聚结型沸石吸附剂及其制备方法

文档序号:5029544阅读:636来源:国知局
专利名称:聚结型沸石吸附剂及其制备方法
技术领域
本发明为一种聚结型沸石吸附剂及其制备方法,具体地说,是一种用于吸 附分离芳烃同分异构体的吸附剂及其制备方法。
背景技术
在具有多取代基的芳烃类化合物生产过程中,由于反应工艺和反应热力学 平衡所限,得到的往往是多种同分异构体并存的混合产物,必须经过进一步的 分离才能获得其中最有应用价值的单体。然而这些同分异构体通常具有非常接 近的沸点,采用传统的精馏工艺很难分离,为此工业上普遍采用选择性吸附的 方法来实现同分异构体之间的分离。
吸附分离技术的原理是采用特定的吸附剂,利用其优先吸附或优先不吸附 目的产品的特性,再配合适当的工艺方式从混合物料中分离、提纯目的产品。 吸附剂是吸附分离技术的基础和核心,目前已知由钡、鉀离子单独或混合交换
的X型沸石具有优先吸附对位芳烃异构体的特性。因此工业上广泛使用BaX 或BaKX作为吸附剂,配合连续逆流模拟移动床分离工艺,从C8芳烃异构体中 吸附分离对二曱苯。在吸附塔中,利用吸附剂优先吸附对二甲苯的性质,经过 反复逆流传质交换,使对二曱苯吸附于吸附剂中,浓度不断增加,达到所需产 品纯度后,再由解吸剂解吸吸附的对二甲苯,精馏抽出液回收解吸剂,得到高 纯度的对二曱苯。通过该法生产的对二曱苯纯度可达99.8质量%、收率可达98 质量%。此外,USP4940548、 USP5149887中还披露了此类吸附剂用于二乙基 曱苯和曱基苯酚等异构体的分离。
性能优良的吸附剂应具备以下三方面的性质,即吸附容量高、吸附选择性 好、传质速率快。显然,吸附剂的吸附容量与其中的沸石含量成正比,沸石含 量越高,吸附剂具有的吸附容量越大。然而人工合成的沸石通常为粉末状,需 要加入一定量的粘结剂将其聚结成型才能满足工业应用的要求,这就不可避免 地会产生部分容量损失。因此,减少吸附剂中的惰性粘结剂用量,并尽量使其 转化成沸石成为提高吸附剂性能的有效方法。USP3960774最早公布了用氢氧 化钠水溶液处理含X或Y沸石和粘结剂的吸附剂前体来提高吸附剂的结晶度, 然后再进行钡、钾离子交换。
吸附剂的选择性主要从交换离子种类和沸石性质方面进行改善。 USP3997620采用锶和钡双金属离子交换制成SrBaX型吸附剂,提高对二曱苯 的选择性。USP4283587将经过离子交换后的X或Y型沸石再用烷基胺或烷基 铵的盐酸盐处理,以提高其对位异构体的选择性。CN1275926A公开了一种聚 结型沸石吸附剂,使用Si/Al原子比为1 1.15的低二氧化硅含量的X沸石为原料制备吸附剂,并用钡和钾离子进行交换,吸附剂中的可交换位点至少含70%
的钡离子和至多30%的钾离子。所述吸附剂采用高岭土为粘结剂,并通过石威液 处理使其原位晶化为X沸石提高吸附剂容量。
提高吸附剂性能,除改善吸附剂的吸附容量和选择性外,还要提高其传质 速率。CN1448213A和CN1565718A分别釆用晶粒为0.5 1.0微米和0.1~0.4微 米的小晶粒X沸石为吸附剂的活性组分,以提高吸附剂的沸石晶内传质速率。
CN1358566A公开了 一种吸附剂及其制备方法,通过改善吸附剂的二次孔 分布来提高吸附剂的性能。该吸附剂将X型或Y型沸石和粘结剂混合,在其中 加入0.5 6.0质量%的扩孔剂,混合均匀、加水成型,干燥、活化后经碱处理、 离子交换制得吸附剂。所述的粘结剂为高岭土、膨润土、有机皂土、硅溶胶、 铝溶胶、水玻璃中的一种或几种,扩孔剂为木质素、纤维素钠、田菁粉中的一 种或几种。

发明内容
本发明的目的是提供一种聚结型沸石吸附剂及其制备方法,该吸附剂具有 较高的吸附容量和较快的传质速率。
