上的清洁流体蒸发,则在蒸发后,先前溶解在清洁流体中的污染物物或残留物将留在晶片表面上(例如,并且形成水渍)。为了防止蒸发的发生,必须尽可能快地去除清洁流体,而不在晶片表面上形成小滴。在试图实现这一点的过程中,采用几种不同的干燥技术中的一种,例如旋转干燥(spin drying)、IPA、或马兰葛尼(Marangoni)干燥等。这些干燥技术全部都利用晶片表面上的移动液体/气体分界面的某种形式,如果适当保持,则可使得晶片表面变干,而不会形成小滴。令人遗憾的是,像对于上述所有干燥方法常常发生的那样,如果移动液体/气体分界面损坏,则形成小滴,且发生蒸发,造成污染物留在晶片表面上。目前使用的最普遍的干燥技术是旋转漂洗干燥(SRD)。
图1A示出SRD工艺期间流体在晶片10上的运动。在此干燥工艺中,湿晶片以高速旋转,用旋转14表示。在SRD中,利用离心力,将用于漂洗晶片的流体从晶片中央拉到晶片外部,最终离开晶片,如用流体方向箭头16表示的。当将流体拉离晶片时,移动流体/气体分界面12在晶片中央处产生,且向晶片外部移动(即,由移动流体/气体分界面12形成的圆的内部区域变大)。在图1的实例中,由移动流体/气体分界面12形成的圆的内部区域没有流体,且由移动流体/气体分界面12形成的圆的外部区域有流体。因此,随着干燥工艺的继续,移动流体/气体分界面12内部的部分(干燥区)增大,而移动流体/气体分界面12外部的区域(湿区)减少。如前所述,如果移动流体/气体分界面12损坏,则流体小滴在晶片上形成,从而由于小滴蒸发发生污染。这样,限制小滴形成和随后的蒸发,从而使污染物脱离晶片表面是必要的。令人遗憾的是,目前的干燥方法在防止移动流体分界面损坏中仅是部分成功的。
此外,SRD工艺在干燥疏水的晶片表面方面有困难。疏水的晶片表面难以变干,因为这种表面排斥水和水基(水性)清洁液。因此,随着干燥工艺的继续,将清洁流体拉离晶片表面时,晶片表面将排斥剩余的清洁流体(如果是水基的)。结果,水性清洁流体将希望与疏水的晶片表面的接触面积最小。另外,由于表面张力(即,由于分子氢键结合),水性清洁液往往自身附在一起。因此,由于疏水作用和表面张力,水性清洁流体的球形物(或小滴)以不受控制的形式在疏水晶片表面上形成。这种小滴形成造成先前描述的有害蒸发和污染。SPD的局限性在作用于小滴上的离心力最小的晶片中央特别严重。因此,尽管SRD工艺目前是最普遍的晶片干燥方式,但是这种方法难以减少清洁流体小滴在晶片表面上的形成,特别在用在疏水表面上时更是如此。晶片的某些部分可能具有不同的疏水性。
图1B示出示范性晶片干燥工艺18。在此实例中,晶片10的部分20具有亲水区,且部分22具有疏水区。部分20吸水,所以流体26汇集在此区域中。部分22是疏水的,所以此区域排斥水,从而在晶片10的该部分上存在较薄的水膜。因此,晶片10的疏水部分常常比亲水部分更快地变干。这可导致不一致的晶片变干,可提高污染程度,因而降低晶片生产量。
因此,需要一种方法和设备通过使流体管理和流体向晶片的应用优化来减少晶片表面上的污染沉积物,避免现有技术的缺点。目前常常出现的这种沉积物减少了合格晶片的产量,从而提高了制造半导体晶片的成本。

发明内容
概括地说,通过提供一种能用流体弯液面内的活性空腔处理晶片表面的衬底处理设备,本发明满足了这些需要。此外,也提供了利用自动调节产生流体弯液面的邻近头。应意识到,本发明可以多种方式实现,这些方式包括工艺、设备、系统、器件、或方法。下面将描述本发明的几个有创造性的实施例。
在一个实施例中,披露了一种用于处理衬底的设备,该设备包括产生在工作时靠近衬底表面的邻近头。该设备还包括邻近头表面上朝向限定在邻近头中的空腔的开口,其中空腔通过开口传送活化剂到衬底表面。该设备进一步包括邻近头表面上的多个导管,用于在围绕开口的衬底表面上产生流体弯液面。
在另一实施例中,提供了一种用于处理衬底的方法,该方法包括将活化剂应用到衬底表面的活性区,和利用邻近头在衬底表面上产生流体弯液面,其中流体弯液面围绕活性区。
在再一实施例中,提供了一种用于处理衬底的方法,该方法包括在衬底表面上产生第一流体弯液面,和在衬底表面上产生第二流体弯液面,其中第二流体弯液面靠近第一流体弯液面。产生第一流体弯液面和第二流体弯液面包括从第一流体弯液面虹吸至少第一流体。
在另一实施例中,提供了一种用于处理衬底的方法,该方法包括应用流体到衬底表面上,和从衬底表面虹吸至少该流体,其中就在流体应用于衬底表面时执行去除。
在再一实施例中,提供了一种用于处理衬底的邻近头,该邻近头包括限定在邻近头中的至少一个第一导管,其中至少一个导管应用流体到衬底表面。邻近头包括限定在邻近头中的至少一个第二导管,其中至少一个第二导管从晶片表面虹吸流体时靠近至少一个第一导管。将流体应用到衬底表面和从衬底表面虹吸流体产生流体弯液面。
本发明的优点很多。最显著地,本文中描述的设备和方法利用带有至少一个空腔的邻近头。通过使用空腔应用活性剂到晶片表面,可处理晶片表面,接着围绕活性空腔的弯液面可漂洗已处理的区域。因此,可强有力地控制和管理处理环境,从而产生更一致的晶片处理。因而,可提高晶片处理和生产,且由于有效的晶片处理,可获得较高的晶片产量。
此外,本文中描述的邻近头可利用虹吸管从流体弯液面去除流体。由于在所述实施例中的弯液面可能自动调节,所以利用虹吸管可提高弯液面稳定性和控制。当流入弯液面的流体流速较高时,虹吸管以高速去除流体。因此,可使得晶片处理一致,从而提高了晶片处理量。
结合借助于实例示出本发明的原理的附图,根据以下详细描述,本发明的其它方面和优点将变得显然。


在结合附图进行以下详细描述后,将易于理解本发明。为了便于描述,相同参考标号表示相同结构元件。
图1A示出SRD干燥工艺期间清洁流体在晶片上的运动。
图1B示出示范性晶片干燥工艺。
图2示出根据本发明的一个实施例的晶片处理系统。
图3示出根据本发明的一个实施例执行晶片处理操作的邻近头。
图4A示出可由根据本发明的一个实施例的邻近头执行的晶片处理操作。
图4B示出根据本发明的一个实施例用于双晶片表面处理系统中的示范性邻近头的侧视图。
图5A示出根据本发明的一个实施例的多弯液面邻近头。
图5B示出根据本发明的一个实施例的多弯液面邻近头的截面图。
图6A示出根据本发明的一个实施例的多弯液面邻近头。
图6B示出根据本发明的一个实施例的邻近头的处理表面。
图6C示出根据本发明的一个实施例的多弯液面邻近头的处理表面的近视图。
图6D示出连接至本体的设备板,用于形成根据本发明的一个实施例的多弯液面邻近头。
图6E示出根据本发明的一个实施例的邻近头的截面图。
图7示出根据本发明的一个实施例在示范性晶片处理操作中的多弯液面邻近头的截面图。
图8示出根据本发明的一个实施例的虹吸系统。
图9示出根据本发明的一个实施例的带有活性空腔的邻近头。
图10示出根据本发明的一个实施例的工作中的邻近头的横截面。
图11示出根据本发明的一个实施例的邻近头的纵视图。
