逆流混合反应器的制作方法

文档序号:5019801阅读:340来源:国知局
专利名称:逆流混合反应器的制作方法
技术领域
本发明涉及使得能够有效混合流体流的逆流混合反应器。更具体而言,一种流可以为加热、加压或超临界的流体,而另一种为较高密度的流体。更优选的是,一种流可以为超临界水(scH2O),另一种为含金属的溶液。最优选的是,本发明可用于在高温水中连续合成金属或金属氧化物纳米颗粒,而不堵塞输送管线,并且与现有的反应器设计相比改善了对颗粒尺寸与形状的控制。
背景技术
纳米级尺寸的金属和金属氧化物颗粒具有广泛的用途,包括(但不限于)用于催化剂、颜料、抛光剂、紫外吸收剂和陶瓷中。众所周知,此类颗粒可通过金属盐水溶液与加热、加压或超临界的水的化学反应而形成。原理上,由于该方法允许反应作为连续过程实施,因此其在成本和可行性方面具有超过其它纳米颗粒生成方法的显著优点。然而,难以使用该方法在商业规模上实施反应,这是因为现有反应器构造不允许有效控制沉淀反应,导致频繁堵塞反应器以及不能充分控制颗粒尺寸和形状。因此,在该过程中,水和盐溶液混合的反应器的设计对于所生产的纳米颗粒的尺寸和性质极其重要。
本发明详细描述了一种生产一系列可具有催化活性的金属和金属氧化物纳米颗粒的更有效和通用的方法,因而该方法显然具备工业应用性。
颗粒尺寸对催化过程和其它用途会是重要的,并且颗粒尺寸取决于金属性质以及所希望的应用。例如,商业上有用的氧化铈(来自于Johnson Matthey)具有250m2/g的表面积,而具有60-100m2/g的较低表面积的银颗粒也是商业上有用的。并非最优的是,本发明的反应器生产表面积为100m2/g的CeO2。原则上,这可以利用关注于通过调节操作条件和金属盐浓度而降低颗粒尺寸的附加工作而得以明显改善。
虽然催化剂的表面积非常重要,但是颗粒的物理性质液可以决定其在所希望的应用上的成功。例如,氧化锆纳米颗粒通常在结构上是无定形的,此种形态不适用于许多催化应用。本发明的反应器已经制备出有用得多的结晶ZrO2。
超临界流体、尤其是超临界水已经用于生产金属纳米颗粒(Adschiri,Kanazawaet al.1992;Adschiri,Hakuta et al.2000;Galkin,Kostyuk et al.2000Adschiri,Hakuta et al.2001;Cabanas,Darr et al.2001;Cote,Teja et al.2002;Hao and Teja2003;Viswanathan and Gupta 2003;Viswanathan,Lilly et al.2003),然而,现有方法均使用基于T-或Y-形反应器的变体(图1)。
这些方法的主要局限性在于颗粒沉淀的位置不可控。已知颗粒很容易在反应器输送管线中沉淀,尤其是在进口管处。已经发现T形构件反应器在较高密度流体进口处频繁发生堵塞,导致需要清洗和重装反应器的时间成本和不便。这些堵塞可发生在较高密度流体进料到达T形构件处的几分钟之内。此外,如果系统处于压力下,则存在与频繁堵塞相关的明显的健康和安全隐患(即爆炸风险增加)。本发明由基本消除上述问题的新型反应器设计组成。

发明内容
因而,根据本发明第一方面,提供用于连续混合两种或更多种不同密度流体的逆流混合反应器,包括第一进口和出口,其特征在于一个或多个其它进口与第一进口完全相反,并位于出口内。
本发明的原理优点在于混合反应器利用流体之间密度的不同以避免预混合或停滞,从而使输送管线或反应器的堵塞最小化。这是其它反应器构造的主要问题并由在进口向混合器的反混所引起。这导致混合点的颗粒形成上升流并随后引起流动受限,最后堵塞反应器。本发明通过消除在反应器进口内发生混合的潜在可能而解决该问题。
应该理解,提及“不同密度”包括大约大于5%、10%、20%、50%、100%、500%或这些值中任意值之间的范围的差值。
在本发明的一个实施方案中,提供用于连续混合两种流体的逆流混合反应器,包括第一进口和出口,其特征在于另一进口正好与第一进口相对并位于出口内。