本发明提供的聚结型沸石吸附剂,包括95 99.5质量%的X沸石和0.5 5.0 质量%的粘结剂,所述X沸石的可交换阳离子位为IIA族金属和/或K,所述吸 附剂采用压汞法测定的总孔体积不小于0.26毫升/克,其中孔直径为100~500 纳米的孔体积至少占总孔体积的60。/。。
本发明在吸附剂制备过程中,向制备吸附剂的混合粉料中加入造孔剂,以 使转晶后所得的聚结型沸石吸附剂颗粒内部晶间堆积孔道发达,压汞法测定的 大孔比例高、孔体积大,具有良好的传质性能,提高了吸附剂中沸石的利用率 和碱处理过程中粘土的原位晶化反应程度,从而显著地提高了吸附剂的吸附容 量,进而提高了单位质量吸附剂的生产能力。


图1为本发明评价吸附剂传质速率所得的扩散曲线示意图。 图2为本发明进行吸附分离的流程示意图。
具体实施例方式
本发明将X型沸石和可沸石化的粘土混合,在成型时添加助剂并在滚球成 型时喷洒造孔剂的水溶液,造孔剂通过焙烧分解为挥发组分去除,使聚结小球 内部形成发达的孔道体系,并使最终成品吸附剂的压汞孔体积不小于 0.26mL/g,并且其中孔径100 500纳米的孔体积至少占总孔体积的60%。所述 吸附剂的传质性能良好,可明显缩短达到吸附平衡的时间,提高吸附剂颗粒内 部沸石的利用率。另外,聚结成型的小球经过高温焙烧,粘土的原有晶体结构 被破坏,转变为具有反应活性的无定型硅铝酸盐,在适当条件下通过碱处理,
5使其中大部分的无定型硅铝酸盐进一步转化为X沸石,因此可获得至少包含95 质量Q/。X沸石的聚结型吸附剂颗粒。同时,碱处理转晶过程还使小球内部的沸 石晶粒之间形成更紧密的结合,以使吸附剂具有良好的机械强度。
本发明采用压汞法测定吸附剂中含有的一定孔径的大孔所占的比例和总 孔体积。用压汞法测定的本发明吸附剂的总孔体积优选不小于0.28毫升/克, 孔直径为100 ~ 500纳米的孔体积优选至少占总孔体积的70%。
所述吸附剂中X沸石的可交换阳离子位为IIA族金属或钾,或者是IIA族 金属和钾,所述IIA族金属优选钡。当所述的吸附剂中X沸石的阳离子为Ba 和K时,吸附剂中氧化钡与氧化钾的摩尔比为20 ~ 60,优选30 ~ 50。吸附剂 中的氧化钠含量应不大于1.0质量%,优选不大于0.6质量%。吸附剂的水含量 以600。C焙烧2小时后的灼减量表示,一般控制吸附剂的灼减量不大于7.0质量 %,优选的灼减量为4.0 6.0质量%。
为增加吸附剂的传质速率,本发明所述吸附剂选用小晶粒的X沸石,其平 均晶粒粒径为0.1~2.0孩吏米,优选为0.2 1.(H敖米。
所述吸附剂中的粘结剂为高岭土族矿物经原位晶化后未晶化的基质,所述 的高岭土族矿物为高岭石、地开石、珍珠石、埃洛石或它们的混合物。
本发明提供的吸附剂的制备方法,包括
(1 )将NaX或NaKX沸石与可沸石化的粘土按88~95: 5 12的质量比与 成型助剂制成混合粉料,向混合粉料中加入造孔剂的水溶液通过滚动使之聚结 成小球,然后干燥、焙烧,所述的造孔剂为水溶性碳酸盐或水溶性高分子化合 物;
(2 )将焙烧后的小球用氲氧化钠溶液或氲氧化钠与硅酸钠的混合溶液在 90 100。C处理,使其中的粘土原位晶化为X型沸石,然后干燥、焙烧;
(3 )用IIA族金属的可溶性盐溶液或者是钾盐和IIA族金属的可溶性盐的 混合溶液进行阳离子交换后活化。
所述方法中,(l)步为吸附剂的成型,成型前先将NaX或NaKX沸石与 可沸石化的粘土按预定的比例混合,加入成型助剂,再将得到的混合粉料滚球 成型,滚动成型所用的设备可为转盘、糖衣锅或滚筒。成型时将混合粉料放入 转动设备中,边滚动边向混合粉料中喷洒造孔剂的水溶液,使粉料在水溶液的 作用下逐渐粘附团聚成小球并长大。滚动成型至一定粒径的小球后,将小球从 成型设备中取出,然后将其篩分,取直径为0.2 1.5毫米,优选直径为0.35-0.80毫米的小球,干燥、焙烧后制得成型小球。