图12示出根据本发明的一个实施例的带有活性空腔窗口的邻近头的横截面图。
图13示出在本发明的一个实施例中的邻近头的横截面图,该邻近头包括带有多个弯液面的多个空腔。
图14A示出根据本发明的一个实施例的十字形邻近头。
图14B示出根据本发明的一个实施例的圆形邻近头。
图14C示出根据本发明的一个实施例的椭圆形邻近头。
图14D示出根据本发明的一个实施例的条形邻近头。
图14E示出根据本发明的一个实施例的楔形邻近头。
图15A示出根据本发明的一个实施例的邻近头的处理表面的示范性图示。
图15B示出根据本发明的一个实施例的邻近头的处理表面的示范性图示。
具体实施例方式
本发明公开了用于处理衬底的方法及设备。在以下描述中,为了提供对本发明的透彻理解,阐述了众多具体细节。然而,本领域的技术人员将理解,没有这些具体细节的一些或全部,本发明也可实施。在其它情形下,为了避免不必要地模糊本发明,没有详细描述公知的处理操作。
尽管就几个优选实施例描述了本发明,但本领域的技术人员在阅读前述说明书和研究附图后将意识到,附图可实现各种改变、添加、置换、及其等同物。因此意图是,本发明包括落在本发明的真实精神和范围内的所有这样的改变、添加、置换、及其等同物。
下面的附图示出示范性晶片处理系统的实施例,其使用邻近头产生具有任何适合的形状、尺寸、和位置的流体弯液面。在一个实施例中,邻近头利用虹吸管从流体弯液面去除流体。在另一实施例中,邻近头包括活性空腔,该活性空腔由流体弯液面围绕,从而产生非常好控制的处理区。在一个实施例中,在活性空腔对该区域的初始处理后,因为流体弯液面围绕活性空腔,所以在处理后,可使用另一晶片处理操作(例如,漂洗)很快处理该区域。这种技术可用于执行任何适合类型的晶片操作组合的,例如干燥、蚀刻、镀覆等。
应意识到,这里描述的系统和邻近头本质上仅是示范性的,可使用能实现弯液面的产生和移动或实现其中封有空腔的弯液面的任何其它适合类型的构造。在所示实施例中,邻近头以线性形式从晶片中央部分移动到晶片边沿。应意识到,可利用其中邻近头以线性形式从晶片的一边沿移动到晶片的另一完全相反的边沿的其它实施例,或可利用其它非线性运动,例如径向运动、圆周运动、螺旋运动、Z字形运动、随机运动等。此外,该运动可以是用户想要的任何适合的指定运动曲线。此外,在一个实施例中,可转动晶片,使邻近头以线性形式移动,从而邻近头可处理晶片的所有部分。也应理解,可利用其中晶片不转动但邻近头配置为以实现晶片所有部分的处理的方式在晶片上移动的其它实施例。在其它实施例中,晶片和邻近头中任一或二者都可不移动,这取决于晶片处理操作和邻近头的结构。在进一步的实施例中,邻近头可保持固定,且可移动晶片,以被流体弯液面处理。与邻近头相同,只要能实现想要的晶片处理操作,晶片可以任何适合的运动方式移动。
此外,这里所述的邻近头和晶片处理系统可用于处理任何形状和尺寸的衬底,例如200mm的晶片、300mm的晶片、平板等。另外,邻近头的尺寸以及弯液面的尺寸可改变。在一个实施例中,邻近头的尺寸和弯液面的尺寸可大于正在处理的晶片,在另一实施例中,邻近头的尺寸和弯液面的尺寸可小于正在处理的晶片。并且,这里描述的弯液面可与其它形式的晶片处理技术(例如刷洗、光刻、兆频超声波等)一起使用。流体弯液面可用邻近头支承和移动(例如,到晶片上,离开晶片,和越过晶片)。
应意识到,这里描述的系统本质上仅是示范性的,所述邻近头可用在任何适合的系统中。也应意识到,图2至图8描述了可使用虹吸管从晶片表面去除流体的弯液面的形成,因此这里描述的处理变量(例如流速、尺寸等)可以与图9至图15B中描述的带有空腔的邻近头的处理变量不同。应理解,虹吸可用于这里描述的任何适合的邻近头。
图2示出根据本发明的一个实施例的晶片处理系统100。系统100包括辊102a和102b,这两个辊可保持晶片和/或转动晶片,以实现晶片表面的处理。系统100也包括邻近头106a和106b,在一个实施例中,这两个邻近头分别连接至上臂104a和下臂104b。在一个实施例中,106a和/或106b可以是如这里所述的参看图2至图15进一步详细描述的任何适合的邻近头。如这里所述的,术语“多弯液面邻近头”是能产生一个或多个流体弯液面的邻近头。在一个实施例中,第一流体弯液面大体上由第二流体弯液面围绕。在优选实施例中,第一流体弯液面和第二流体弯液面与围绕第一流体弯液面的第二流体弯液面同心。邻近头可以是可产生这里描述的流体弯液面的任何适合的设备。上臂104a和下臂104b可以是使邻近头106a和106b能沿晶片半径大致作线性运动(或在另一实施例中,为微小弓形运动)的组件的部分。在再一实施例中,该组件可使邻近头106a和106b以任何适合的用户规定的运动移动。
在一个实施例中,臂104配置为靠近晶片将邻近头106a保持在晶片上方,将邻近头106b保持在晶片下方。例如,在一个示范性实施例中,这可通过使上臂104a和下臂104b以竖直方式移动而实现,从而,一旦邻近头水平到进入开始晶片处理的位置,则邻近头106a和106b可竖直移动到靠近晶片的位置。在另一实施例中,上臂104a和下臂104b可以配置为在处理之前在产生弯液面的位置中启动邻近头106a和106b,且已经在邻近头106a和106之间产生的弯液面可移动到晶片表面上,以从晶片108的边沿区域进行处理。因此,可以任何适合的方式配置上臂104a和下臂104b,使得可移动邻近头106a和106b,实现这里所述的晶片处理。也应意识到,可以任何适合的方式配置系统100,只要邻近头可靠近晶片移动以产生和控制多个弯液面即可,其中这些弯液面在一个实施例中彼此同心。也应理解,接近可以是离晶片的任何适合的距离,只要可保持弯液面即可。在一个实施例中,邻近头106a和106b(以及这里描述的任何其它邻近头)中每个离晶片的距离都在约0.1mm到约10mm之间,以在晶片表面上产生流体弯液面。在优选实施例中,邻近头106a和106b(以及这里描述的任何其它邻近头)中每个离晶片的距离都在约0.5mm到约2.0mm之间,以在晶片表面上产生流体弯液面,在更优选的实施例中,邻近头106a和106b(以及这里描述的任何其它邻近头)离晶片约1.5mm,以在晶片表面上产生流体弯液面。
在一个实施例中,系统100、臂104配置为使得邻近头106a和106b能从晶片的已处理部分移动到未处理部分。应意识到,臂104可以任何能实现邻近头106a和106b移动的适当方式移动,以根据需要处理晶片。在一个实施例中,臂104可由电机推动,以沿晶片表面移动邻近头106a和106b。应理解,尽管所示出的晶片处理系统100具有邻近头106a和106b,但也可使用任何适当数目的邻近头,例如1、2、3、4、5、6个等。晶片处理系统100的邻近头106a和/或106b也可以具有任何适当的尺寸或形状,例如如这里描述的任何邻近头所示出的尺寸或形状。这里描述的不同构造在邻近头和晶片之间产生流体弯液面。通过应用流体到晶片表面和将流体从表面去除,流体弯液面可横跨晶片移动。以此方式,根据应用于晶片的流体,可完成清洁、干燥、蚀刻、和/或镀覆。此外,第一流体弯液面可执行一种操作,至少部分围绕第一流体弯液面的第二流体弯液面可执行与第一流体弯液面相同或不同的操作。因此,邻近头106a和106b可具有这里所示出的任何类型的构造或其它能实现这里描述的工艺的构造。也应意识到,系统100可处理晶片的一个表面,或不仅处理晶片顶面而且处理晶片底面。