优选的是,一个或多个其它进口共轴位于出口内。
在本发明的另一实施方案中,提供适合容纳以第一方向流动的反应流体的第一导管和适合容纳第二反应流体的第二导管的出口,所述出口具有至少是朝向通常与第一方向相反方向的部件,并且所述出口位于所述第一导管内。
应该理解,提及“通常相反”是指从旁侧(45°)至正好相反(180°)的角度。
在本发明的又一实施方案中,逆流混合反应器排列为垂直构型。在该构型中,较低密度流体可被引入到上部进口,因而可与引入到下部进口的较高密度流体混合。
优选的是,所述流体中至少有一种处于亚临界、近临界或超临界状态。应该理解,提及超临界流体包括烃(例如丙酮)、水或致密相气体。更优选的是,所述流体中至少有一种例如较低密度流体是加热、加压或超临界的水。
优选的是,利用环绕出口的加热器使较低密度流体例如加热、加压或超临界的水保持为热的。这是有利的,因为它使得反应可以在初始混合点之外继续,由此改善产物颗粒的质量或数量。
优选所述流体中至少有一种是金属盐或化合物的溶液,更优选金属盐或化合物的水溶液;最优选过渡金属盐溶液。特别优选的是,所述流体中至少有一种例如较高密度流体是金属的金属盐水溶液,所述金属选自包括钌、镉、铑、钯、铁、铈、钛、锆、铜和银的过渡金属,尤其优选的是所述金属盐是氧化物。
较高密度流体优选比较低密度流体温度低。为此,较高密度流体在引入到混合反应器之前冷却和/或较低密度流体在引入到混合反应器之前加温。
冷却较高密度流体例如金属盐溶液的优点在于它使得金属盐可以在发生混合之前保持相对低温。因而,不发生金属盐溶液的预热。二者都节省能量并消除提高盐流温度将导致金属盐过早沉淀的可能性。已知对于特定金属盐例如铜盐来说碰巧如果金属盐溶液的本体温度超过50-60℃就会从溶液中沉淀出来。过早沉淀的趋势部分取决于金属盐及其在溶液中的浓度。此外,当与热得多的超临界H2O流接触时金属盐溶液的快速加热瞬时导致颗粒形成。而且,本发明解决了设计为保持盐的水溶液流低温并防止水溶液流混合或相互作用直至其到达化学反应发生区域的现有反应器遇到的堵塞问题。这令人惊奇地控制沉淀并使其位于化学反应点处。其它好处在于冷的盐溶液还可作为有效的散热器,以移除来自放热反应的热。
优选的是,较高密度流体例如金属盐溶液利用散热器冷却。利用金属盐进口周围的散热器的优点在于确保热从反应中有效耗散-这并未在大多数现有反应器设计中实施,这些现有的反应器设计没有阻止两种流的混合因而不能被冷却。
应该理解,无论是较高密度流体被冷却还是较低密度流体被加热,优选在两种流体流之间存在温度差。理想的是,该温度差将大致大于50、100、200、300、400或500℃或处于这些值中任意值之间的范围。最优选的是,温度差为380℃。
在本发明的另一实施方案中,一个或多个其它进口包括异型喷嘴,例如圆锥形漏斗。
该漏斗构造允许控制和对称混合两种流。这是与现有技术的明显区别,在现有技术中通常使用T形构件混合两种流。应该注意到漏斗不是该设计的基本部件,这是因为反应器可仅使用管道运行。然而,漏斗有助于两溶液的混合并允许得到比进口仅为管道的情况下更为一致的颗粒尺寸和形态。在现有技术中有利的T形构件没有产生穿过进口进入混合区的均匀混合,导致频繁的反应器堵塞以及随后的停工时间。
优选的是,两种或更多种流体流在压力下混合。更优选的是,使两种或更多种流体流加压至约50、100、200、300或400巴或在任意这些值之间的范围。最优选的是,将两种或更多种流体流加压至225巴。
至于本发明的第二方面,提供包括串联排列的一个或多个本发明的混合反应器的混合室。该布置的优点在于允许连续混合两种或更多种流体以进一步细化颗粒尺寸。
至于本发明的第三方面,提供一种制备金属纳米颗粒的方法,包括输送金属盐溶液通过根据本发明的混合反应器的第一进口,并输送处于亚临界、近临界或超临界状态的流体(例如超临界水)通过与第一进口完全相反的另一进口,其中所述另一进口位于出口内,使得混合溶液一旦混合就离开反应器。