(1)步中所述的可沸石化的粘土优选高岭土族矿物。所述的高岭土族矿 物优选高岭石、地开石、珍珠石、埃洛石或它们的混合物。
所述的成型助剂优选木质素、田菁粉、干淀粉、羧甲基纤维素、活性碳中的一种或几种的混合物。加入的成型助剂与所述的NaX或NaKX沸石与粘结剂 的总质量的比为1 8%,优选2~5%。
(1)步所述的造孔剂选自水溶性碳酸盐或水溶性高分子化合物,造孔剂 在小球焙烧过程中变为挥发性组分而从吸附剂中脱除。所述的水溶性碳酸盐优 选碳酸铵、碳酸钠或碳酸氢钠;所述的水溶性高分子化合物优选聚丙烯酰胺、 聚乙烯醇和聚乙二醇中的一种或任意几种。所述造孔剂的水溶液的浓度为 0.5 10.0质量%,优选1.0~8.0质量%,滚球成型时加入的造孔剂的水溶液占混 合粉料的总质量的10-40%,优选20 30%。
所述方法(2)步是将(1)步成型焙烧后的小球进行碱处理,以使其中的 可沸石化的粘土原位晶化生成X沸石。原位晶化处理时液/固体积比为1.2-2.0: 1,原位晶化处理所用碱液选自氢氧化钠或氲氧化钠与硅酸钠的混合溶液。当碱 处理所用的碱液为氢氧化钠溶液时,其浓度优选1.0-4.0摩尔/升;当碱处理所 用的碱液为氢氧化钠与硅酸钠的混合溶液时,该混合溶液中氧化钠含量为3.0 ~ 8.0质量%, 二氧化硅含量为1.0 7.0质量%。原位晶化的处理时间优选3 10小 时。原位晶化后将所得小球进行干燥、焙烧。
上述(l)、 (2)步中所述的干燥温度优选60 120°C,干燥时间优选4 12小时。焙烧温度为500 ~ 700°C ,焙烧时间优选2 6小时。
所述方法(3)步是将原位晶化处理后的小球进行阳离子交换,使其中的X 沸石的阳离子位转化为1IA族金属和/或K,以调变沸石晶孔内静电场性质,增 大吸附选择性。所述的阳离子交换可以在釜式或柱式容器中进行,优选在交换 柱中以连续方式进行交换。交换温度优选60 160°C,更优选卯 100。C,交换 液体积空速1.0 ~ 12.0时-1,优选2.0 ~ 6.0时",交才灸时间5 ~ 40小时,优选10 ~ 20小时。交换液中的阳离子摩尔数与沸石中钠离子摩尔数之比,即交换比为 1.5 5.0。若制备同时含有IIA族金属和钾的吸附剂时,用钾盐和IIA族金属的 可溶性盐的混合溶液进行阳离子交换,也可先用IIA族金属的可溶性盐溶液进 行交换,再用钾盐溶液进行钾交换。经阳离子交换后的小球需洗涤,除去游离 金属离子,然后进行活化。所述的活化优选在流动的空气或氮气中进行以脱除 吸附剂中的水分,活化温度优选180~250°C,时间优选2 12小时。
所述离子交换所用的IIA族金属的可溶性盐优选钡的可溶性盐,如硝酸钡 或氯化钡,所述的用于离子交换的钾盐优选氯化钾或硝酸钾。
所述吸附剂中X沸石的硅铝比即沸石中氧化硅与氧化铝的摩尔比应较低, 以利于增加吸附剂的吸附选择性,所用X沸石的硅铝比优选为2.0 ~ 2.4。
制备本发明吸附剂所用的X沸石优选小晶粒的X沸石,其平均晶粒粒径为 0.1-1.0微米。制备小晶粒X沸石的方法有多种,如按CN1448338A和 EP960854A1的方法制备。
7从所述的异构体中分离对位二取代基的芳烃异构体,如从邻二曱苯、间二曱苯、 对二曱苯和乙苯的混合物中吸附分离对二曱苯。也可用于二乙基苯异构体或二
乙基曱苯异构体以及曱基苯酚异构体的吸附分离。所述液相吸附分离可采用多 柱串联方式进行操作,也可采用借助旋转阀或电磁阀组实现的模拟移动床进行
操作。吸附分离的操作压力优选0.5-1.6MPa,温度优选120~200°C。 下面通过实例进一步说明本发明,但本发明并不仅限于此。