此外,除了处理晶片顶面和/或底面外,系统100也可配置为,通过输入和输出不同类型的流体或通过使用不同构造的弯液面,用一种工艺(例如,蚀刻、清洁、干燥、镀覆等)处理晶片一侧,使用相同工艺或不同工艺处理晶片另一侧。邻近头也可配置为除了处理晶片顶面和/或底面外,还处理晶片斜边。这可通过使弯液面在处理斜边中离开晶片边沿(或将弯液面移动到晶片边沿上)而实现。也应理解,邻近头106a和106b可以是相同类型的设备或不同类型的设备。
晶片108可由辊102a和102b以任何适合的定位保持和转动,只要该定位能使想要的邻近头靠近待处理的晶片108的部分即可。在一个实施例中,辊102a和102b可以顺时针方向转动,以使晶片108以逆时针方向转动。应理解,辊可根据想要的晶片转动以顺时针或逆时针方向转动。在一个实施例中,由辊102a和102b给予晶片108上的转动用以将没有被处理的晶片区域移动到靠近邻近头106a和106b。然而,转动本身不能使晶片变干或使晶片表面上的流体向着晶片边沿移动。因此,在示范性晶片处理操作中,未处理的晶片区域将通过邻近头106a和106b的线性运动和通过晶片108的转动呈现给邻近头106a和106b。晶片处理操作自身可由至少一个邻近头执行。从而,在一个实施例中,随着处理操作的继续,已处理的晶片108的部分将以螺旋运动从晶片108的中央区扩大到边沿区。在另一实施例中,当邻近头106a和106b从晶片108的周缘移动到晶片108的中央时,已处理的晶片108的部分将以螺旋运动从晶片108的边沿区扩大到晶片108的中央区。
在示范性处理操作中,应理解,邻近头106a和106b可配置为干燥、清洁、蚀刻、和/或镀覆晶片108。在示范性干燥实施例中,至少一个第一入口可被配置为输入去离子水(DIW)(也称为DIW入口),至少一个第二入口可被配置为输入包含呈蒸汽形式的异丙醇(IPA)的N2载气(也称为IPA入口),和至少一个出口可被配置为通过应用真空从晶片和特定邻近头之间的区域去除流体。应意识到,流体的去除可以任何适合的方法实现,借此以与这里描述的方法一致的有效方式去除流体。在一个实施例中,可通过至少一个出口(也称为真空出口)应用真空。在另一实施例中,至少一个出口去除大体上单相的流体(例如,主要是液体),此后可利用例如虹吸等方法。参看图8进一步详述通过至少一个出口虹吸流体。应意识到,尽管IPA蒸汽用在一些示范性实施例中,但也可使用任何其它类型的可与水混溶的蒸汽,例如氮、任何适合的乙醇蒸汽、有机化合物、挥发性化学产品等。
在示范性清洁实施例中,清洁液可代替DIW。在蚀刻剂可代替DIW的地方,可执行示范性蚀刻实施例。在另外的实施例中,通过使用这里描述的方法可实现镀覆。此外,根据想要的处理操作,可将其它类型的溶液输入第一入口和第二入口。
应意识到,只要可使用如这里描述的稳定的弯液面,位于邻近头表面上的入口和出口可以为任何适合的构造。在一个实施例中,至少一个N2/IPA蒸汽入口可靠近至少一个真空出口,至少一个真空出口又靠近至少一个处理流体入口,以形成IPA-真空-处理流体定位。这样的构造可产生至少部分围绕内部弯液面的外部弯液面。此外,内部弯液面可通过具有处理流体-真空定位的构造产生。因此,其中第二流体弯液面至少部分围绕第一流体弯液面的一个示范性实施例可以通过如下面进一步详述的IPA-真空-第二处理流体-真空-第一处理流体-真空-第二处理流体-真空-IPA定位产生。应意识到,根据想要的晶片工艺和寻求提高的晶片处理机构类型,可使用其它类型的定位组合,例如IPA-处理流体-真空、处理流体-真空-IPA、真空-IPA-处理流体等。在一个实施例中,IPA-真空-处理流体定位可用于智能而强有力地产生、控制、和移动位于邻近头和晶片之间的弯液面,从而处理晶片。只要保持上述定位,可以任何适合的方式设置处理流体入口、N2/IPA蒸汽入口、和真空出口。例如,在另外的实施例中,除了N2/IPA蒸汽入口、真空出口、和处理流体入口之外,根据想要的邻近头的构造,可以有附加的IPA蒸汽出口、处理流体入口、和/或真空出口组成的一组。应意识到,可根据应用改变入口和出口定位的精确构造。例如,IPA输入、真空、和处理流体入口位置之间的距离可以改变,从而距离一致或距离不一致。此外,根据邻近头106a的尺寸、形状、和构造以及所想要的处理弯液面的尺寸(即,弯液面形状和尺寸),IPA输入、真空、和处理流体出口之间的距离可以大小不同。此外,如这里进一步描述的,可发现示范性IPA-真空-处理流体定位。应理解,无论在何处将真空用于从晶片表面去除流体,都可将参看图8进一步详述的虹吸用于大体上单相的流体。
在一个实施例中,邻近头106a和106b可分别靠近晶片108的顶面和底面设置,且可使用IPA和DIW入口和如这里描述的真空出口,以产生与晶片108接触的晶片处理弯液面,其中弯液面能够处理晶片108的顶面和底面。可以与这里描述的方式产生晶片处理弯液面。大致与输入IPA和处理流体同时,可接近晶片表面应用真空,以去除IPA蒸汽、处理流体、和/或可能在晶片表面上的流体。应意识到,尽管在该示范性实施例中使用了IPA,但也可使用任何其它适合类型的可与水混溶的蒸汽,例如氮、任何适合的乙醇蒸汽、有机化合物、己醇、乙基醇-乙醚、丙酮等。这些流体也称为表面张力减少流体。位于邻近头和晶片之间的区域中的处理流体的部分是弯液面。应意识到,如这里所用,术语“输出”是指将流体从晶片108和特定邻近头之间的区域去除,术语“输入”是指将流体导入晶片108和特定邻近头之间的区域。在另一实施例中,邻近头106a和106b可以在以微小弓形移动的臂的末端移动时扫过晶片108。
图3示出根据本发明的一个实施例执行晶片处理操作的邻近头106。图3至图4B示出产生基本流体弯液面的方法,而图5A至图15B讨论产生更复杂的弯液面构造的设备和方法。在一个实施例中,邻近头106移动,同时接近晶片108的顶面108a,以执行晶片处理操作。应意识到,邻近头106也可用于处理(例如,清洁、干燥、镀覆、蚀刻等)晶片108的底面108b。在一个实施例中,晶片108转动,从而邻近头106可沿头的运动以线性方式移动,同时处理顶面108a。通过入口302应用IPA310、通过出口304应用真空312、和通过入口306应用处理流体314,可产生弯液面116。应意识到,如图3中所示的入口/出口的定位在本质上仅是示范性的,也可利用可产生稳定流体弯液面的任何适合的入口/出口定位,例如这里描述的那些构造等。
