热电联产装置的制作方法

文档序号:5220330阅读:224来源:国知局
专利名称:热电联产装置的制作方法
技术领域
本发明涉及一种热电联产装置,所述热电联产装置具有进行发电的发电装置、对伴随发电而排出的热量(废热,余热)进行回收的余热回收装置。
背景技术
在以往的发电装置中,用于表示其运转状态的表示方法之一,例如在太阳能发电装置中,有在安装于装置上的远程控制装置上显示发电力的瞬时电力值、自发电开始的发电量的随时间变化、在任一期间(例如,1日、1个月、1午等)中的发电量的累计等的显示方法。又,在装备有发电装置(手段)与余热回收装置(手段)的热电联产装置中,也有这样的结构使用者可以根据发电装置的发电量、余热回收装置的余热回收量、装置运转所需的能量消耗量,及由余热回收装置回收的余热使用量,掌握并确认热电联产装置的经济性及节能性特征(例如,参见特开2002-286289号公报第2-10页及图1)。图18为用于说明上述结构的热电联产装置的功能方框示意图。
如图18所示,该热电联产装置包括发电装置(手段)100、利用发电过程中生成的余热,进行热水供给等的蓄热装置(手段)101。这里,蓄热装置101设有热水储罐(图中末示),该热水储罐连接有供水管道121和热水管道122。发电装置100和蓄热装置101由冷却水循环管道102连接。经泵102’加压的热水储罐(蓄热装置101)的水流经发电装置100,在冷却水循环管道102循环。由此,使余热被回收,利用该余热生成的温水被储存于热水储罐(蓄热装置101)中。如此,根据上述结构的热电联产装置,回收从发电装置100发出的余热生成温水,该温水一旦储存于蓄热装置(热水储罐)101中之后,再通过热水管道122取出,保存有温水的热能可被用于各种用途。这里,发电装置100及蓄热装置101的动作由远程控制装置103进行控制,又,装置工作所需信息的输入由操作部104进行。
又,在上述热电联产装置中,还具有用于收集运转数据的数据收集储存装置(手段)105。数据收集储存装置105用于收集、储备热电联产装置运转所需的能量的使用量(具体地是,是作为发电原料供给发电装置100的城市煤气的使用量)的数据、发电装置100的发电量的数据、由蓄热装置101回收,可有效使用的为了掌握热能使用量(以下,称为有效输出热能量)所需的运转数据。具体地,数据收集储存装置105可作成这样的结构使用煤气表106检测供给至发电装置100、作为发电原料的城市煤气的供给量,将该检测的信息作为发电装置100中的城市煤气的使用量数据进行收集、储存;并且,使用电量计107检测发电装置100的发电电量,将该检测的信息作为数据进行收集、储存;并且,根据下述的各检测量,收集、储存由所定方法算出的有效输出热能能量的数据。例如,此时的有效输出能量可在由温度传感器108检测供给至蓄热装置101的水温度的同时,由温度传感器109及流量计110检测获自蓄热装置101的温水的温度及流量。运算处理求得这些检测量数据而求得。
再有,热电联产装置具有基础数据设定装置(手段)111,和优值信息求得装置112。
在基础数据设定装置111上,预先设定与热电联产装置运转所需的能量消耗量、可得到的发电量、可得到的有效输出热能有关的经济性用基础数据和节能性基础数据。此处,例如,关于运转所需的能量消耗量,可设定城市煤气的费用单价;但关于发电电力,可设定商业用电力的费用单价;又,关于有效输出热能,可设定在用煤气供给热水装置相同量的热有效输出能量的场合,所需的城市煤气的消耗量和城市煤气的费用单价,分别作为经济性用基础数据。又,作为省能型用基础数据,关于运转所需的能量消耗量,可设定城市煤气的能量电耗率;关于发电电力,可设定商业用电力的能量电耗率;又,关于有效输出热能,可分别设定为了取得煤气供给热水单位量的有效输出能量所需的城市煤气量和城市煤气的能量电耗率。
优值信息求得装置(手段)112,可根据基础数据设定装置111的经济性用基础数据,和运转数据收集储存装置105的收集储存数据,算出热电联产装置的经济性优值信息,另外,根据基础数据设定装置111的节能性用基础数据,和运转数据收集储存装置105的收集储存数据,算出热电联产装置的节能性优值信息。
这里,热电联产装置的经济性优值是说,相当于将装置导入后的运转成本与装置导入前的成本进行比较之时的运转成本的减少量。此时,装置导入前的成本相当于发电力成本GC和有效输出热能成本QC之和(GC+QC)。又,装置导入后的成本相当于城市煤气的消耗成本SC,因此,经济性优值可基于下式(1)运算得到。而且,算出的经济性优值,即成本的降低量的信息,可作为经济性优值信息显示于显示部113。