实例中吸附剂中的X沸石含量和评价性能数据的测定方法为 吸附剂的X沸石含量通过测定样品在一定条件下对曱苯的吸附量来计算, 测定条件为35。C恒温水浴、常压流动的氮气携带曱苯蒸气通过吸附剂直至吸附 饱和,曱苯分压0.5,并设定曱苯吸附能力等于0.235克/克的样品中X沸石含 量为100质量%。
吸附剂的机械强度以小球的抗压破碎率来表征,测定方法为取适量在空 气中自然饱和的吸附剂,称重后装入底端封闭的不锈钢筒内,吸附剂上方安放 与不锈钢筒配合的圆柱顶针,然后放置在颗粒强度测定仪上加压至250牛顿, 卸压取出吸附剂,用0.3毫米的筛子筛分,将未通过筛眼的小球称重。过筛后 所得样品减少的量与加压前样品的质量百分比即为被测样品的抗压破碎率,破 碎率越低,表明样品的强度越好。
吸附剂样品的孔体积和孔尺寸分布用美国Micromeritics公司Autopore II -9220型压汞4义,采用ASTMD4382-03方法测定。
吸附剂的内扩散的传质速率的测定方法为取3 ~ 4克经预先脱水活化并在 氮气保护下干燥冷却的吸附剂样品,置于带有磁力搅拌的平衡釜中,同时加入 15毫升的邻二曱苯,将釜盖密闭,于120。C静置4小时,使吸附剂被邻二甲苯 充分饱和,然后开启磁力搅拌,迅速注入15毫升对二曱苯,开始计时,并立即 提取少量平衡釜中的液体样品,用气相色语法分析其组成,计算混合溶液中对 二曱苯的初始浓度C。,然后每间隔一段时间提取少量液体样品分析组成,计算 对应时间的对二曱苯浓度Ct,直至平衡釜中液体组成不再发生变化,即达到了 扩散平衡,平衡时溶液中对二甲苯的浓度记为C 。以取样时间t为横坐标,(Co -Ct) / (CQ-C )为纵坐标作图,得到图l所示的扩散曲线。由图l可知对二 曱苯的内扩散过程分为快、慢两个阶段,初始扩散速率较快,接近平衡后扩散 速度明显变慢,曲线在(C。-Ct) / (C。-C ) =0.9的附近有一拐点。为便于对 比不同吸附剂样品之间的传质速率的差异,将(C。-Ct) / (Q-C )达到0.9 时对应的扩散时间作为衡量吸附剂传质速率快慢的指标,称为内扩散传质速率。
8(Co-Ct) / (C。-达到0.9所需的时间越短,表明样品的传质性能越好。 例如由图1所示A和B两条扩散曲线求得的tA小于tB,说明样品A的传质性 能优于样品B。
实例1
制备本发明吸附剂并进行吸附性能测试。
(1 )制备小晶粒X沸石在100升合成釜中加入16.4千克偏铝酸钠〉容液 (其中含八1203 17.3质量%, Na2O21.0质量。/。) 、 11.0千克去离子水和2.9千 克氪氧化钠,搅拌使固体4^完全溶解,然后加入11.8千克硅酸钠溶液(其中含 Si02 28.3质量。/。, Na20 8.8质量。/。),搅拌至混合均匀,25。C静置老化20小时 制得导向剂。
25°C,向2000升釜中加入255千克硅酸钠溶液、1001千克去离子水、37 千克氢氧化钠,搅拌使之充分混合,并在搅拌下加入227千克偏铝酸钠,然后 加入15千克的导向剂,继续搅拌至混合均匀,升温至IO(TC,静止晶化4小时。 产物经水洗至洗涤液pH值小于10,过滤、8(TC干燥12小时得到NaX型沸石。 由晶胞常数计算得到该沸石的Si(VAl203摩尔比为2.19,扫描电镜观测其平均 晶粒粒径为0.7孩i米。
(2 )滚球成型将88千克(干基质量,下同)(1 )步制备的NaX型沸 石与9千克高岭土 (含高岭石90质量%,山西临汾产)和3.4千克田菁粉混合 均匀形成混合粉料,放入转盘中边滚动边喷入适量的浓度为5.0质量%的碳酸 钠水溶液,以使固体混合粉料附聚成小球,滚球时喷入的碳酸钠水溶液量为固 体混合粉料的25质量%。筛取直径为0.35 0.80毫米的小5求,8(TC干燥10小时, 空气流中540。C焙烧4小时。