图4A示出可由根据本发明的一个实施例的邻近头106a执行的晶片处理操作。尽管图4A示出正在被处理的顶面108a,但是应意识到,对于晶片108的底面108b,可以大体相同的方式实现晶片处理。在一个实施例中,入口302可用于向着晶片108的顶面108a应用异丙醇(IPA)蒸汽,且入口306可用于向着晶片108的顶面108a应用处理流体。此外,出口304可用于应用真空到接近晶片表面的区域,以去除可能位于顶面108a上或在顶面108a附近的流体或真空。如上所述,应意识到,只要可形成弯液面116,可利用入口和出口的任何适当组合。IPA可以呈任何适当形式,例如,IPA蒸汽,其中呈蒸汽形式的IPA使用N2气体输入。此外,可使用用于处理晶片(例如,清洁流体、干燥流体、蚀刻流体、镀覆流体等)的任何适当的流体,这些流体可实现或增强晶片处理。在一个实施例中,IPA流入物310通过入口302提供,真空312可通过出口304应用,处理流体流入物314可通过入口306提供。从而,如果流体膜存在于晶片108上,则可通过IPA流入物310将第一流体压力施加给晶片表面,通过处理流体流入物314将第二流体压力施加给晶片表面,通过真空312施加第三流体压力,以去除晶片表面上的处理流体、IPA、和流体膜。
因此,在本发明的一个实施例中,当向着晶片表面应用处理流体流入物314和IPA流入物310时,晶片表面上的流体(如果有的话)与处理流体流入物314混和。同时,向着晶片表面应用的处理流体流入物314遇到IPA流入物310。IPA与处理流体流入物314形成分界面118(也称为IPA/处理流体分界面118),也与真空312一起帮助从晶片108的表面去除处理流体流入物314以及任何其它流体。在一个实施例中,IPA/处理流体分界面118减少了处理流体的张力表面。在操作中,向着晶片表面应用处理流体,出口304应用的真空几乎立刻将处理流体与晶片表面上的流体一起去除。向着晶片表面应用和留在邻近头和晶片表面之间的区域中片刻的处理流体与晶片表面上的任何流体一起形成弯液面116,其中,弯液面116的边界是IPA/处理流体分界面118。因此,弯液面116是向着该表面应用且与晶片表面上的任何流体大体上同时去除的恒定流体流。几乎立刻将处理流体从晶片表面去除防止流体小滴在正在变干的晶片表面的区域中形成,从而减少了处理流体根据操作(例如蚀刻、清洁、干燥、镀覆等)实现其目的后污染晶片108的可能性。IPA的向下喷射的压力(由IPA的流速产生)也有助于包含弯液面116。
包含IPA的N2载气的流速可帮助使得处理流体流从邻近头和晶片之间的区域移出或推出,进入出口304(真空出口),流体可通过该出口304从邻近头通过出口304输出。应注意,推出处理流体流不是处理要求,但是可用于优化弯液面边界控制。因此,当将IPA和处理流体拉进出口104时,组成IPA/处理流体分界面118的边界不是连续边界,因为气体(例如,空气)正与流体一起被拉进出口304。在一个实施例中,当来自出口304的真空拉处理流体、IPA、和晶片表面上的流体时,进入出口304的流是不连续的。对于将真空施加在流体和气体的组合上时正在通过吸管(straw)拉起的流体和气体,这种流的不连续性类似。因此,随着邻近头106a的移动,弯液面与邻近头一起移动,且由于IPA/处理流体分界面118的移动,先前被弯液面占用的区域已经变干。也应理解,根据设备的构造和想要的弯液面尺寸和形状,可利用任何适当数量的入口302、出口304、和入口306。在另一实施例中,液体流速和真空流速使得流入真空出口的总液体流是连续的,从而没有气体流入真空出口。
应意识到,只要可保持弯液面116,可将任何适当的流速用于N2/IPA、处理流体、和真空。在一个实施例中,通过一组入口306的处理流体的流速在约25ml/每分钟和约3,000ml/每分钟之间。在优选实施例中,通过这组入口306的处理流体的流速为约800ml/每分钟。应理解,流体流速可根据邻近头的尺寸而改变。在一个实施例中,较大的头可具有比较小邻近头大的流体流速。因为,在一个实施例中,较大的邻近头具有多个入口302和306和出口304,所以这种情况可能发生。
在一个实施例中,通过一组入口302的N2/IPA蒸汽的流速在约1公升/每分钟(SLPM)到约100SLPM之间。在优选实施例中,IPA流速在约6SLPM和20SLPM之间。
在一个实施例中,通过一组出口304的真空流速在约10标准立方英尺/每小时(SCFH)到约1250SCFH之间。在优选实施例中,通过这组出口304的真空流速为约350SCFH。在示范性实施例中,流量计可用于测量N2/IPA、处理流体、和真空的流速。
应意识到,根据使用的处理流体,可使用弯液面执行任何适合类型的晶片处理操作。例如,诸如SC-1、SC-2等清洁流体可用作处理流体来产生晶片清洁操作。在类似形式中,可使用不同流体且可使用类似入口和出口构造,从而晶片处理弯液面也可蚀刻和/或镀覆晶片。在一个实施例中,例如HF、EKC专卖溶液、KOH等蚀刻流体用于蚀刻晶片。在另一实施例中,可结合电输入镀覆例如硫酸铜、氯化金、硫酸银等流体。
图4B示出根据本发明的一个实施例用于双晶片表面处理系统中的示范性邻近头106和106b的侧视图。在此实施例中,通过使用入口302和306输入N2/IPA,和与出口304一起分别处理以提供真空,可产生弯液面116。此外,在与入口302相对的入口306一侧上,可存在用于去除处理流体和使弯液面116保持完好的出口304。如上所述,在一个实施例中,可分别将入口302和306用于IPA流入物310和处理流体流入物314,同时可将出口304用于应用真空312。此外,在另外的更多实施例中,邻近头106和106b可以属于如这里进一步描述的构造。可通过弯液面116移入表面和移离表面来处理与弯液面116接触的任何适合的表面(例如晶片108的晶片表面108a和108b等)。
图5A至图7示出其中第一流体弯液面至少部分被至少第二流体弯液面围绕的本发明的实施例。应意识到,可产生第一流体弯液面和/或第二流体弯液面,以执行任何适合类型的衬底/晶片处理操作,例如光刻、蚀刻、镀覆、清洁、和干燥等。第一流体弯液面和第二流体弯液面可以是任何适当形状或尺寸,这取决于想要的衬底处理操作。在这里描述的某些实施例中,第一流体弯液面和第二流体弯液面是同心的,其中在第二流体弯液面围绕第一流体弯液面且第一流体弯液面和第二流体弯液面提供连续的流体连接。因此,在第一流体弯液面处理衬底后,由第一流体弯液面处理的晶片的部分立即由第二流体弯液面处理,而几乎不与大气接触。应意识到,根据想要的操作,在一个实施例中,第一流体弯液面可接触第二流体弯液面,在另一实施例中,第一流体弯液面不直接接触第二弯液面。
