空调室外机电子膨胀阀的控制方法

文档序号:10683995阅读:560来源:国知局
空调室外机电子膨胀阀的控制方法
【专利摘要】本发明公开了一种空调室外机电子膨胀阀的控制方法,包括:压缩机启动运行后,获取压缩机的实时运行频率和实时排气温度,将所述实时运行频率与第一设定频率作比较;若所述实时运行频率不大于所述第一设定频率,根据第一设定规则获取PID算法的积分系数,若所述实时运行频率大于所述第一设定频率,根据第二设定规则获取PID算法的积分系数;以所述实时排气温度与设定目标排气温度的差值作为偏差,基于所述偏差对电子膨胀阀的开度进行PID控制。采用本发明,实现了对电子膨胀阀开度的精确、稳定调节。
【专利说明】
空调室外机电子膨胀阀的控制方法
技术领域
[0001]本发明属于空气调节技术领域,具体地说,是涉及空调的控制,更具体地说,是涉及空调室外机电子膨胀阀的控制方法。
【背景技术】
[0002]电子膨胀阀作为一种新型的控制元件,广泛应用在空调冷媒循环系统中。通过对电子膨胀阀的开度进行调节,调节系统中的冷媒循环量,能够满足空调运行性能要求。因此,如何对电子膨胀阀进行有效控制,是衡量空调系统能效比的关键。
[0003]现有技术中,可以采用PID算法对电子膨胀阀的开度进行控制。具体来说,是以压缩机的实际排气温度与目标排气温度的差值作为偏差,基于该偏差进行PID运算,实现对电子膨胀阀开度的调节控制,且可使阀的控制更加迅速,对外界变化的跟随性提高。但是,现有PID调阀控制中,PID参数值固定不变,使得阀开度的调节不能适应工况的变化,阀开度调节不够精确,难以达到理想的空调冷媒循环系统的能效比。

【发明内容】

[0004]本发明的目的是提供一种空调室外机电子膨胀阀的控制方法,达到对电子膨胀阀开度的精确、稳定调节及提高空调冷媒循环系统的能效比的技术目的。
[0005]为实现上述发明目的,本发明采用下述技术方案予以实现:
一种空调室外机电子膨胀阀的控制方法,所述方法包括:
压缩机启动运行后,获取压缩机的实时运行频率和实时排气温度,将所述实时运行频率与第一设定频率作比较;
若所述实时运行频率不大于所述第一设定频率,根据第一设定规则获取PID算法的积分系数,若所述实时运行频率大于所述第一设定频率,根据第二设定规则获取PID算法的积分系数;且根据所述第一设定规则获取的PID算法的积分系数小于根据所述第二设定规则获取的PID算法的积分系数;
以所述实时排气温度与设定目标排气温度的差值作为偏差,基于所述偏差对电子膨胀阀的开度进行PID控制;所述PID控制中PID算法的积分系数为根据所述第一设定规则或所述第二设定规则获取的积分系数。
[0006]优选的,所述第一设定规则为:积分系数为第一积分系数;
所述根据第一设定规则获取PID算法的积分系数具体为:将所述PID算法的积分系数赋值为所述第一积分系数。
[0007]优选的,所述第二设定规则为:所述实时运行频率不大于第二设定频率时积分系数与所述实时运行频率成正相关关系,所述实时运行频率大于所述第二设定频率时积分系数为第二积分系数;
所述根据第二设定规则获取PID算法的积分系数具体为:将所述实时运行频率与所述第二设定频率作比较,若所述实时运行频率不大于所述第二设定频率,根据所述正相关关系确定与所述实时运行频率相对应的积分系数作为PID算法的积分系数;若所述实时运行频率大于所述第二设定频率,将所述PID算法的积分系数赋值为所述第二积分系数;
所述第二积分系数不小于所述实时运行频率不大于所述第二设定频率时的积分系数,所述第二设定频率大于所述第一设定频率。
[0008]更优选的,所述正相关关系为:Ki=A*f+B,式中,f为所述实时运行频率,Ki为与所述实时运行频率对应的积分系数,A和B均为常数。
[0009]优选的,所述B取值为所述第一积分系数。
