一种耐高温全氟聚醚润滑脂的制作方法

文档序号:14905687发布日期:2018-07-10 21:57阅读:417来源:国知局

本发明涉及润滑剂技术领域,具体涉及一种耐高温全氟聚醚润滑脂。

技术背景

全氟聚醚(pfpe)是一种常温下为液体的合成聚合物,pfpe润滑剂与烃类润滑剂的分子结构基本相似,但在pfpe分子中氟原子代替了氢原子,具备使用温度范围广,而且存在低倾点、低挥发性、与塑料、橡胶和金属兼容/不可燃烧、生物惰性和仅溶解于全氟有机溶剂中有机溶剂中等特点,作为稠化剂的聚四氟乙烯(ptfe)及其衍生物在高温下具备优异的稳定性,且耐化学性好等优点。两者制备成的全氟聚醚润滑脂能够满足高真空、高温和低温使用的滚动轴承和齿轮的应用要求,在机械工业上、汽车工业和航天工业中都有广泛的应用。

专利cn101724495b公布了一种至少含全氟聚醚及树枝状银粉的全氟聚醚润滑脂复合物的配方,使用了聚四氟乙烯作为增稠剂,该配方了使用了贵金属银,所制备的润滑脂涂布在办公仪器及信息化仪器等的可动部件上时,能够将静电清除。银粉赋予润滑脂组合物导电性能,但造价昂贵。专利us2004198612公开了一种复配润滑脂的制备方法,该润滑脂由含氟润滑脂和含脲润滑脂组成,能够在一定地程度上降低全部使用全氟聚醚油作为基础油调配全氟聚醚润滑脂的价格,但存在制备工艺复杂的缺点。专利cn103031180b制备了一种含六方氮化硼作为增稠剂的全氟聚醚润滑脂组合物,避免了聚四氟乙烯的使用,且未使用任何添加剂,但没有对其进行高温长时间的寿命测试,无法确定其高温长时间的稳定性。且现有技术中提供的全氟聚醚润滑脂存在耐高温不够的缺点,以瓦楞纸机为例,瓦楞机的关键润滑部位是轧辊轴承,其温度都在180℃,瞬间温度可以达到230℃以上,使用普通润滑脂无法保证设备正常运行和连续生产,停机时间会增长。

本发明通过改变添加剂的种类,增大添加剂在基础油中的溶解度,来达到提高润滑脂的耐高温性能、同时有效减少摩擦、降低异响的目的,所制备的润滑脂在300℃以上的高温条件下可以保持长期润滑,同时也可以在高压、高真空、强酸碱等极其苛刻的环境下长期使用。



技术实现要素:

本发明的目的在于克服现有技术的不足,提供一种在高温条件下能够长期使用的全氟聚醚润滑脂,该润滑脂同时具备良好的抗腐蚀性能。

为解决上述技术问题,本发明所采用的技术方案如下:

一种耐高温全氟聚醚润滑脂,包含以下重量百分比的组分:

含氟基础油40~90%

稠化剂10~60%

添加剂0.1~5%;

所述含氟基础油为全氟聚醚油;所述添加剂为k型全氟聚醚衍生物。

本发明中,所述的全氟聚醚油的结构可以是为k型全氟聚醚、y型全氟聚醚、z型全氟聚醚和d型全氟聚醚中一种或一种以上,优选k型全氟聚醚,结构如式(ⅰ)所示:

其中10≤n≤95,分子量在1800~17000g/mol之间,20℃的运动粘度介于10~2000mm2/s之间。

本发明中,所述稠化剂为氟碳树脂粉末,所述氟碳树脂粉末选自聚四氟乙烯、四氟乙烯-全氟烷基乙烯基醚共聚物或四氟乙烯丙烯共聚物中的一种。在一些实施方式中,所述稠化剂为聚四氟乙烯粉末。

本发明中,所述的添加剂为全氟聚醚衍生物,具体为k型全氟聚醚官能化的产品,优选包含p、o或n的k型全氟聚醚衍生物。在一些实施方式中,k型全氟聚醚衍生物为结构式(ⅱ)~(ⅴ)化合物中的一种或几种:

其中n=3-95之间的整数,添加剂ⅱ中的r为f、cf3、cf2cf3或cf(cf3)cf3,添加剂ⅴ中rf为全氟烷基自由基,结构式为c3f7o(cf(cf3)cf2)mcf(cf3),m为5-100之间的整数,ar为芳基自由基。

本发明还公开了一种制备如上述耐高温全氟聚醚润滑脂的方法,所述方法包括如下步骤:首先在搅拌反应釜中加入含氟基础油,升温至30~150℃,再加入稠化剂、添加剂,真空条件下搅拌1~6h,然后冷却至室温,研磨、脱气即得产品。