图5A示出根据本发明的一个实施例的多弯液面邻近头106-1。多弯液面邻近头106-1包括多个能应用第一流体到晶片表面的源入口306a。接着,可通过穿过多个源出口304a应用虹吸或真空,将第一流体从晶片表面去除。因此,第一流体弯液面可由位于多弯液面邻近头106-1上的处理表面的第一流体弯液面区域402内的导管产生。
多弯液面邻近头106-1也可包括多个能应用第二流体到晶片表面的源入口306b。接着,可通过穿过多个源出口304b应用真空,将第二流体从晶片表面去除。在一个实施例中,与去除第一流体相配合,也可通过多个源出口304a将第二流体的部分去除。在一个实施例中,多个源出口304a可称为单相流体去除导管,因为出口304a去除通过源入口306a和306b应用于晶片的液体。在这样的单相去除中,可使用虹吸和/或真空。在使用虹吸时,因为随着更多的流体应用于晶片表面,更多的流体从晶片表面通过虹吸去除,所以弯液面可自动调节。因此,即使在可变流速,虹吸也可根据流入流体弯液面的流速增加或减少流体去除速度。将参看图8进一步详述关于从晶片表面(例如,从晶片表面上的弯液面)去除单相流体的虹吸。
此外,多个源出口306b可称为双相去除导管,因为出口306b去除来自源入口306b的第二流体和流体弯液面外部的大气。因此,在一个实施例中,出口306b既去除液体又去除气体,而出口306a仅去除液体。结果,第二流体弯液面可由位于多弯液面邻近头106-1上的处理表面的第二流体弯液面区域404内的导管产生。
可选地,多弯液面邻近头106-1可包括多个可应用第三流体到晶片表面的源入口302。在一个实施例中,第三流体可以是表面张力减少流体,这种流体能减少通过将第二流体应用于晶片表面形成的第二弯液面的液体/大气边界。
此外,多弯液面邻近头106-1(或这里讨论的任何其它邻近头)的处理表面(例如,存在导管的多弯液面邻近头的表面区域)可以具有任何适合的构形,例如平坦的、升高的、降低的。在一个实施例中,多弯液面邻近头106-1可具有大致平坦的表面。
图5B示出根据本发明的一个实施例的多弯液面邻近头106-1的截面图。多弯液面邻近头106-1可通过多个源入口306a应用第一流体,并利用虹吸和/或真空通过多个源出口304a去除第一流体。第一流体弯液面116a位于大体由多个源出口304a围绕的区域之下。多弯液面邻近头106-a也可通过多个源入口306b应用第二流体,通过第二流体弯液面一侧上的多个源出口304a和另一侧上的304b去除第二流体。在一个实施例中,多个源入口302可以应用第三流体,以减少组成第二流体弯液面116b的流体的表面张力。多个源入口302可任选地成一角度,以更好地限制第二流体弯液面116b。
图6A示出根据本发明的一个实施例的多弯液面邻近头106-2。在一个实施例中,邻近头106-2包括设备板454和本体458。应意识到,邻近头106-2可包括任何适合数量的和/或类型的部分,只要可产生这里描述的第一流体弯液面和第二流体弯液面即可。在一个实施例中,设备板454和本体458可焊接在一起,或在另一实施例中,设备板454和本体458可通过粘合剂连接。设备板454和本体458可根据用户想要的应用和操作由相同材料或不同材料制成。
邻近头106-2可包括处理表面458,该处理表面包括导管,其中,流体可应用于晶片表面,且流体可从晶片表面去除。在一个实施例中,处理表面458可升高为高于表面453,如升高的区域452所示的。应意识到,不必升高处理表面458,表面458可以与面对正在被处理的晶片表面的邻近头106-2的表面453大致处于同一平面上。
图6B示出根据本发明的一个实施例的邻近头106-2的处理表面458。在一个实施例中,处理表面458是产生流体弯液面的邻近头106-2的区域。处理表面458可以包括任何适合数量和类型的导管,从而可产生第一流体弯液面和第二流体弯液面。在一个实施例中,处理表面458可包括流体入口306a、流体出口304a、流体入口306a、流体出口304b、和流体入口302。
流体入口306a可将第一流体应用于晶片表面,且流体入口306b可将第二流体应用于晶片表面。此外,流体出口304a可通过应用虹吸和/或真空将第一流体和第二流体的部分从晶片表面去除,且流体出口304b可通过应用真空将第二流体的部分从晶片表面去除,流体入口302可应用能减少第二流体的表面张力的流体。第一流体和/或第二流体可以是能便于光刻操作、蚀刻操作、镀覆操作、清洁操作、漂洗操作、和干燥操作的任一的任何适合的流体。
图6C示出根据本发明的一个实施例的多弯液面邻近头106-2的处理表面458的近视图。在一个实施例中,处理表面458包括第一流体弯液面区域402,该第一流体弯液面区域包括流体入口306a和流体出口304a。处理表面458也包括第二流体弯液面区域404,该第二流体弯液面区域包括流体入口306b和流体出口304b和流体入口302。因此,第一流体弯液面区域402可产生第一流体弯液面,第二流体弯液面区域404可产生第二流体弯液面。
图6D示出连接至本体456的设备板454,用于形成根据本发明的一个实施例的多弯液面邻近头106-2。相应于流体入口306a、304a、和302的通道将流体从设备板454供给多弯液面邻近头106-2的本体456内,且相应于流体出口306b和304b的通道将从本体456向设备板454去除流体。在一个实施例中,通道506a、504a、506b、504b、和502相应于流体入口306a、流体出口306b、流体入口304a、流体出口304b、和流体入口302。
图6E示出根据本发明的一个实施例的邻近头106-2的截面图。如参看图6D描述的,通道506a、506b、和502可以分别将第一流体、第二流体、和第三流体供给流体入口306a、306b、和302。此外,通道504a可以将第一和第二流体的组合从流体出口304a去除,通道504b可以将第二和第三流体的组合从出口304b去除。在一个实施例中,第一流体是第一处理流体,能在晶片表面上执行任何适合的操作,例如,蚀刻、光刻、漂洗、和干燥等。第二流体是第二处理流体,可能与第一流体相同,也可能与第一流体不相同。与第一流体相同,第二流体可以属于任何适合类型的处理流体,例如能便于蚀刻、光刻、清洁、漂洗、和干燥的流体等。
图7示出根据本发明的一个实施例在示范性晶片处理操作中的多弯液面邻近头的截面图。尽管图7示出正在被处理的晶片108的顶面,但是本领域的技术人员将意识到,晶片108的顶面和底面可由这里描述的晶片108的顶面上的任何邻近头同时处理和由这里描述的晶片108的底面上的任何邻近头同时处理。在一个实施例中,第一晶片处理化学产品通过流体入口306a应用于晶片108。在第一晶片处理化学产品已经处理该晶片表面后,将第一晶片处理化学产品从晶片表面通过流体出口304a去除。第一晶片处理流体可以在多弯液面邻近头106-2和晶片108之间形成第一流体弯液面116a。在一个实施例中,第二处理流体(例如去离子水(DIW)等)通过流体入口306b应用于晶片表面。