[0010]优选的,所述第一设定频率为25-32HZ,所述第二设定频率为35-40HZ。
[0011 ]如上所述的方法,所述设定目标排气温度根据所述实时运行频率确定。
[0012]优选的,所述设定目标排气温度与所述实时运行频率呈线性关系。
[0013]与现有技术相比,本发明的优点和积极效果是:采用本发明的方法对电子膨胀阀进行PID调节控制时,在压缩机低频运行阶段,选用较小的积分系数作为PID算法的积分系数,使得低频运行过程中调阀时的调节值较小,减少排气温度的波动及阀开度调节的波动;而在压缩机非低频运行阶段,选用较大的积分系数作为PID算法的积分系数,使得非低频运行过程中调节值较大,调阀速度快。从而,在整个压缩机运行过程中,电子膨胀阀开度调节精确、稳定,有利于空调冷媒循环系统能效比的提升。
[0014]结合附图阅读本发明的【具体实施方式】后,本发明的其他特点和优点将变得更加清
/H- ο
【附图说明】
[0015]图1是本发明空调室外机电子膨胀阀的控制方法一个实施例的流程图。
【具体实施方式】
[0016]为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
[0017]请参见图1,该图所示为本发明空调室外机电子膨胀阀的控制方法一个实施例的流程图,具体来说,是对空调冷媒循环系统中的电子膨胀阀开度进行控制的一个实施例的流程图。
[0018]如图1所示,该实施例实现电子膨胀阀控制的方法包括如下步骤:
步骤11:压缩机启动运行后,获取压缩机的实时运行频率和实时排气温度,将实时运行频率与第一设定频率作比较。
[0019]该步骤中,压缩机的实时运行频率是指压缩机启动后、按照设定采样频率所采集的压缩机的实时运行频率。由于压缩机的运行频率是由空调电脑板上的控制器来控制的,因此,控制器能够方便地获取压缩机运行时的实时运行频率。而实时排气温度是指压缩机启动后、按照设定采样频率所采集的压缩机的实时排气温度,可以通过在压缩机排气口设置温度传感器来检测,并通过控制器获取实时排气温度。
[0020]获取到实时运行频率之后,将其与第一设定频率作比较,比较两者的大小。其中,第一设定频率是预先设置并存储到空调器控制器内的一个频率值,并可通过授权被修改,是用来反映压缩机低频运行与非低频运行的一个界限频率。优选的,第一设定频率为25-32Hz,并随空调器制冷量的不同而变化。一般的,空调制冷量越大,第一设定频率越小,反之亦然。
[0021]步骤12:判断实时运行频率是否不大于第一设定频率。若是,执行步骤13;若为否,执行步骤14。
[0022]步骤13:如果步骤12判定实时运行频率不大于第一设定频率,判定压缩机低频运行,则根据第一设定规则获取PID算法的积分系数。然后,执行步骤15。
[0023]步骤14:如果步骤12判定实时运行频率大于第一设定频率,判定压缩机非低频运行,则根据第二设定规则获取PID算法的积分系数。然后,执行步骤15。
[0024]其中,第一设定规则和第二设定规则均是预先设置并存储在空调器的控制器中,并可通过授权被修改。而且,步骤13中根据第一设定规则获取的PID算法的积分系数小于步骤14中根据第二设定规则获取的PID算法的积分系数。也即,压缩机低频运行时获取的PID算法的积分系数要小于压缩机非低频运行时所获取的PID算法的积分系数。
[0025]步骤15:以实时排气温度与设定目标排气温度的差值作为偏差,基于偏差对电子膨胀阀的开度进行PID控制。
[0026]该步骤15由步骤13或步骤14转来,也即,在步骤13或步骤14获取了与实时运行频率相对应的PID算法的积分系数之后,基于所获取的积分系数对PID算法中的积分系数赋值,然后执行PID调阀的过程。对于PID算法中的比例系数及微分系数的赋值,不作具体限定,可以为固定值。