本发明中的全氟聚醚润滑脂具有以下有益效果:

1)本发明中使用k型全氟聚醚衍生物作为添加剂,在基础油中的溶解度高,制备的润滑脂具有优异的耐高温性能,在高温部位,不产生疲劳效应,能够保持长时间的润滑效果,应用于低温工作的轴承中能够抑制噪音的产生,具有较低的摩擦系数等特点;

2)本发明提供的全氟聚醚润滑脂同时具有优异的抗腐蚀性,可以有效的防止齿轮和滚动轴承被腐蚀,同时具有良好的抗磨极压性,有效减少齿轮和滚动轴承运行过程中的摩擦。

术语定义

本发明意图涵盖所有的替代、修改和等同技术方案,它们均包括在如权利要求定义的本发明范围内。本领域技术人员应认识到,许多与本文所述类似或等同的方法和材料能够用于实践本发明。本发明绝不限于本文所述的方法和材料。在所结合的文献、专利和类似材料的一篇或多篇与本申请不同或相矛盾的情况下(包括但不限于所定义的术语、术语应用、所描述的技术等等),以本申请为准。

应进一步认识到,本发明的某些特征,为清楚可见,在多个独立的实施方案中进行了描述,但也可以在单个实施例中以组合形式提供。反之,本发明的各种特征,为简洁起见,在单个实施方案中进行了描述,但也可以单独或以任意合适的子组合提供。

除非另外说明,本发明所使用的所有科技术语具有与本发明所属领域技术人员的通常理解相同的含义。本发明涉及的所有专利和公开出版物通过引用方式整体并入本发明。

术语“包含”或“包括”为开放式表达,即包括本发明所指明的内容,但并不排除其他方面的内容。

除非明确说明,否则,本发明引用的所有范围包括端值,例如,“升温至30~150℃”,表示温度范围为30℃≤t≤150℃。

具体实施方式

以下所述的是本发明的优选实施方式,本发明所保护的不限于以下优选实施方式。应当指出,对于本领域的技术人员来说在此发明创造构思的基础上,做出的若干变形和改进,都属于本发明的保护范围。实施例中所用的原料均可以通过商业途径获得。

实施例1

首先在搅拌反应釜中加入82%的k型全氟聚醚(n=38,20℃的运动粘度为1240mm2/s),升温至60℃,然后加入18%的增稠剂聚四氟乙烯,添加剂ⅱ(n=23,r=cf3,平均分子量为4290g/mol),用量为2%,真空条件下搅拌3h,冷却至室温,使用三辊机研磨3遍,真空脱气后得到产品。产品性能表征如表1所示。

添加剂ⅱ是通过相应的全氟聚醚甲酯与3,4-二氨基-三氟甲基苯定量化学反应制备而得,反应温度160℃,反应过程n2保护。

实施例2

首先在搅拌反应釜中加入77%的k型全氟聚醚(n=29,20℃的运动粘度为660mm2/s),升温至50℃,然后加入23%的增稠剂聚四氟乙烯,添加剂ⅳ(n=13,分子量为7723g/mol),用量为1.5%,真空条件下搅拌3h,冷却至室温,使用三辊机研磨3遍,真空脱气后得到产品。产品性能表征如表1所示。

添加剂ⅳ是由与4-溴氯基苄在室温下得到一种溴苯封端的化合物,进一步与正丁基锂进行取代反应,然后与pcl3反应得到。

实施例3

首先在搅拌反应釜中加入79%的k型全氟聚醚(n=35,20℃的运动粘度为920mm2/s),升温至70℃,然后加入21%的增稠剂聚四氟乙烯,添加剂ⅴ(m=27,ar=c6h5,分子量为5292g/mol),用量为2%,真空条件下搅拌3h,冷却至室温,使用三辊机研磨3遍,真空脱气后得到产品。产品性能表征如表1所示。

添加剂ⅴ由全氟聚醚酰氟与甲醇反应,制备得到全氟聚醚甲酯,然后再与nh3在0℃下反应得到全氟聚醚酰胺,全氟聚醚酰胺与p2o5在高温下反应,得到全氟聚醚腈,进一步地与液态氨在低温下反应,得到一种全氟聚醚二胺二胺与反应,得到含脒基结构的中间物进一步与二苯基化氯pcl(c6h5)2和甲醛反应得到,得到目标添加剂ⅴ。

实施例4

首先在搅拌反应釜中加入85%的k型全氟聚醚(n=42,20℃的运动粘度为1450mm2/s),升温至80℃,然后加入15%的增稠剂聚四氟乙烯,加入1.0%的添加剂ⅱ(n=28,r=cf2cf3,分子量为5162g/mol)与ⅲ(n=6,分子量为3964g/mol)的混合物(ⅱ与ⅲ的重量比为1:1),真空条件下搅拌4h,冷却至室温,使用三辊机研磨3遍,真空脱气后得到产品。产品性能表征如表1所示。