如上所述,第二处理流体可以是能在晶片表面上实现想要的操作的任何适合的流体。在DIW已经处理晶片表面后,将DIW从晶片表面通过源出口304a和304b去除。多弯液面邻近头106-2和晶片表面之间的DIW可以形成第二流体弯液面116b。
在一个实施例中,可选地,表面张力减少流体(例如氮气中的异丙醇蒸汽等)可从源入口302应用于晶片表面,以使第二流体弯液面116的液体/气体边界保持稳定。在一个实施例中,第二流体弯液面116可以大体上围绕第一流体弯液面116a。这样,在第一流体弯液面116a已经处理该晶片表面后,第二流体弯液面116b可几乎立即在已经由第一流体弯液面116a处理的晶片表面的部分上操作。因此,在一个实施例中,第二流体弯液面116b形成围绕第一流体弯液面116a的同心环。应意识到,第一流体弯液面116a可以是任何适合的几何形状,例如圆形、椭圆形、正方形、矩形、三角形、四边形等。无论第一流体弯液面116a是何形状,第二流体弯液面116b都可被配置为至少部分围绕第一流体弯液面116a。应意识到,如上所述,第一流体弯液面116a和/或第二流体弯液面116b可以根据想要的晶片处理操作利用任何适合的流体。
应意识到,为了产生稳定的流体弯液面,通过源入口306a输入第一流体弯液面的第一流体的量应大致等于通过源出口304a去除的第一流体的量。通过源入口306b输入第二流体弯液面的第二流体的量应大致等于通过源出口304a和306b去除的第二流体的量。在一个实施例中,流体的流速由邻近头106-2离晶片108的距离480确定。应意识到,距离480可以是任何适合的距离,只要弯液面可被保持和以稳定方式移动即可。在一个实施例中,距离480可以在50微米和5mm之间,在另一实施例中,在0.5mm到2.5mm之间。优选地,距离480在约1mm和1.5mm之间。在一个实施例中,距离480约为1.3。
图7中所示的流体流速可以是能产生第一流体弯液面和大体上围绕第一弯液面的第二弯液面的任何适合的流速。根据第一流体弯液面和第二流体弯液面之间想要的差别,流速可以不同。在一个实施例中,源入口306a可以应用流速为约600cc/min的第一流体,源入口306b可以应用流速为约900cc/min的第二流体,源出口304a可以去除流速为约1200cc/min的第一流体和第二流体,源出口304b可以去除流速为约300cc/min的第二流体和大气(如果将所述表面张力减少流体应用于晶片表面,所述大气可包括N2中的一些IPA蒸汽)。在一个实施例中,通过源出口304的流体的流速可能等于通过源入口306a的流体的流速的2倍。通过源入口306b的流体的流速可能等于通过源入口306a的流体的流速加上300。本领域的技术人员应意识到,源入口306a、306b和源入口304a、304b的具体流速关系可以根据这里描述的处理区域的构造和/或邻近头的构造而改变。
此外,通过源出口304a进行虹吸,自动产生最优流速,从而产生自动调节弯液面,其中根据通过源入口306a和306b的流速自动调节从弯液面到源出口304的流体流速。只要正在由源出口304a去除的流体大致为单相,则虹吸可保持工作,以自动调节流体弯液面的形状和尺寸。
图8示出根据本发明的一个实施例的虹吸系统500。在一个实施例中,虹吸可用于控制通过源出口去除流体(例如,内部回流)。在一个实施例中,当使用虹吸时,没有利用真空,从而,使得来自流体弯液面的流体流与在真空罐中产生真空的清洁的干燥空气中的波动无关。这提高了内部回流的稳定性,造成全部弯液面的稳定性更大。此外,弯液面变得能自动调节,从而更强健。
在一个实施例中,虹吸系统500包括至少一个连接至邻近头106的虹吸管548。该一个或多个虹吸管548可连接至邻近头106,以从由邻近头106产生的流体弯液面去除流体。在一个实施例中,虹吸管548另一端连接至接收罐560,其中从邻近头106去除的流体可从虹吸管548输出到这里。在一个实施例中,接收罐比促进虹吸动作的邻近头106的高度低。在一个实施例中,虹吸系统500构成为使得相应于垂直距离580的万有引力小于相应于垂直距离582的万有引力。可通过从邻近头106到接收罐560进行铅锤探测,调节最大虹吸流。因此,通过在管线(line)上使用流量限制器550,获得指定的虹吸流速。因此,流量限制器550的固定限制可导致固定和忽略虹吸流速。此外,流量限制器550的可变限制可用于虹吸流的可调控制。在一个实施例中,流量限制器550可以是任何适合的装置。例如能控制流体流的阀门等。
在一个实施例中,可经由罐真空导入虹吸流,以充满干管线。在一个实施例中,可通过应用真空充满虹吸管548,从而用由来自邻近头106产生的流体弯液面的液体填充虹吸管548。一旦虹吸管548用液体填充,则真空可将虹吸管548中的流体拉到接收罐560。一旦流体流已经开始,则可消除接收罐560中的罐真空,从而虹吸动作便于流体流通过虹吸管548。
在另一实施例中,限制器550可以是截止阀,可用于不利用罐真空的帮助就可启动和停止流体流。如果充满了虹吸管548(例如,用液体填充),则打开该阀将开始虹吸流。如果虹吸管548是干的,则其可首先用流体充满,然后一打开该阀,就开始虹吸流。因此,在一个实施例中,虹吸流可用于系统中的全部单相液体管道。此外,只要管道大体上充满液体,则虹吸流可利用气泡工作。
应意识到,可使用这样的虹吸系统500,其带有任何适合的邻近头106,该邻近头具有去除例如液体等单相流体的回流系统。
图9示出根据本发明的实施例带有活性空腔的邻近头106-3。在一个实施例中,邻近头106-3具有参看图10进一步详述的横截面和参看图11进一步详述的纵截面。将参看图15A进一步详述邻近头106-3的示范性处理表面。
图10示出根据本发明的一个实施例的工作中的邻近头的横截面。在一个实施例中,邻近头106-3包括进入空腔642的源入口640。只要可将活性剂输入空腔642,可将活性剂通过开口应用于(例如,活性空腔窗口624)晶片表面,则空腔642可以具有任何适合的形状,且可在邻近头106-3内占用任何适合的体积。在一个实施例中,朝向空腔642的开口大体上由流体弯液面116围绕,流体弯液面通过源入口306将流体应用于晶片表面和通过源出口304a和304b将流体从流体弯液面116去除而产生。空腔642可用于经由活性空腔窗口624传送活化剂到晶片表面。应意识到,根据想要处理的晶片表面的区域的尺寸和形状,活性空腔窗口624可以具有任何适合的尺寸和/或形状。在一个实施例中,活性空腔窗口624限定朝向空腔642的开口。由活化剂处理的活性空腔窗口624内的晶片表面称为活性区。活化剂可以是任何适合的液体、气体、蒸汽、或能处理晶片的其它化学产品形式(例如,泡沫)。在一个实施例中,活化剂可包括例如臭氧、螯合剂(例如,EDTA等)、清洁化学产品(例如,SC1,SC2等)、半水性溶剂(例如,ATMI ST-255和ATMI PT-15(由CT的Danbury ATMI制造)、EKC5800TM(由CA的Danville EKC Technology制造等)、HF等)。活化剂可经由源入口640分散,在一个实施例中,源入口640可包括喷嘴(例如,平扇、锥形喷雾器、薄雾/喷雾器)。应意识到,源入口640可以属于能将活化剂传输到空腔642中的任何适合类型的开口。