通过本发明提供的更有效混合允许生产表面积明显高于现有技术中所观察到的金属氧化物纳米颗粒。例如,已经通过本发明方法生产了具有200m2/g的较高表面积的ZrO2纳米颗粒,所述较高表面积可潜在地提高其催化活性。已经在显著降低堵塞的本发明反应器中制备了以前难以生产的金属和金属氧化物,例如约60m2/g的银。这表明在本发明的混合反应器中可以生产比现有设计的设备更宽范围的潜在纳米颗粒金属基催化剂。
至于本发明的第四方面,提供一种制备金属纳米颗粒的方法,包括将超临界水的溶液与金属(例如过渡金属)盐的水溶液混合,其特征在于所述金属盐的水溶液在混合之前冷却。
至于本发明的第五方面,提供可通过本文所限定的方法得到的金属纳米颗粒。优选的是,所得颗粒是两种或更多种金属的混合物。


图1公知的T形和Y形反应器的示意图。
图2本发明的逆流混合反应器的示意图。
图3在通过CFD模拟产生的本发明逆流混合反应器内的漏斗装置的示意图。
图4引入本发明的逆流混合反应器而允许连续生产颗粒的装置的示意图。
图5示出增加流速对所得颗粒表面积的影响的图。
图6示出增加温度对所得颗粒表面积的影响的图。
具体实施例方式
首先参考图2,将水溶液流引入到反应器底部,在此优选通过散热器冷却。沿向上的方向对溶液施加压力。沿相反的方向即向下引入超临界水至反应器中。超临界水的密度低于水溶液流,因而在反应室中上升,这样与盐的水溶液密切混合。这种混合是高效率的,使得产生金属氧化物纳米颗粒,该纳米颗粒可通过向下流从流出的水溶液中分离出来。
该设计利用两种反应物流(即超临界水和冷盐水溶液)之间的密度差。该密度差在反应器中产生强的、所希望的混合环境,并在混合点处引起强的下向流漩涡。这些漩涡合乎期望地帮助分散金属氧化物颗粒并将其带走,使其不堵塞反应器。
在优选实施方案中,反应器引入如图3所示的漏斗。这有助于反应物的混合并避免与混合下向流相关的脉冲现象。由于超临界水密度较低,因此比冷的溶液更有浮力,其流入并在漏斗表面上形成超临界水膜。该膜非常有效地与流经的更冷的水溶液混合,并且这对于超临界水和水溶液之间反应的动力学具有有益的影响。
图4是引入本发明反应混合器的装置的流程图,该装置通常示为1。该装置包含将水加热至400℃的预热炉。随后,利用Gilson HPLC泵将水流从压力为225巴的装水的第一容器泵送至上部进口。同时,在室温下利用另外的Gilson HPLC泵将金属盐水溶液流从压力为225巴的装金属盐水溶液的第二容器经下部进口泵入。混合之后,混合流经过用来冷却流体流的水冷却器,接着通过由Tescom背压调节器调节的压力传感器2在压力下过滤。在压力下过滤之后,可以收集纳米颗粒3。
参考以下非限制性实施例说明本发明实施例1生产纳米颗粒CeO2反应式利用引入到图4所示装置构造的本发明混合反应器进行以下反应。
水解脱水系统压力设定为228巴。使金属盐溶液(Ce(NO3)4,(0.2M))以5ml/min流经反应器。在50分钟的运行过程中总共使用250ml金属盐溶液。在400℃温度下,使超临界水以10ml/min流经反应器。反应器利用带式加热器保持在370℃,以维持反应。
高压泵和背压调节器系统允许整个装置内保持压力,随后在末端处减压,以使液体产物在常温和常压下释放。根据本发明的装置可不堵塞运行数小时,每小时生产2-5g金属氧化物。
利用上述相似的流动和浓度条件,由本发明的混合反应器得到的其它结果选择示于下表1中
表1

实施例2表面积与反应器内流量的对比图5示出增加向上经过反应器的硝酸铈流量的效果。此处可见随着金属盐流量增加至值8ml/min,表面积增加(从65m2/g至多达到100m2/g)的有趣趋势,而且粒径开始下降。所述增加可能是由于流速与反应动力学之间的关系所引起,而所述降低是由于“过量”金属盐导致产生较大颗粒所引起。
实施例3表面积与反应器内温度的对比一个有趣方面是反应器内操作温度对表面积的影响。反应器可通过外部加热至任意给定的亚临界、近临界或超临界温度,可以建立表面积(间接为粒径)与操作温度之间的关系。即使反应器中的加热水进口可亚临界操作,金属盐和加热水之间的温度差也依然存在,并且这将使得进口流变得向上进入管道的下向流出口,如图2所示。