(发电电力成本GC+有效输出热能成本QC)-城市煤气的消耗成本SC………(1)式又,作为热电联产装置的节能性优值,可表示为热电联产装置导入前后一次能量使用量的减少量和CO2排出量的减少量。具体地,关于前者,为装置导入前的一次能量使用量和装置导入后的一次能量使用量之差。关于后者,为装置导入前的CO2排出量和装置导入后的CO2排出量使用量之差。上述节能性优值可由优值信息求得装置112的运算处理算出。另外,求得的节能性优值,即,装置导入前后一次能量使用量的减少量和CO2排出量的减少量,可作为节能性优值信息显示于显示部113。
根据图18所示的热电联产装置,使用者可积极、经常、有意地对上述经济性优值信息及节能性优值信息加以关注,且,根据该信息进行独自的判断,以得到经济性优值及节能性优值而行动。由此,经济性及节能性的提高可赖于使用者自身的意志和行动。如果使用者自身不作积极、有意地行动,则既使得到上述经济性优值信息及节能性优值信息,也无法对其进行适当的利用而取得优值。其结果,无法最大限度地有效利用作为热电联产装置的存在价值的热电联产运转。
作为热电联产装置不能有效发挥其功能的举例,有以下情况。例如,对热电联产装置的运转状态的监控不充分,或者,使用者未根据相应的各个优值信息,进行适当的行动,由此,使得蓄热装置101中的蓄热量饱满。其结果,当蓄热装置101的余热回收量达到蓄热量的蓄热极限值时,无法再进行余热的回收。而在无法进行余热回收时,热电联产装置的能效降低,使用商业电力比较使用热电联产装置进行发电,其电力使用的成本降低。为此,通常在此场合,热电联产装置停止工作。这里,热电联产装置具有燃料电池作为发电装置100的场合,因为燃料电池在自起动至可发电期间(即起动时)需要较大的起动能量,为此,一旦停止运转,发电装置100再次起动需要消耗很多的起动能量,降低了整个装置的能效。因此,频繁的停止运转导致装置的节能性及经济性降低,并损伤热电联产装置的商品性能。

发明内容
本发明是为解决上述课题而作,本发明的目的在于提供一种可充分发挥热电联产运转有效性的热电联产装置,所述热电联产装置具有优异的节能性及经济性,可同时获得电力和热能。为达此目的,本发明的热电联产装置包括其构成可在发电的同时对电力负荷供给电力的发电装置(手段),将上述发电装置生成的余热进行回收的余热回收装置(手段),将上述余热回收装置回收的所述余热作为热能、进行储存以便可使用的蓄热装置(手段),因上述蓄热装置中的蓄热量饱满、而预测上述发电装置的运转停止工作的停止工作预测装置(手段),基于上述停止工作预测装置的对上述停止工作的预测,而对上述发电装置的运转停止进行预告的预告装置(手段)。
上述停止工作预测装置也可基于上述余热回收装置中的余热回收量的(随)时间变化,和上述蓄热装置中的热能使用量的时间变化,及上述蓄热装置中的蓄热量的时间变化、对上述发电装置的运转停止工作进行预测。
上述停止工作预测装置也可至少,基于作为显示上述余热回收量随时间变化的随时间变化基准模式的发电电量基准模式、作为上述热能使用量随时间变化的基准模式的热能使用量的基准模式、作为上述蓄热量的随时间变化的基准模式的蓄热量基准模式,对上述发电装置的运转停止工作进行预测。
上述停止工作预测装置具有储存装置(手段),所述储存装置上可储存有预先另外制作的上述发电电量基准模式、上述热能使用量的基准模式、及上述蓄热量基准模式。
上述停止工作预测装置可取得在一定期间运行的上述发电电量、上述热能使用量及上述蓄热量的各个随时间变化的模式,从该取得的各个随时间变化模式,可以制得上述发电电量基准模式、上述热能使用量的基准模式、及上述蓄热量基准模式。
上述停止工作预测装置可取得现在运行的上述发电电量、上述热能使用量及上述蓄热量,将所述取得的各个随时间变化与各对应的上述基准模式进行比较,同时,运算从现时起至上述蓄热量满量期间的可持续运转时间,基于该比较及运算的结果,预测上述发电装置的运转是否停止。上述停止工作预告装置基于来自上述停止工作预测装置的上述停止工作预测信息,也可由图像及声音中的至少一种来停止工作预告。
上述停止工作预测装置也可将上述蓄热装置中的可蓄热残量用单位时间内的实质性余热回收量去除,算出上述可持续运转的时间。
上述停止工作预测装置包括将上述发电电量进行检测的发电电量检测装置(手段);将上述热能使用量进行检测的热能使用量检测装置(手段);将上述余热回收量进行检测的余热回收量检测装置(手段);将获得自上述发电电量检测装置、上述热能使用量检测装置、上述余热回收量检测装置的各个检测信息进行收集及储存的数据收集储存装置(手段);进行计时的计时装置(手段);从上述余热回收量和上述热能使用量运算上述蓄热量,且运算上述可持续运转时间的运算装置(手段);将储存于上述数据收集储存装置的、来自上述发电电量检测装置及上述热能使用量检测装置的各个检测信息和由上述运算装置运算的蓄热量、来自上述计时装置的计时信号、获得的针对各个、就上述发电电量、上述热能使用量、及上述蓄热量的上述随时间变化模式作为上述基准模式储存的储存装置;将现时运转中取得的上述发电电量、上述热能使用量及上述余热回收量,与各个对应的上述基准模式进行比较的比较装置;从上述运算的上述运转可持续时间和上述比较装置的比较结果,判断运转是否停止的停止工作预测判断装置;上述停止工作预告装置具有基于来自上述停止工作预测装置的上述停止工作预测信息,显示图像的图像显示装置及发声的声音信号装置中的至少一种。