工作中,活化剂可通过围绕活性空腔窗口624的弯液面116漂洗或以其它方式去除。以此方式,晶片108可以干进、干出,这意味着,在一个实施例中,晶片可以在晶片处理之前为干燥的,在晶片处理之后大体上干燥,即使晶片表面已经由活性空腔窗口624中的活化剂处理。因此,活化剂可局限于邻近头106-3内的空腔。
在一个实施例中,臭氧(或其它氧化气体)可以导入空腔642,且活性空腔窗口624中的晶片表面由弯液面116弄湿,其中弯液面116可以是加热的DIW漂洗弯液面。在此情形下的臭氧可与有机物质反应,且通过晶片边界层将有机物质从晶片表面去除。这可用于例如条形光致抗蚀剂操作等操作中。
应意识到,在图10中所用的导管(即,出口和入口)图样和邻近头结构以及这里描述的其它导管图样和邻近头结构在本质上仅为示范性的,且这里描述的邻近头包含任何适合的邻近头结构,只要该邻近头结构可用于产生大体上围绕衬底表面的区域(其中活化剂进行衬底处理)的流体弯液面。
图11示出根据本发明的一个实施例的邻近头106-3的纵视图。如上面参看图10描述的,邻近头106-3包括进入空腔642的源入口640。在图11所示的实施例中,四个源入口640限定在邻近头106-3的纵截面中。应意识到,根据想要的晶片处理操作和想要输入空腔642中的活化剂的量,可将任何适合数量的源入口640包括在邻近头106-3中,例如1、2、3、4、5、6个等。也应理解,空腔,以及纵视图中的邻近头也包括源入口306和源出口304a和304以及用于产生流体弯液面116的源入口302。在一个实施例中,源入口306可应用处理流体(例如,漂洗流体)到晶片表面。可通过源出口304a和304b从晶片表面去除处理流体。应意识到,源入口302可选地包含在邻近头106-3中,且根据邻近头106-3的构造,不使用源入口302就可产生稳定的流体弯液面。在一个实施例中,当使用源入口302时,可将表面张力减少流体应用到晶片表面和流体弯液面116的外边界。因此,所产生的流体弯液面116围绕活性空腔窗口624。
图12示出根据本发明的一个实施例的带有活性空腔窗口624的邻近头106-4的横截面图。应意识到,图12中所示的横截面图是上面参看图10讨论的横截面图的另一实施例。在一个实施例中邻近头106-4的横截面图包括可将活化剂输入空腔624的源入口640。接着,活化剂可接着处理由活性空腔窗口624限定的衬底表面的活性区。此外,邻近头106-4的横截面图也包括源入口306和源出口304a、304b、和304c。在一个实施例中,邻近头106-4可通过源入口306应用流体到晶片表面,到大体上围绕活性区的区域。源出口304a、304b、和304c可从大体上围绕活性区的晶片表面去除流体。所述应用和去除流体可产生能大体上围绕活性区的流体弯液面。在这样的实施例中,可将活化剂用于处理晶片表面的区域,随后随着晶片或处理头的其中之一的运动,流体弯液面116可进一步在活性区中处理晶片表面。
在图12中所示的实施例中,源出口304a可利用真空从晶片表面去除流体。在一个实施例中,源出口304a可去除由源入口304a应用的流体以及晶片表面的活性区的活化剂处理后剩下的流体和/或材料。在此实施例中的源出口304b可以是单相弯液面去除导管。在此实施例中,源出口304b可以使用真空和/或虹吸去除组成流体弯液面16的流体。此实施例中的源出口304c可利用真空从流体弯液面116的外部区域去除流体,从而限定流体弯液面116的外边界。
图13示出在本发明的一个实施例中的邻近头106-5的横截面图,该邻近头包括带有多个弯液面的多个空腔。邻近头106-5的横截面图是如参看图10讨论的横截面图的另一实施例。此外,应意识到,横截面图的源入口和源出口(例如,源入口306b和源出口304c和304d)可以延伸进z轴。应意识到,可利用源入口和源出口的任何适合的铅锤探测产生与这里的方法和描述一致的流体弯液面。在一个实施例中,邻近头106-5包括多个空腔642a和642b。应意识到,根据想要的晶片处理操作,这里描述的邻近头可包含任何适合数量的空腔,例如1、2、3、4、5、6、7、8、9、10个。应意识到,只要朝向空腔的开口可大体上被流体弯液面围绕,则空腔642a和642b可以具有任何适合的形状,且可位于任何适合的地方。
在一个实施例中,邻近头106-5可包括应用流体到晶片表面的源入口304b和从晶片表面去除流体以产生流体弯液面116c的源出口304c和304d。邻近头106-5也可包括源入口306a,且源出口304a和304b可产生流体弯液面116b,其中流体弯液面116b大体上围绕由活性空腔窗口624a限定的活性区。邻近头106-5可进一步包括用来产生流体弯液面116b的源入口306c和源出口306e和306f,其中流体弯液面116b可大体上围绕活性空腔窗口624a。在一个实施例中,邻近头106-5可分别从源入口640a和640b应用活性剂到空腔642a和642b中。将参看图15B进一步详述邻近头106-5的示范性处理表面。
图14A至14E示出示范性邻近头结构。应意识到,在所有实施例中的活性空腔窗口大体上由导管围绕,其中该导管可产生大体围绕活性空腔窗口的流体弯液面。
图14A示出根据本发明的一个实施例的十字形邻近头106-6。在一个实施例中,活性孔腔窗口624呈十字形。工作中,邻近头106-6可被配置为绕活性孔腔窗口624产生流体弯液面116。
图14B示出根据本发明的一个实施例的圆形邻近头106-7。在一个实施例中,活性孔腔窗口624呈圆形。工作中,邻近头106-7可被配置为绕活性孔腔窗口624产生流体弯液面116。
图14C示出根据本发明的一个实施例的椭圆形邻近头106-8。在一个实施例中,活性孔腔窗口624呈椭圆形。工作中,邻近头106-8可被配置为绕活性孔腔窗口624产生流体弯液面116。
图14D示出根据本发明的一个实施例的条形邻近头106-9。在一个实施例中,活性孔腔窗口624呈条形。工作中,邻近头106-9可被配置为绕活性孔腔窗口62 4产生流体弯液面116。
图14E示出根据本发明的一个实施例的楔形邻近头106-10。在一个实施例中,活性孔腔窗口624呈楔形。工作中,邻近头106-10可被配置为绕活性孔腔窗口624产生流体弯液面116。
图15A示出根据本发明的一个实施例的邻近头106-3的处理表面700的示范性图示。在一个实施例中,处理表面700包括如参看图10和11进一步详述的空腔642。处理表面700也可包括大体围绕朝向空腔642的开口的区域701,其包括多个能产生流体弯液面116的导管,例如如参看图10和11进一步详述的源入口306和源出口304a和304b等。在一个实施例中,多个导管可围绕空腔642。