(3) 原位晶化将上述焙烧后的小球按液/固体积比2.0: 1的比例,用 1.5moL/L的氢氧化钠溶液,在96。C静置处理4.0小时,使其中的高岭土原位晶 化转化为X沸石。原位晶化处理后所得的小球用去离子水洗涤至洗涤液pH值 为9.0, 80。C干燥12小时,50(TC焙烧2小时,测定其曱苯吸附容量为0.225克 /克,相当于聚结小球中X沸石的含量为95.7质量%。
(4) 离子交换取原位晶化处理并焙烧后的小球用常规柱式连续法进行 离子交换,交换液为0.18moL/L的硝酸钡溶液,在92。C、常压、交换液体积空 速4.0时"的条件下进行钡离子交换10小时,所用硝酸钡溶液与小球的体积比 为40: 1。交换完成后,用10倍小球体积的去离子水洗涤,22(TC氮气流中干 燥6小时,制得吸附剂A-l, 600。C焙烧2小时测定其灼减量为4.3质量%,吸
9附剂的组成和压汞法测得的孔体积、孔径分布及其它物理性质见表1。
实例2
按实例1的方法制备吸附剂,不同的是(2)步滚球成型时喷入的浓度为 5.0质量%的碳酸铵水溶液的量为固体混合粉料的28质量%, ( 3 )步将焙烧后 小球用氢氧化钠和硅酸钠的混合溶液处理进行原位晶化,混合溶液中含Na20 4.3质量%、 Si02 2.1质量。/。,原位晶化后所得聚结小球的曱笨吸附容量为0.230 克/克,相当于聚结小球中X沸石含量为97.9质量%。离子交换并活化后得到 的吸附剂A-2在600。C焙烧2小时的灼减量为4.5质量%,其组成和压汞法测得 的孔体积、孔径分布及其它物理性质见表1。
实例3
按实例1的方法制备吸附剂,不同的是(2)步中将63千克实例1制备的 NaX型沸石与5.4千克高呤土和2.7千克羧甲基纤维素(山东青州清泉纤维素 厂生产)混合均匀后放入转盘中,边滚动边喷入适量的浓度为2.0质量%的聚 丙稀酰胺(上海恒皓创新酰胺有限公司生产)的水溶液,以使固体混合粉料附 聚成小球,滚球时喷入的聚丙稀酰胺的水溶液量为固体混合粉料的20质量%。 然后按照实例1所述的后续步骤进行干燥、焙烧后进行原位晶化,测定原位晶 化后所得小球的曱苯吸附容量为0.226克/克,相当于聚结小球中X沸石的含量 为96.2质量%。
将原位晶化后的小球按实例1(4)步的方法用硝S交钡溶液进行离子交换, 不同的是离子交换后经水洗的小球在200。C氮气流中干燥6小时,制得吸附剂 A-3,测定其在600。C焙烧2小时的灼减量为5.6质量%,其组成和压汞法测得 的孔体积、孔径分布及其它物理性质见表1。
实例4
按实例1的方法制备吸附剂,不同的是(2)步中将63千克实例1制备的 NaX型沸石与5.4千克高岭土和2.7千克羧曱基纤维素混合均匀后放入转盘中, 边滚动边喷入适量的浓度为2.0质量%的聚乙烯醇(上海邵荣贸易有限公司生 产)的水溶液,以使固体混合粉料附聚成小球,滚球时喷入的聚乙烯醇的水溶液为固体混合粉料的22质量%。然后按照实例1所述的后续步骤进行干燥、焙 烧后进行原位晶化,测定原位晶化后所得小球的曱苯吸附容量为0.224克/克, 相当于聚结小球中X沸石的含量为95.3质量%。
将原位晶化后的小球按实例1 (4)步的方法用硝酸钡溶液进行离子交换, 不同的是离子交换后经水洗的小球在200。C氮气流中干燥6小时,制得吸附剂 A-4,测定其在600。C焙烧2小时的灼减量为5.3质量%,其组成和压汞法测得 的孔体积、孔径分布及其它物理性质见表1。
实例5
