一种减轻纳米零价铁钝化的方法与流程

文档序号:12635746阅读:2784来源:国知局
一种减轻纳米零价铁钝化的方法与流程

本发明涉及材料技术领域,更具体地说,是涉及一种减轻纳米零价铁钝化的方法。



背景技术:

纳米零价铁具有尺寸小,表面活性高等特点,因此被广泛用于污染物降解以及环境修复等诸多领域。纳米零价铁用于去除污染物的应用范围主要包括,重金属去除,例如铬Cr,镉Cd,汞Hg,镍Ni等;有机污染物降解,例如有机氯代物,包括四氯化碳,三氯乙烯,多氯联苯等;以及水体中的营养物质的去除,例如硝酸盐,磷酸盐等。

但是,纳米零价铁在应用过程中普遍存在着钝化问题。其中常见的钝化现象就是纳米零价铁在发生反应后其表面会生成惰性的铁的氧化物或氢氧化物,并覆盖在纳米零价铁的表面,导致其活性降低甚至失去活性。纳米零价铁在水中形成的钝化层主要是铁的氢氧化物,例如水铁矿。钝化问题的解决主要取决于覆盖在外面的铁的氢氧化物钝化层的去除,使纳米零价铁恢复还原活性。

现有技术有利用电化学法或者外加磁场的方法,消除零价铁表面的钝化层,都存在着诸多问题和缺陷:(1)能耗高;(2)操作复杂,需要安装专用的设备;(3)较难实现大规模使用等。

为解决上述技术问题,本发明由此而来。



技术实现要素:

本发明的目的在于针对现有消除零价铁表面的钝化层的缺点,提供一种减轻纳米零价铁钝化的方法。

为了解决目前现有技术中的这些问题,本发明第一方面提供的技术方案是一种减轻纳米零价铁钝化的方法,其包括如下步骤:

(1)铁还原微生物的筛选和培养

将至少一种铁还原微生物,选择合适的培养基进行培养,达到微生物的稳定期结束培养;

(2)添加铁还原微生物用于减轻零价铁钝化

在零价铁还原有机污染物的反应体系中,当纳米零价铁的还原活性为最初的≤50%时,添加步骤(1)中筛选的至少一种铁还原微生物。

优选地,所述步骤(1)中铁还原微生物对污染物具有耐受能力。

优选地,所述铁还原微生物包括但不限为:奥奈达湖希瓦氏菌Shewanella oneidensis、腐败希瓦氏菌Shewanella putrefaciens以及金属还原地杆菌Geobactor metallireducens等。

优选地,所述步骤(2)中添加步骤(1)中筛选的至少一种铁还原微生物,并定期监测微生物的量,使铁还原微生物的浓度维持在OD值1.0~1.2。

如果微生物浓度降低,需要适时补加。或者也可以将零价铁与铁还原微生物同时添加到反应体系中,零价铁的添加量根据污染物的量确定,铁还原微生物的总浓度维持在适宜范围(OD值约是1.0~1.2)。

本发明中,铁还原菌是的一种金属还原菌,可以还原铁氧化物/铁的氢氧化物得到二价铁以及次级的含铁矿物,例如兰铁矿(Fe3(PO4)2),硫化亚铁(FeS)等,这些次级铁矿物可以进一步还原降解污染物,例如一些氯代有机物。因此,纳米零价铁和铁还原微生物结合,将有可能减轻纳米零价铁的钝化作用,另外一方面,微生物还原铁氧化物/铁氢氧化物产生的次级铁矿物还可以进一步实现污染物的降解。此外采用微生物法来减轻纳米零价铁的钝化还具有环境友好,不需要外加能源等诸多优点。

本发明中,铁还原微生物可以人工培养,也可以利用环境中天然存在的微生物。筛选对污染物具有耐受能力的铁还原微生物,选择合适的培养基进行培养,达到微生物的稳定期结束培养。

与现有的减轻零价铁钝化的方法相比,本发明具有如下优点:

(1)环境友好,采用的是环境中普遍存在的铁还原微生物,操作简单;

(2)耗能低,不需要外加能源,例如电源,磁场等;

(3)同时实现纳米零价铁钝化的减轻和促进污染物的降解;

(4)微生物能够不断繁殖生长,从而维持持续减轻零价铁钝化的效果,有利于整个反应体系的长期稳定运行。

附图说明

图1为纳米零价铁用于四氯化碳的还原脱氯。

图2为扫描电镜(SEM)表征图。图2(a)为纳米零价铁脱氯反应前的SEM表征图,图2(b)为纳米零价铁脱氯反应后的SEM表征图。

图3为X-射线衍射(XRD)表征图。图3(a)为纳米零价铁反应前的XRD图,图3(b)为纳米零价铁反应反应后的XRD表征图。

图4为铁还原微生物还原水铁矿用于四氯化碳的脱氯降解。

具体实施方式

以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明而不限于限制本发明的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。

