空调系统的制作方法_2

文档序号:9725181阅读:来源:国知局
中,空调系统具有制热模式和除霜模式。空调系统处于制热模式时,室内换热装置20和室外换热装置30通过第三管路连通,第三管路内的制冷剂通过第一节流装置61进行节流,压缩机10和室外换热装置30通过第二管路连通。空调系统处于除霜模式时,室内换热装置20和室外换热装置30通过第一管路连通,压缩机10和室外换热装置30通过第四管路连通,第四管路内的制冷剂通过第二节流装置62进行节流。
[0029]应用本实施例的空调系统,在空调系统中设置蓄能系统、第一阀门装置51以及第二阀门装置52。上述蓄能系统包括第三管路、第四管路及热能储蓄器40,并且第三管路及第四管路通过热能储蓄器40进行换热。室内换热装置20和室外换热装置30在第一阀门装置51的控制下选择性地与第一管路或者第三管路连通。压缩机10和室外换热装置30在第二阀门装置52的控制下选择性地与第二管路或者第四管路连通。上述结构使空调系统具有制热模式和除霜模式。
[0030]当空调系统处于制热模式时,调整第一阀门装置51和第二阀门装置52,从而使室内换热装置20和室外换热装置30通过第三管路连通,使压缩机10和室外换热装置30通过第二管路连通,此时,第三管路内的制冷剂通过第一节流装置61进行节流降压。在此过程中,压缩机10内的高压气态制冷剂进入室内换热装置20进行冷凝放热,冷凝之后的高压气液两相制冷剂(气态制冷剂的大部分冷凝成液态,而少部分仍为气态)经过第一节流装置61节流降压变为低压气液两相制冷剂,再通过第三管路进入到热能储蓄器40中进行进一步冷却,气液两相制冷剂中的气态制冷剂在冷却变为液态时会放热,而这部分热量会储存在热能储蓄器40中。经过热能储蓄器40冷却的低压气液两相制冷剂变为低压液态制冷剂,并进入到室外换热装置30进行蒸发吸热,蒸发之后的低压气态制冷剂通过第二管路进入至压缩机10内,完成制热模式下的一个循环过程。空调系统在上述制热模式下工作一段时间以后,室外换热装置30的表面会结霜,此时需要将空调系统切换至除霜模式。
[0031]当空调系统处于除霜模式时,调整第一阀门装置51和第二阀门装置52,从而使室内换热装置20和室外换热装置30通过第一管路连通,使压缩机10和室外换热装置30通过第四管路连通,此时,第一管路内的制冷剂不进行节流降压,第四管路内的制冷剂通过第二节流装置62进行节流降压。在此过程中,压缩机10内的高压气态制冷剂进入室内换热装置20进行冷凝放热,冷凝之后的高压气液两相制冷剂(气态制冷剂的大部分冷凝成液态,而少部分仍为气态)直接通过第一管路进入到室外换热装置30内。由于上述高压气液两相制冷剂的蒸发温度较高(蒸发温度与压力成正比),不易被蒸发,其在室外换热装置30内仍进行冷凝放热,放出的热量可以将室外换热装置30表面的霜层融化,达到除霜的目的。经过室外换热装置30冷凝之后的高压液态制冷剂进入第四管路并经过第二节流装置62节流降压变为低压气液两相制冷剂,再通过第四管路进入到热能储蓄器40中。此时,低压气液两相制冷剂可以利用热能储蓄器40在制热模式下储存的热量进行蒸发,蒸发之后的低压气态制冷剂通过第四管路进入至压缩机10内,完成除霜模式下的一个循环过程。在上述除霜过程中,制冷剂仍可以利用热能储蓄器40储存的热量进行蒸发,这样实现了在除霜过程中压缩机10不停机,室内风机仍然吹出热风,室内环境温度波动小,提高了使用舒适性。同时,在除霜过程中制冷剂不反向流动,减少了对空调系统各部件产生的冲击。