按EP 0960854A1所述的方法制备NaKX型沸石。在IOO升合成釜中加入 5.5千克偏铝酸钠溶液(其中含Al203 17.3质量%, Na20 21.0质量%) 、 12.6 千克去离子水和7.4千克氢氧化钠,搅拌使固体碱完全溶解,然后加入19.6千 克硅酸钠溶液(其中含Si02 28.3质量%, Na20 8.8质量% ),搅拌至混合均匀, 40。C静置老化1.0小时制得导向剂。40。C下,向2000升釜中加入198千克硅酸 钠溶液、660千克去离子水、90千克氢氧化钠、105千克氪氧化钾,搅拌使之 充分混合,并在搅拌下加入288千克偏铝酸钠,然后加入3千克的导向剂,继 续搅拌至混合均匀,40°C、 250转/分钟的条件下搅拌老化4小时,升温至70 度静止晶化4小时。产物经水洗至洗涤液pH值小于10,过滤、70'C干燥12 小时得到NaKX型沸石。由晶胞常数计算沸石的8102/八1203摩尔比为2.03,扫 描电镜观测平均晶粒粒径为0.4微米。
将75千克NaKX沸石、8.3千克高岭土和3.0千克羧曱基纤维素混合均匀 制成混合粉料放入转盘中,边滚动边喷入浓度为5.0质量%的碳酸铵水溶液, 以使固体混合粉料附聚成小球,滚球时喷入的碳酸铵水溶液的量为固体混合粉 料的27质量%。然后按照实例1所述的后续步骤进行干燥、焙烧后进行原位晶 化,测定原位晶化后所得小球的甲苯吸附容量为0.228克/克,相当于聚结小球 中X沸石的含量为97.0质量%。
将原位晶化后的小球按实例1(4)步的方法用硝酸钡溶液进行离子交换, 不同的是离子交换后经水洗的小球在230。C氮气流中干燥4小时,制得吸附剂 A-5,测定其在60(TC焙烧2小时的灼减量为4.2质量%,其组成和压汞法测得 的孔体积、孔径分布及其它物理性质见表1。实例6
按实例5的方法制备吸附剂,不同的是对原位晶化后得到的小球进行离子 交换时,采用K+离子浓度为0.1摩尔/升的氯化钾和Ba^离子浓度为0.20摩尔/ 升的硝酸钡混合溶液为交换液,交换所消耗的交换液与固体小球的体积比为 40: 1。制得的吸附剂A-6中氧化钡与氧化钾的摩尔比为36.8,测定其在600 。C焙烧2小时的灼减量为4.8质量%,其组成和压汞法测得的孔体积、孔径分 布及其它物理性质见表1。
只于比例1
将70千克实例1制备的NaX型沸石与7千克高岭土混合均匀,放入转盘 中,边滚动边喷入适量的去离子水,以使固体粉料附聚成小球,滚球时喷入的 水量为固体粉料的30质量%。筛取0.35 0.80毫米的小球,8(TC干燥10小时, 在空气流中540。C焙烧4小时。再将焙烧后小球用氢氧化钠和硅酸钠的混合溶 液处理进行原位晶化,混合溶液中含Na20 4.3质量。/。、 Si02 2.1质量。/。,原位晶 化后,所得的小球用去离子水洗涤至洗涤液pH值为9.0, 8(TC干燥12小时, 50(TC焙烧2小时。得到的聚结小球的曱苯吸附容量为0.219克/克,相当于聚 结小球中X沸石含量为93.2质量%。
将原位晶化处理得到的聚结小球按实例1 (4)步的方法进行离子交换和干 燥脱水,得对比吸附剂B-l。测定其在600。C焙烧2小时的灼减量为4.7质量%, 其组成和压汞法测得的孔体积、孔径分布及其它物理性质见表1。
对比例2
将70千克实例1制备的NaX型沸石与7千克高岭土和2.8千克羧甲基纤 维素混合均匀制成混合粉料放入转盘中,边滚动边喷入适量的去离子水,使固 体粉料附聚成小球,滚球时喷入的水量为固体混合粉料的32质量%。筛取 0.35 0.80毫米的小球,80。C干燥10小时,然后在空气流中54(TC焙烧4小时。 再将焙烧后小球用氢氧化钠和硅酸钠的混合溶液处理进行原位晶化,混合溶液 中含Na204.3质量。/。、 Si02 2.1质量%,原位晶化后,所得的小球用去离子水 洗涤至pH值为9.0, 8(TC干燥12小时,50(TC焙烧2小时。得到的聚结小球的 曱苯吸附容量为0.223克/克,相当于聚结小球中X沸石的含量为95.7质量%。