介绍和概述

本发明通过举例而非给出限制的方式来进行说明。应注意的是,在本公开文件中所述的“一”或“一种”实施方式未必是指同一种具体实施方式,而是指至少有一种。

下文将描述本发明的各个方面。然而,对于本领域中的技术人员显而易见的是,可根据本发明的仅一些或所有方面来实施本发明。为说明起见,本文给出具体的编号、材料和配置,以使人们能够透彻地理解本发明。然而,对于本领域中的技术人员将显而易见的是,本发明无需具体的细节即可实施。在其他例子中,为不使本发明费解而省略或简化了众所周知的特征。

将各种操作作为多个分立的步骤而依次进行描述,且以最有助于理解本发明的方式来说明;然而,不应将按次序的描述理解为暗示这些操作必然依赖于顺序。

将根据典型种类的反应物来说明各种实施方式。对于本领域中的技术人员将显而易见的是,本发明可使用任意数量的不同种类的反应物来实施,而不只是那些为说明目的而在这里给出的反应物。此外,也将显而易见的是,本发明并不局限于任何特定的混合示例。

实施例一种减轻纳米零价铁钝化的方法

步骤一、纳米零价铁的制备以及用于氯代有机物的还原脱氯

采用三价铁盐和硼氢化物,通过化学沉淀法制备纳米零价铁,并将得到的产物干燥后保存。往装有100mL四氯化碳(35μM)溶液的厌氧小瓶中加入50mg纳米零价铁,放置到摇床内,在30℃,180rpm条件下进行脱氯反应,在特定时间点进行取样,并用气相色谱仪对四氯化碳进行检测;待四氯化碳降解完全,重新添加35μM四氯化碳继续进行下一个周期的降解反应,连续运行四个周期(见图1)。图1表明,经过几个周期的脱氯反应,纳米零价铁的反应活性明显降低,还原脱氯的速率常数由0.6h-1降为0.3h-1

步骤二、铁还原微生物筛选和培养

本实施例使用的铁还原微生物是人工培养的Shewanella putrefaciens CN32(Wu Chao,Yuan-Yuan Cheng,Hao Yin,et al.Oxygen promotes biofilm formation of Shewanella putrefaciens CN32through a diguanylate cyclase and an adhesion[J]Scientific Reports 2013,3:1945)。将Shewanella菌株接种到LB培养基(酵母提取物5g/L,蛋白胨10g/L NaCl 10g/L)中放置于摇床中进行培养,培养条件为好氧,30℃,180rpm。在菌种的生长期后期收集菌液,使用冷冻离心机,在4℃,5000rpm的条件下,离心6min,倒掉上清液,收集菌体。并用缓冲盐对菌体离心清洗两遍,最后得到纯化的Shewanella菌浓缩液。

步骤三、铁还原微生物还原水铁矿并用于氯代有机物的降解。

将步骤二中收集的铁还原微生物添加到含有50mM的水铁矿的体系中进行水铁矿的还原反应,控制微生物的初始浓度为OD=1.0。待反应完全后,添加35μM的四氯化碳,在30℃,180rpm条件下于摇床中进行脱氯反应,并测定四氯化碳的含量。

本实施例考察了多种反应条件下的水铁矿还原情况,实验组为:(1)50mM水铁矿+铁还原微生物+四氯化碳;(2)50mM水铁矿+铁还原微生物+1mM磷酸盐+四氯化碳,脱氯效果见图4,结果表明,在不同的环境条件下,微生物都将水铁矿还原,并且得到的次级铁矿物具有很好的还原脱氯效果。

步骤四、对材料进行收集和表征见图2和图3。

图2为扫描电镜(SEM)表征图。图2(a)为纳米零价铁脱氯反应前的SEM表征图,图2(b)为反应后的SEM表征图。表征结果表明,纳米零价铁经过一段时间的脱氯反应,形成了大量铁矿物覆盖在零价铁的表面。

图3为X-射线衍射(XRD)表征图。图3(a)为纳米零价铁反应前的XRD图,图3(b)为反应后的XRD表征图。表征结果表明,纳米零价铁经过一段时间的脱氯反应,形成了多种铁矿物,主要是水铁矿。

以上所述具体实施例仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进或替换,这些改进或替换也应当视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1