图6是示出表面积如何明显随操作温度而增加的图。这表明粒径(也可能是形态)可通过调节反应器操作调节而得以调整。
参考文献Adschiri,T.,Y.Hakuta,et al.(2000).″Hydrothermal synthesis of metaloxide fine particles at supercritical conditions.″Industrial &Engineering Chemistry Research39(12)4901-4907.
Adschiri,T.,Y.Hakuta,et al.(2001).″Hydrothermal synthesis of metaloxide nanoparticles at supercritical conditions.″Journal ofNanoparticle Research3(2-3)227-235.
Adschiri,T.,K.Kanazawa,et al.(1992).″Rapid and ContinuousHydrothermal Crystallization of Metal-Oxide Particles inSupercritical Water.″Journal of the American Ceramic Society75(4)1019-1022.
Cabanas,A.,J.A.Darr,et al.(2001).″Continuous hydrothermalsynthesis of inorganic materials in a near-critical water flowreactor;the one-step synthesis of nano-particulate Cel-xZrxO2(x=0-1)solid solutions.″Journal of Materials Chemistry11(2)561-568.
Cote,L.J.,A.S.Teja,et al.(2002).″Continuous hydrothermal synthesisand crystallization of magnetic oxide nanoparticles.″Journal ofMaterials Research17(9)2410-2416.
Galkin,A.A.,B.G.Kostyuk,et al.(2000).″Continuous reactions insupercritical waterA new route to La2CuO4 with a high surfacearea and enhanced oxygen mobility.″Angewandte Chemie-International Edition39(15)2738-2740.
Hao,Y.L.and A.S.Teja(2003).″Continuous hydrothermalcrystallization of alpha-Fe2O3 and Co3O4 nanoparticles.″Journalof Materials Research18(2)415-422.
Viswanathan,R.and R.B.Gupta(2003).″Formation of zinc oxidenanoparticles in supercritical water.″Journal of SupercriticalFluids27(2)187-193.
Viswanathan,R.,G.D.Lilly,et al.(2003).″Formation of zinc oxide-titanium dioxide composite nanoparticles in supercritical water.″Industrial & Engineering Chemistry Research42(22)5535-5540.