[0027]PID调阀的过程具体为:计算步骤11中所获取的实时排气温度与设定目标排气温度的差值作为偏差,将该偏差作为PID控制中的偏差,并基于步骤13或步骤14获取的积分系数作为参数,执行PID控制,实现对电子膨胀阀开度的PID控制过程。其中,设定目标排气温度是指期望达到的排气温度,可以预先设定,也可以实时确定。例如,根据冷媒流量实时确定,或者,根据压缩机运行频率来确定。优选的,设定目标排气温度根据压缩机实时运行频率来确定。譬如,预先设置并存储压缩机运行频率与目标排气温度的对应表,一个频率段对应一个目标排气温度。在PID控制过程中,根据压缩机实时运行频率查表,找到压缩机实时运行频率所对应的目标排气温度,作为设定目标排气温度。作为更优选的实施方式,设定目标排气温度Td与压缩机实时运行频率f成线性关系,用公式表达为:Td=m*f+η。其中,m和η为已知的、预先存储好的常数。根据压缩机实时运行频率的线性关系来确定设定目标排气温度,能够获得最大的空调能效比。
[0028]采用上述方法对电子膨胀阀进行PID调节控制时,在压缩机实时运行频率不大于第一设定频率的低频运行阶段,选用较小的积分系数作为PID算法的积分系数,使得低频运行过程中调阀时的调节值较小,减少排气温度的波动及阀开度调节的波动。而在压缩机实时运行频率大于第一设定频率的非低频运行阶段,选用较大的积分系数作为PID算法的积分系数,使得非低频运行过程中调节值较大,调阀速度快。从而,在整个压缩机运行过程中,电子膨胀阀开度调节精确、稳定,有利于空调冷媒循环系统能效比的提升。
[0029]作为优选的实施方式,步骤13中的第一设定规则为:积分系数为第一积分系数。而且,根据第一设定规则获取PID算法的积分系数具体为:将PID算法的积分系数赋值为第一积分系数。也即,在压缩机实时运行频率不大于第一设定频率的情况下,PID算法的积分系数为一固定值。如此设计,能以简单的处理方式获得较佳的调节效果。
[0030]而步骤14中的第二设定规则优选为:实时运行频率不大于第二设定频率时积分系数与实时运行频率成正相关关系,在实时运行频率大于第二设定频率时积分系数为第二积分系数。而根据第二设定规则获取PID算法的积分系数具体为:先将实时运行频率与第二设定频率作比较,若实时运行频率不大于第二设定频率,根据正相关关系确定与实时运行频率相对应的积分系数作为PID算法的积分系数;若实时运行频率大于第二设定频率,将PID算法的积分系数赋值为第二积分系数。其中,第二积分系数不小于实时运行频率不大于第二设定频率时的积分系数,第二设定频率大于第一设定频率。
[0031]也即,第二设定规则包括有两部分,一部分是在实时运行频率不大于第二设定频率时积分系数与实时运行频率成正相关关系,第二部分是在实时运行频率大于第二设定频率时积分系数为一固定值的第二积分系数。如果实时运行频率大于第一设定频率、但不大于第二设定频率,将根据正相关关系确定与实时运行频率对应的积分系数,并作为PID算法的积分系数;若实时运行频率大于第二设定频率,直接将PID算法的积分系数赋值为第二积分系数。
[0032]其中,第二设定频率也是预先设置并存储到空调器控制器内的一个频率值,并可通过授权被修改,是用来反映压缩机在非低频运行时运行频率偏低的一个频率。且该第二设定频率大于第一设定频率。优选的,第二设定频率为35-40HZ,并随空调器制冷量的不同而变化。一般的,空调制冷量越大,第二设定频率越小,反之亦然。而第二积分系数也是一个固定值,且该值不小于在实时运行频率不大于第二设定频率时根据正相关关系所确定的积分系数。也即,在整个压缩机运行过程中,第二积分系数是PID算法中的最大积分系数,而第一积分系数是PID算法中的最小积分系数,按照正相关关系确定的积分系数介于第一积分系数和第二积分系数之间。