添加剂ⅲ是与pcl3反应制备而得。

实施例5:

首先在搅拌反应釜中加入78%的k型全氟聚醚(n=33,20℃的运动粘度为740mm2/s),升温至80℃,然后加入22%的增稠剂聚四氟乙烯,加入1.0%的添加剂ⅱ(n=23,r=cf3,分子量为4290g/mol)与ⅳ(n=13,分子量为7723g/mol)的混合物(ⅱ与ⅳ的重量比为1:1),真空条件下搅拌6h,冷却至室温,使用三辊机研磨3遍,真空脱气后得到产品。产品性能表征如表1所示。

实施例6

首先在搅拌反应釜中加入75%的k型全氟聚醚(n=25,20℃的运动粘度为450mm2/s),升温至100℃,然后加入25%的增稠剂聚四氟乙烯,加入2.0%的添加剂ⅱ(n=23,r=cf3,分子量为4290g/mol)与ⅴ(m=27,ar=c6h5,分子量为5292g/mol)的混合物(ⅱ与ⅴ的重量比为1:3),真空条件下搅拌2h,冷却至室温,使用三辊机研磨3遍,真空脱气后得到产品。产品性能表征如表1所示。

实施例7

首先在搅拌反应釜中加入70%的k型全氟聚醚(n=16,20℃的运动粘度为220mm2/s),升温至50℃,然后加入30%的增稠剂聚四氟乙烯,加入2.0%的添加剂ⅱ(n=23,r=cf3,分子量为4290g/mol)、ⅲ(n=6,分子量为3964g/mol)与ⅳ(n=13,分子量为7723g/mol)的混合物(ⅱ:ⅲ:ⅳ的重量比为1:1:2),真空条件下搅拌4h,冷却至室温,使用三辊机研磨3遍,真空脱气后得到产品。产品性能表征如表1所示。

实施例8

首先在搅拌反应釜中加入80%的k型全氟聚醚(n=37,20℃的运动粘度为1200mm2/s),升温至50℃,然后加入20%的增稠剂聚四氟乙烯,加入2.0%的添加剂ⅱ(n=23,r=cf3,分子量为4290g/mol)、ⅲ(n=6,分子量为3964g/mol)与ⅴ(m=27,ar=c6h5,分子量为5292g/mol)的混合物(ⅱ:ⅲ:ⅴ的重量比为1:1:2),真空条件下搅拌4h,冷却至室温,使用三辊机研磨3遍,真空脱气后得到产品。产品性能表征如表1所示。

对比例:

首先在搅拌反应釜中加入70%的k型全氟聚醚(n=22,20℃的运动粘度为360mm2/s),升温至80℃,然后加入30%的增稠剂聚四氟乙烯,真空条件下搅拌4h,冷却至室温,使用三辊机研磨3遍,真空脱气后得到产品。产品性能表征如表1所示。

性能评价

1、测试方法介绍:

a、极压力

使用四球测试方法,按照sh/t0202-92(润滑脂极压性能测定法)测试润滑脂的极压。

b、摩擦系数

把全氟聚醚润滑脂组合物涂布在spcc-sb钢板上,厚度约0.1mm,放置1/2英寸钢球,负荷重1.96n、滑动速度30cpm、滑动距离40mm,25℃的测试温度下,滑动1000此进行往返试验,通过测力传感器,从记录仪器上输出摩擦力,算出滑动循环1000此试验后的摩擦系数。

c、倾点

按照astmd97-96a测试润滑脂的倾点。样品预热后,在特定的温度范围内冷却,并以每3℃为间隔测量其流动性。样品能流动的最低的温度,即为该样品的倾点。

d、噪音

将润滑脂密封在石油醚清洗过的6203llha滚动轴承中,滚动轴承置入-60℃的低温浴中,当滚动轴承本身的温度达到-60℃时,将其取出,至于室温条件下。滚动轴承在2700rpm,127n的径向负荷下,观察是否生成噪音。

e、高温稳定性

将润滑脂密封在石油醚清洗过的6204zz滚动轴承中,按照d3336-1997测试润滑脂的高温稳定性。

2、测试结果和评价

对实施例和对比例得到的的全氟聚醚润滑脂的极压力、倾点、摩擦系数、低温是否产生噪音以及高温稳定性进行测试,测试结果见表1。

表1:不同实施例剂对比例的性能检测

从表1可以看出,本发明提供实施例提供的全氟聚醚润滑脂倾点高、摩擦系数低、低温噪音小,且能够在高温下,超过5000小时润滑,远优于对比例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1