权利要求书(按照条约第19条的修改)1.一种用于连续混合两种或更多种不同密度的流体的逆流混合反应器,包括第一进口和出口,其特征在于一个或多个其它进口与第一进口完全相反并位于所述出口内,其中所述流体中至少有一种处于亚临界、近临界或超临界状态。
2.权利要求1的混合反应器,包括第一进口和出口,其特征在于另一进口与第一进口完全相反并位于所述出口内。
3.权利要求1或2的混合反应器,以垂直构型布置。
4.前述权利要求中任一项的混合反应器,其中所述流体中至少有一种是加热、加压或超临界的水。
5.权利要求4的混合反应器,其中较低密度流体利用环绕出口的加热器保持为热的。
6.权利要求1-5中任一项的混合反应器,其中所述流体中至少有一种是金属盐或化合物的溶液。
7.权利要求6的混合反应器,其中所述流体中至少有一种是金属盐或化合物的水溶液。
8.权利要求7的混合反应器,其中所述水溶液是金属的金属盐水溶液,所述金属选自包括钌、镉、铑、钯、铁、铈、钛、锆、铜和银的过渡金属。
9.权利要求1-8中任一项的混合反应器,其中较高密度流体比较低密度流体温度低。
10.权利要求9的混合反应器,其中较高密度流体利用散热器冷却。
11.权利要求1-10中任一项的混合反应器,其中所述一个或多个其它进口包括异型喷嘴,例如圆锥形漏斗。
12.混合室,包括一个或多个串联排列的权利要求1-11中任一项的混合反应器。
13.用于制备金属或金属氧化物纳米颗粒的方法,包括将金属盐溶液输送经过权利要求1-11中任一项的混合反应器的第一进口,并将亚临界、近临界或超临界状态的流体输送通过与第一进口完全相反的另一进口,其中所述另一进口位于出口内,使得混合溶液一旦混合就离开所述反应器。
14.用于制备金属或金属氧化物纳米颗粒的方法,包括混合超临界水的溶液与金属盐的水溶液,其特征在于金属盐的水溶液在混合之前冷却。
15.可通过权利要求13或14的方法得到的金属或金属氧化物纳米颗粒。
16.能够混合两种不同密度流体的装置,所述装置具有向下朝向的较低密度流体的出口和适于在使用中引起较高密度流体的上向流的较高密度流体的进口,所述布置使得可以将较低密度的流体以相对于较高密度流体的上向流向下的方向引入到装置中。
17.权利要求16的装置,其特征在于较低密度流体的进口具有圆锥形喷嘴,以帮助流体混合。
18.权利要求16或17的装置,其中两溶液中密度较高的溶液在进入反应器之前冷却。
19.流体混合装置,其中串联使用两个或更多个权利要求16-18中任一项的装置。
20.在权利要求1-19中任一项的装置的用途,用于混合两种不同密度的流体,使得所述混合发生在所述装置内。
21.权利要求20的用途,其中一种或两种流体处于近临界或超临界状态。
22.权利要求20或权利要求21的用途,其中所述流体中有一种是近临界或超临界水。
23.权利要求20-22中任一项的用途,其中所述流体中有一种是盐的水溶液。
24.权利要求20-23中任一项的用途,其中权利要求16-19的装置用于合成金属纳米颗粒。
25.权利要求24的用途,其中权利要求16-19的装置用于生产纳米颗粒氧化铈。
26.权利要求24的用途,其中权利要求16-19的装置用于生产纳米颗粒氧化钛。
27.权利要求24的用途,其中权利要求16-19的装置用于生产纳米颗粒氧化锆。
28.权利要求24的用途,其中权利要求16-19的装置用于生产纳米颗粒氧化铜。
29.权利要求24的用途,其中权利要求16-19的装置用于生产纳米颗粒氧化银。
30.权利要求24的用途,其中权利要求16-19的装置用于生产混合的金属氧化物,具体是混合的铜和锌氧化物。
31.用于连续混合两种或更多种不同密度的流体的方法,包括以第一流向输送第一种流体和以第二流向输送一种或多种其它流体,所述第二流向与第一流向完全相反,使得所述流体在混合区混合,所述混合后的流体被所述流体中的一种流体流从混合区带走,并且其中所述流体中至少有一种处于亚临界、近临界或超临界状态。
权利要求
1.一种用于连续混合两种或更多种不同密度的流体的逆流混合反应器,包括第一进口和出口,其特征在于一个或多个其它进口与第一进口完全相反并位于所述出口内。