图15B示出根据本发明的一个实施例的邻近头106-5的处理表面704的示范性图示。在一个实施例中,处理表面704可包括如参看图13进一步详述的空腔642a和642b。另外,邻近头106-5也可包括可大体围绕朝向空腔的开口的区域702、706、和704。区域702、706、和704包括多个可产生流体弯液面116a、116c、和116b的导管。在一个实施例中,多个导管可包括源入口306a、306b、和306c以及源出口304a、304b、304c、304d、304e、和304f,如参看图13进一步详述的。
尽管已经就几个优选的实施例描述了本发明,但将意识到,本领域的技术人员在阅读前述说明书和研究附图后将能实现各种改变、添加、置换、及其等同物。因此意图是,本发明包括落在本发明的真实精神和范围内所有这样的改变、添加、置换、及其等同物。
权利要求
1.一种用于处理衬底的设备,包括邻近头,配置为工作时靠近衬底表面;开口,位于邻近头表面上,朝向限定在邻近头中的空腔,所述空腔配置为通过开口传送活化剂到衬底表面;以及多个导管,位于邻近头表面上,配置为在围绕开口的衬底表面上产生流体弯液面。
2.一种根据权利要求1所述的用于处理衬底的设备,其中所述流体弯液面处理衬底表面。
3.一种根据权利要求1所述的用于处理衬底的设备,其中所述多个导管包括多个入口和多个出口。
4.一种根据权利要求1所述的用于处理衬底的设备,其中所述多个导管包括将流体应用到衬底表面的入口和从衬底表面去除流体的出口。
5.一种根据权利要求4所述的用于处理衬底的设备,其中所述流体属于光刻流体、蚀刻流体、镀覆流体、清洁流体、或漂洗流体中的一种。
6.一种根据权利要求4所述的用于处理衬底的设备,其中多个导管进一步包括另一将表面张力减少流体应用于衬底表面的入口。
7.一种根据权利要求1所述的用于处理衬底的设备,其中活化剂是气体、液体、或蒸汽中至少之一。
8.一种根据权利要求1所述的用于处理衬底的设备,其中多个导管围绕朝向空腔的开口。
9.一种根据权利要求1所述的用于处理衬底的设备,其中所述空腔包括至少一个配置为将活性气体输入空腔中的入口。
10.一种用于处理衬底的方法,包括将活化剂应用到衬底表面的活性区;以及利用邻近头在衬底表面上产生流体弯液面,其中流体弯液面围绕活性区。
11.一种根据权利要求10所述的用于处理衬底的方法,进一步包括用所述活化剂处理衬底表面;以及用所述流体弯液面处理衬底表面。
12.一种根据权利要求11所述的用于处理衬底的方法,其中用所述活化剂处理衬底表面包括蚀刻操作、清洁操作、漂洗操作、镀覆操作、和光刻操作中的一种操作。
13.一种根据权利要求10所述的用于处理衬底的方法,其中用所述流体弯液面处理衬底表面包括蚀刻操作、清洁操作、漂洗操作、镀覆操作、干燥操作、和光刻操作中的一种操作。
14.一种根据权利要求11所述的用于处理衬底的方法,其中产生流体弯液面包括通过流体入口将流体应用于衬底表面,将流体从衬底表面通过流体出口去除。
15.一种根据权利要求14所述的用于处理衬底的方法,其中所述流体是光刻流体、蚀刻流体、镀覆流体、清洁流体、和漂洗流体中的一种流体。
16.一种根据权利要求13所述的用于处理衬底的方法,其中产生所述流体弯波面进一步包括通过另一入口将另一流体应用于所述衬底表面,所述另一流体是表面张力减少流体。
17.一种根据权利要求14所述的用于处理衬底的方法,其中去除所述流体包括虹吸所述流体到高度低于所述邻近头的容器。
18.一种根据权利要求10所述的用于处理衬底的方法,其中所述活性区由衬底表面上的开口限定,所述开口朝向限定在邻近头中的空腔。
19.一种用于处理衬底的方法,包括在衬底表面上产生第一流体弯液面;以及在衬底表面上产生第二流体弯液面,所述第二流体弯液面靠近所述第一流体弯液面,产生第一流体弯液面和第二流体弯液面包括从所述第一流体弯月头虹吸至少第一流体。
20.一种根据权利要求19所述的用于处理衬底的方法,其中虹吸包括通过管道将至少第一流体从衬底表面去除到高度低于邻近头的容器。
21.一种根据权利要求20所述的用于处理衬底的方法,其中通过用至少第一流体充满所述管道开始虹吸。
22.一种根据权利要求20所述的用于处理衬底的方法,其中用真空充满所述管道。
23.一种根据权利要求19所述的用于处理衬底的方法,其中所述第一流体弯液面是自动调节的。
24.一种用于处理衬底的方法,包括将流体应用到衬底表面上;从所述衬底表面虹吸至少所述流体,就在流体应用于衬底表面时执行去除;其中所述应用和去除形成流体弯液面。
25.一种根据权利要求24所述的用于处理衬底的方法,其中虹吸包括通过管道将所述流体从衬底表面去除到高度低于邻近头的容器。
26.一种根据权利要求24所述的用于处理衬底的方法,其中所述流体是单相流体。
27.一种根据权利要求24所述的用于处理衬底的方法,其中通过用流体充满所述管道开始虹吸。
28.一种根据权利要求25所述的用于处理衬底的方法,其中用真空充满所述管道。
29.一种根据权利要求19所述的用于处理衬底的方法,其中所述流体弯液面是自动调节的。
30.一种用于处理衬底的邻近头,包括限定在邻近头中的至少一个第一导管,其中所述至少一个导管配置为应用流体到衬底表面;以及限定在邻近头中的至少一个第二导管,其中所述至少一个第二导管靠近所述至少一个第一导管,所述至少一个第二导管配置为从晶片表面虹吸流体;以及其中将流体应用到衬底表面和从衬底表面虹吸流体产生流体弯液面。
31.一种根据权利要求30所述的用于处理衬底的邻近头,进一步包括至少一个第三导管,限定在邻近头中,所述至少一个导管配置为将另一流体应用到衬底。
32.一种根据权利要求30所述的用于处理衬底的邻近头,其中所述另一流体是表面张力减少流体。
33.一种根据权利要求30所述的用于处理衬底的邻近头,其中所述流体是单相流体。
34.一种根据权利要求30所述的用于处理衬底的邻近头,其中所述第二导管连接至虹吸管。
35.一种根据权利要求30所述的用于处理衬底的邻近头,其中所述虹吸管包括用于调节通过虹吸管的流体流的限制器。
全文摘要
本发明提供了一种用于处理衬底的设备,该设备包括在工作时靠近衬底表面的邻近头。该设备还包括邻近头表面上朝向限定在邻近头中的空腔的开口,其中空腔通过开口传送活化剂到衬底表面。该设备进一步包括邻近头表面上的多个导管,用于在围绕开口的衬底表面上产生流体弯液面。
文档编号F26B5/04GK1725450SQ20051007919
公开日2006年1月25日 申请日期2005年6月30日 优先权日2004年6月30日
发明者R·J·奥东内尔 申请人:兰姆研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1