[0032]在本实施例中,热能储蓄器40为套管形式的蓄热装置,该热能储蓄器40包括内管以及套设在内管上的外管,上述外管和内管之间形成容纳腔,该容纳腔内充满相变蓄热材料,该内管的通道内通入制冷剂。其中,相变蓄热材料是一种能够储存热能的材料,它在特定的温度(相变温度)下发生物相变化,并伴随着吸收或放出热量,可用以储存热能,即把热量储存起来,在需要的时候再把它释放出来,具体地,当制冷剂的温度高于相变蓄热材料的温度时,相变蓄热材料吸热,储存热量;当制冷剂的温度低于相变蓄热材料温度时,相变蓄热材料放热,释放热量。
[0033]当空调系统处于制热模式时,经过第一节流装置61节流降压后的低压气液两相制冷剂进入到热能储蓄器40的内管的通道内,由于此时两相制冷剂的温度高于相变蓄热材料的温度,该两相制冷剂在内管内进行冷却放热,相变蓄热材料吸热,从而储存热量;当空调系统处于除霜模式时,经过第二节流装置62节流降压后的低压气液两相制冷剂进入到热能储蓄器40的内管的通道内,由于此时两相制冷剂的温度低于相变蓄热材料的温度,该两相制冷剂在可以利用相变蓄热材料内储存的热量进行蒸发,蒸发之后的低压气态制冷剂进入至压缩机10内。
[0034]如图1所示,在本实施例的空调系统中,空调系统还包括第一主路。第一主路的第一端与室内换热装置20连通。第一主路的第二端与第一管路的第一端及第三管路的第一端均连通。第一节流装置61设置在第一主路上。在本实施例中,第一节流装置61为第一电子膨胀阀,第二节流装置62为第二电子膨胀阀,该第一电子膨胀阀设置在在第一主路上。当空调系统处于制热模式时,第一电子膨胀阀处于半开状态(或者根据制冷剂的量选择能够实现节流的开度),使制冷剂以低压的状态进入到室外换热装置30内进行蒸发;当空调系统处于除霜模式时,第一电子膨胀阀处于全开状态,即第一电子膨胀阀对制冷剂不起节流作用,从而使制冷剂仍以高压的状态进入到室外换热装置30内进行冷凝,同时,使第二电子膨胀阀处于节流状态,从而使室外换热装置30冷凝之后的气液两相制冷剂降压,进而保证气液两相制冷剂在热能储蓄器40内可以顺利进行蒸发。
[0035]需要说明的是,第一节流装置61的形式以及设置位置不限于此,在图中未示出的其他实施方式中,第一节流装置可以为其他形式的节流装置,例如可以为毛细管,第一节流装置也可以设置在位于室外换热装置上游的位置,例如可以设置在第三管路上。
[0036]如图1所示,在本实施例的空调系统中,第一阀门装置51包括设置在第三管路上的第一阀门511以及设置在第一管路上的第二阀门512。第二阀门装置52包括设置在第二管路上的第三阀门521以及设置在第四管路上的第四阀门522。通过开启第一阀门511、关闭第二阀门512能够实现室内换热装置20和室外换热装置30通过第三管路连通,通过关闭第一阀门511、开启第二阀门512能够实现室内换热装置20和室外换热装置30通过第一管路连通。通过开启第三阀门521、关闭第四阀门522能够实现室外换热装置30和压缩机10通过第二管路连通,通过关闭第三阀门521、开启第四阀门522能够实现室外换热装置30和压缩机10通过第四管路连通。上述第一阀门装置51和第二阀门装置52的结构简单,易于实现。在本实施例中,第一阀门511、第二阀门512、第三阀门521以及第四阀门522均为电磁阀。需要说明的是,第一阀门装置51和第二阀门装置52的形式不限于此,在图中未示出的其他实施方式中,第一阀门装置51和第二阀门装置52可以为三通阀。
[0037]如图1所示,在本实施例的空调系统中,室外换热装置30包括串联连接的第一室外换热器31和第二室外换热器32。空调系统还包括连接在第一室外换热器31和第二室外换热器32之间的气液分离装置70。在空调系统处于制热模式时,经过热能储蓄器40冷却的低压液态制冷剂先经过第一室外换热器31进行一次蒸发吸热,变为低压气液两相制冷剂,干度增加。上述气液分离装置70可以对该低压气液两相制冷剂进行气液分离,分离出来的近似
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1