将原位晶化处理得到的聚结小球按实例1 (4)步的方法进行离子交换和干燥脱水,得对比吸附剂B-2。测定其在60(TC焙烧2小时的灼减量为5.1质量%, 其组成和压汞法测得的孔体积、孔径分布及其它物理性质见表1。
实例7
在连续逆流的小型模拟移动床上用吸附剂A-2进行吸附分离对二曱苯的实验。
所述小型模拟移动床装置包括24根串联的吸附柱,每根柱长195毫米, 柱内直径30毫米,吸附剂的总装填量为3300毫升。在串联的24根柱子首尾两 端用循环泵连接构成一个封闭的环路,如图2所示。图2中,吸附原料、解吸 剂、提取液、提余液四股进、出物料将24根吸附柱分成四个区段,即吸附原料 (柱15)和提余液(柱21 )之间的7根吸附柱为吸附区,提取液(柱6)和吸 附原料(柱14 )之间的9根吸附柱为提纯区,解吸剂(柱1 )和提取液(柱5 ) 之间的5根吸附柱为解吸区,提余液(柱22 )和解吸剂(柱24 )之间的3根吸 附柱为緩沖区。整个吸附体系的温度控制为177°C,压力为0.8MPa。
操作过程中,分别按1420毫升/时和1190毫升/时的流量连续地向上述模 拟移动床装置中注入解吸剂对二乙苯和吸附原料,并以710毫升/时的流量将提 取液抽出装置,l卯O毫升/时的流量将提余液抽出装置。所述吸附原料的组成 为乙苯9.3质量%、对二曱苯18.5质量%、间二曱苯45.4质量%、邻二曱笨17.4 质量%、非芳烃组分9.4质量%。-没定循环泵流量4580毫升/时,4艮据^t拟逆流 色谱的原理,每隔70秒四股物料位置按与液体流向相同的方向前移1根吸附柱。 在稳定的操作状态下得到的对二曱苯纯度为99.75质量%,回收率为99.0质量 %,由此计算得出的对二曱苯生产率为每立方米吸附剂每小时吸附分离对二曱 苯0.066米3。
实例8
在小型移动床装置上装填吸附剂A-6,按实例7的方法进行吸附分离对二 甲苯的实验,稳定操作状态下得到的对二曱苯纯度为99.80质量%,回收率为 98.4质量%,对二曱苯的生产率为每立方米吸附剂每小时吸附分离对二曱苯 0.0656米3。
13对比例3
在小型移动床装置上装填对比吸附剂B-2,按实例7的方法进行吸附分离 对二曱苯的实验,稳定操作状态下得到的对二曱苯纯度为99.71质量%,回收 率为90.5质量%,对二甲苯生产率为每立方米吸附剂每小时吸附分离对二甲苯 0扁4米3。
表1
实例号123456对比 例1对比 例2
吸附剂编号A陽lA-2A-3A-4A-5A-6B-lB-2
x沸石含量,质量%95.797.996.295.397.097.093.294.9
Na20含量,质量%0.580.550.630.570.520.440.610.57
抗压破碎率,质量%10.211.09.59.210.710.89.810.0
总压汞孔体积,mL/g0.2760.3150.2700.2680.2930.2970.1950.227
孔直径100~ 500nm 的孔体积,mL/g0,0.2280.1780.1810.2190,2220.1070.131
孔直径100~ 500nm 的孔占总孔体积的 比例,%65.272.465.967.574.774.756.957.7
内扩散传质 速率,min5.14.04.95.04.54.36.96.2
1权利要求
1、一种聚结型沸石吸附剂,包括95~99.5质量%的X沸石和0.5~5.0质量%的粘结剂,所述X沸石的可交换阳离子位为IIA族金属和/或K,所述吸附剂采用压汞法测定的总孔体积不小于0.26毫升/克,其中孔直径为100~500纳米的孔体积至少占总孔体积的60%。
2、 按照权利要求1所述的吸附剂,其特征在于所述的IIA族金属为钡。
3、 按照权利要求1所述的吸附剂,其特征在于所述吸附剂的总孔体积不 小于0.28毫升/克,孔径100 ~ 500纳米的孔体积至少占总孔体积的70%。