2.权利要求1的混合反应器,包括第一进口和出口,其特征在于另一进口与第一进口完全相反并位于所述出口内。
3.权利要求1或2的混合反应器,以垂直构型布置。
4.权利要求1-3中任一项的混合反应器,其中所述流体中至少有一种处于亚临界、近临界或超临界状态。
5.权利要求4的混合反应器,其中所述流体中至少有一种是加热、加压或超临界的水。
6.权利要求5的混合反应器,其中较低密度流体例如超临界水利用环绕出口的加热器保持为热的。
7.权利要求1-6中任一项的混合反应器,其中所述流体中至少有一种是金属盐或化合物的溶液。
8.权利要求7的混合反应器,其中所述流体中至少有一种是金属盐或化合物的水溶液。
9.权利要求8的混合反应器,其中所述水溶液是金属的金属盐水溶液,所述金属选自包括钌、镉、铑、钯、铁、铈、钛、锆、铜和银的过渡金属。
10.权利要求1-9中任一项的混合反应器,其中较高密度流体比较低密度流体温度低。
11.权利要求10的混合反应器,其中较高密度流体例如金属盐溶液利用散热器冷却。
12.权利要求1-11中任一项的混合反应器,其中所述一个或多个其它进口包括异型喷嘴,例如圆锥形漏斗。
13.混合室,包括一个或多个串联排列的权利要求1-12中任一项的混合反应器。
14.用于制备金属或金属氧化物纳米颗粒的方法,包括将金属盐溶液输送经过权利要求1-12中任一项的混合反应器的第一进口,并将亚临界、近临界或超临界状态的流体输送通过与第一进口完全相反的另一进口,其中所述另一进口位于所述出口内,使得经混合的溶液一旦混合就离开所述反应器。
15.用于制备金属或金属氧化物纳米颗粒的方法,包括混合超临界水溶液与金属(例如过渡金属)盐的水溶液,其特征在于金属盐的水溶液在混合之前冷却。
16.可通过权利要求14或15的方法得到的金属或金属氧化物纳米颗粒。
17.能够混合两种不同密度流体的装置,其中较低密度流体以相对于较高密度流体的上向流向下的方向引入到装置中。
18.权利要求17的装置,其特征在于较低密度流体的进口具有圆锥形喷嘴,以帮助流体混合。
19.权利要求17或18的装置,其中两溶液中密度较高的溶液在进入反应器之前冷却。
20.一种装置,其中串联使用两个或更多个权利要求17-19中任一项的装置。
21.在权利要求17-20中任一项的装置中混合两种不同密度的流体的方法,使得所述混合既高效又位于所述装置内。
22.权利要求21的方法,其中一种或两种流体处于近临界或超临界状态。
23.权利要求21或权利要求22的方法,其中所述流体中有一种是近临界或超临界水。
24.权利要求21-23中任一项的方法,其中所述流体中有一种是盐的水溶液。
25.权利要求21-24中任一项的方法,其中权利要求17-20的装置用于合成金属纳米颗粒。
26.权利要求25的方法,其中权利要求17-20的装置用于生产纳米颗粒氧化铈。
27.权利要求25的方法,其中权利要求17-20的装置用于生产纳米颗粒氧化钛。
28.权利要求25的方法,其中权利要求17-20的装置用于生产纳米颗粒氧化锆。
29.权利要求25的方法,其中权利要求17-20的装置用于生产纳米颗粒氧化铜。
30.权利要求25的方法,其中权利要求17-20的装置用于生产纳米颗粒氧化银。
31.权利要求25的方法,其中权利要求17-20的装置用于生产混合的金属氧化物,具体是混合的铜和锌氧化物。
全文摘要
一种用于有效混合不同密度的流体流的混合反应器。在优选实施方案中,所述流体中的一种是超临界水,另一种是盐的水溶液。因而,该反应器使得金属氧化物纳米颗粒的生产能够成为连续过程,而没有任何现有反应器设计中固有的混合不充分所导致的反应器堵塞的风险。
文档编号B01F5/04GK1917936SQ200580004767
公开日2007年2月21日 申请日期2005年2月11日 优先权日2004年2月11日
发明者爱德华·亨利·莱斯特, 巴里·詹姆斯·阿佐帕尔迪 申请人:诺丁汉大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1