[0033]作为优选的实施方式,上述的正相关关系为:Ki=A*f+B。式中,f为实时运行频率,Ki为与实时运行频率对应的积分系数,A和B均为常数。其中,f的取值介于第一设定频率和第二设定频率之间。更优选的,B取值为第一积分系数,当f为第二设定频率时,按照Ki=A*f+B确定的积分系数Ki取值为第二积分系数。因而,在整个压缩机运行过程中,PID算法中积分系数的取值连续,避免了积分系数跳跃引起的阀开度调节的波动。
[0034]而且,为避免特殊情况下出现电子膨胀阀开度过大或过小,在整个电子膨胀阀开度的控制过程中,实时判断电子膨胀阀的开度是否在最大允许开度和最小允许开度限定的允许范围内。若在允许范围内,按照实际目标开度控制电子膨胀阀;如果不在允许范围内,则控制电子膨胀阀的开度为最大允许开度(在实际目标开度大于最大允许开度时)或最小允许开度(在实际目标开度小于最大允许开度时)。其中,最大允许开度和最小允许开度是已知的、根据空调冷媒循环系统的性能参数确定的值。
[0035]以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。
【主权项】
1.一种空调室外机电子膨胀阀的控制方法,其特征在于,所述方法包括: 压缩机启动运行后,获取压缩机的实时运行频率和实时排气温度,将所述实时运行频率与第一设定频率作比较; 若所述实时运行频率不大于所述第一设定频率,根据第一设定规则获取PID算法的积分系数,若所述实时运行频率大于所述第一设定频率,根据第二设定规则获取PID算法的积分系数;且根据所述第一设定规则获取的PID算法的积分系数小于根据所述第二设定规则获取的PID算法的积分系数; 以所述实时排气温度与设定目标排气温度的差值作为偏差,基于所述偏差对电子膨胀阀的开度进行PID控制;所述PID控制中PID算法的积分系数为根据所述第一设定规则或所述第二设定规则获取的积分系数。2.根据权利要求1所述的方法,其特征在于,所述第一设定规则为:积分系数为第一积分系数; 所述根据第一设定规则获取PID算法的积分系数具体为:将所述PID算法的积分系数赋值为所述第一积分系数。3.根据权利要求2所述的方法,其特征在于,所述第二设定规则为:所述实时运行频率不大于第二设定频率时积分系数与所述实时运行频率成正相关关系,所述实时运行频率大于所述第二设定频率时积分系数为第二积分系数; 所述根据第二设定规则获取PID算法的积分系数具体为:将所述实时运行频率与所述第二设定频率作比较,若所述实时运行频率不大于所述第二设定频率,根据所述正相关关系确定与所述实时运行频率相对应的积分系数作为PID算法的积分系数;若所述实时运行频率大于所述第二设定频率,将所述PID算法的积分系数赋值为所述第二积分系数; 所述第二积分系数不小于所述实时运行频率不大于所述第二设定频率时的积分系数,所述第二设定频率大于所述第一设定频率。4.根据权利要求3所述的方法,其特征在于,所述正相关关系为:Ki=A*f+B,式中,f为所述实时运行频率,K i为与所述实时运行频率对应的积分系数,A和B均为常数。5.根据权利要求4所述的方法,其特征在于,所述B取值为所述第一积分系数。6.根据权利要求3所述的方法,其特征在于,所述第一设定频率为25-32HZ,所述第二设定频率为35-40Hz。7.根据权利要求1至6中任一项所述的方法,其特征在于,所述设定目标排气温度根据所述实时运行频率确定。8.根据权利要求7所述的方法,其特征在于,所述设定目标排气温度与所述实时运行频率呈线性关系。
【文档编号】F25B41/06GK106052215SQ201610515017
【公开日】2016年10月26日
【申请日】2016年7月4日
【发明人】许文明, 付裕, 徐贝贝, 刘聚科, 张明杰, 王飞, 李波, 任志强
【申请人】青岛海尔空调器有限总公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1