4、 按照权利要求1所述的吸附剂,其特征在于所述的吸附剂中X沸石的 阳离子为Ba和K时,吸附剂中氧化钡与氧化钾的摩尔比为20~60。
5、 按照权利要求1所述的吸附剂,其特征在于经离子交换后吸附剂中氧 化钠的含量不大于1.0质量%,吸附剂600。C焙烧的灼减量不大于7.0质量%。
6、 按照权利要求1所述的吸附剂,其特征在于所述X沸石的平均晶粒粒 径为0.1 1.0孩1米。
7、 按照权利要求1所述的吸附剂,其特征在于所述粘结剂为高岭土族矿 物经原位晶化后未晶化的基质。
8、 一种权利要求1所述吸附剂的制备方法,包括(1 )将NaX或NaKX沸石与可沸石化的粘土4姿88 95: 5 12的质量比与 成型助剂制成混合粉料,向混合粉料中加入造孔剂的水溶液通过滚动使之聚结 成小球,然后干燥、焙烧,所述的造孔剂为水溶性碳酸盐或水溶性高分子化合 物;(2 )将焙烧后的小球用氢氧化钠溶液或氢氧化钠与硅酸钠的混合溶液在 卯 100。C处理,使其中的粘土原位晶化为X型沸石,然后干燥、焙烧;(3 )用IIA族金属的可溶性盐溶液或者是钾盐和IIA族金属的可溶性盐的 混合溶液进行阳离子交换后活化。
9、 按照权利要求8所述的方法,其特征在于(1)步所述的可沸石化的粘 土为高岭土族矿物。
10、 按照权利要求9所述的方法,其特征在于所述的高岭土族矿物选自高 吟石、地开石、珍珠石、埃洛石或它们的混合物。
11、 按照权利要求8所述的方法,其特征在于(1)步所述的成型助剂选 自木质素、田菁粉、干淀粉、羧曱基纤维素、活性碳中的一种或几种的混合物。
12、 按照权利要求8所述的方法,其特征在于(1)步加入的成型助剂与 所述的NaX或NaKX沸石与粘土的总质量的比为1~8%。
13、 按照权利要求8所述的方法,其特征在于(1)步所述的水溶性碳酸 盐为碳酸铵、碳酸钠或碳酸氬钠。
14、 按照权利要求8所述的方法,其特征在于(1)步所述的水溶性高分子化合物选自聚丙烯酰胺、聚乙烯醇和聚乙二醇中的一种或任意几种。
15、 按照权利要求8所述的方法,其特征在于(1)步所述造孔剂的水溶 液的浓度为0.5 10质量%,加入的造孔剂的水溶液占混合粉料的总质量的 10~40%。
16、 按照权利要求8所述的方法,其特征在于(2)步所述氢氧化钠溶液 的浓度为1.0 4.0摩尔/升,所述氢氧化钠与硅酸钠的混合溶液中氧化钠的含量 为3.0~8.0质量%, 二氧化硅的含量为1.0 7.0质量%。
17、 按照权利要求8所述的方法,其特征在于(3 )步所述的IIA族金属的 可溶性盐为硝酸钡或氯化钡,钾盐为氯化钾或硝酸钾。
18、 按照权利要求8所述的方法,其特征在于(3)步所述的活化在氮气 流或空气流中进行,活化温度为180~250°C。
全文摘要
一种聚结型沸石吸附剂,包括95~99.5质量%的X沸石和0.5~5.0质量%的粘结剂,所述X沸石的可交换阳离子位为II A族金属和/或K,所述吸附剂采用压汞法测定的总孔体积不小于0.26毫升/克,其中孔直径为100~500纳米的孔体积至少占总孔体积的60%。该吸附剂在成型过程中加入造孔剂,再经过碱处理进行原位晶化,然后再进行离子交换。所述吸附剂吸附容量高、传质速率快,并且具有较好的机械强度,适用于从碳八芳烃中液相吸附分离对二甲苯以及其它烷基芳烃异构体的吸附分离过程。
文档编号B01J20/18GK101497022SQ20081005726
公开日2009年8月5日 申请日期2008年1月31日 优先权日2008年1月31日
发明者王德华, 王辉国, 灼 郁, 马剑锋 申请人:中国石油化工股份有限公司;中国石油化工股份有限公司石油化工科学研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1