上述停止工作预告装置也可在上述可持续运转时间内,以所定的时间间隔进行上述停止工作预告。
由上述停上工作预告装置所实施的上述停止工作预告也可包括促进余热利用的建议提醒,上述促进余热利用的建议提醒是基于储存于上述停止工作预告装置的上述储存装置的热能使用量的上述基准模式,在上述停止工作预测时刻之前提醒告知使用者开始使用热能。
上述促进余热利用的建议提醒包括是否自动实施上述热能的使用的选择,在使用者选择实施时,上述停止工作预告装置也可控制上述热电联产装置,使上述热能的使用可自动实施。
上述热能的使用为伴随入浴的热能的使用。上述促进余热利用的建议提醒也可推荐入浴时热水的使用。
上述停止工作预测装置还具有用于设定唤起使用者对于来自上述停止工作预告装置的上述停止工作预告的注意的唤起注意电平(能级)值的唤起注意电平(能级)值设定装置,上述停止工作预告装置对应于由上述唤起注意电平(能级)值设定装置设定的上述唤起注意电平(能级)值,进行上述停止工作预告。
上述停止工作预告装置可由所述唤起注意电平值设定装置所设定的唤起注意电平值相对应的频率及显示方法中之任一种,通过所述图像显示装置及所述声音信号装置中之至少一种进行所述停止工作预告。
上述停止工作预告装置也可再包括储存有多个不同的上述唤起注意电平值相对应的多个不同的预告显示数据的数据储存装置,和由上述唤起注意电平值设定装置设定的所述唤起注意电平值相对应、选择储存于所述数据储存装置中的上述预告显示数据的数据选择装置(手段)。
上述数据储存装置中至少储存有多个不同的所述唤起注意电平值相对应的多个不同的动物图像及叫声中至少一种。藉由上述数据选择装置选择的上述多个不同的动物图像及叫声中至少一种,也可进行所述的停止工作的预告。
上述发电装置也可由燃料电池发电系统构成。
根据如上述构成的本发明的热电联产装置,可时常、自动地掌握装置的运转状况的同时,也可使用符合使用者的生活周期的上述各个基准模式,对热电供给运转的停止工作进行预测。另外,在运转停止可预测的场合,在运转停止之前,可对使用者进行运转停止的预告。为此,使用者没有必要经常监视装置的运转。另外,既使对此加以有意、积极的注意,也可避免装置工作的停止,提高设备的运转率。因此,可降低伴随装置再起动时的起动能量的消耗,可有效地发挥节能性及经济性的热电供给运转的优值。特别是,根据基于各个使用者的实际使用而制订的上述各个基准模式,因为可以得到正确反映每个使用者的生活周期的基准模式,因此,使用该制订的各基准模式,进行热电供给运转,可以进一步提高节能性和经济性。
又,在特别是停止工作预告不仅告知装置运转的停止,且基于上述基准模式,告知原本在装置运转的预测停止时刻之后实施的热能的使用行为将提前在装置运转的预测停止时刻之前实施之时,使用者根据该告知,可提前于装置运转的预测停止时刻之前使用余热(热能),由此,促进余热的有效利用。从而,可以进一步提高热电联产的运转率,且进一步提高节能性和经济性。
另外,如果由使用者自己设定针对预告的唤起使用者注意的电平值,则可以与设定的唤起使用者注意的电平值相对应的表现、频率等进行停止工作预告。因此,使用者可以更加可靠、且心理上可承受地接受停止工作的预告。因此,可提高该停止工作预告的使用程度,进一步促进对余热的有效利用。
又,特别是藉由使用者可当即容易理解的表现形式进行停止工作的预告,则可以可靠地将信息传递至使用者。为此,可更加促进有效利用。
本发明的上述目的、其他目的、特征及其优点,可参照所附附图,在以下优选的实施形态的详细说明中得到明确说明。


图1为概略显示本发明实施形态1的热电联产装置结构的功能方框图。
图2为概略显示图1的热电联产装置的促进余热利用结构的功能方框图。
图3为显示就图1的热电联产装置一日的使用电量变化制订的基准模式图。
图4为显示就图1的热电联产装置一日的发电电量的变化制订的基准模式图。
图5为显示就图1的热电联产装置一日的热能使用量的变化制订的基准模式图。
图6为显示就图1的热电联产装置一日的余热回收量的变化制订的基准模式图。
图7为显示进行热能利用促进运转的图1的热电联产装置的发电电量的变化图。
图8为显示进行热能利用促进运转的图1的热电联产装置的热能使用量的变化图。
图9为显示进行热能利用促进运转的图1的热电联产装置的余热回收量的变化图。
图10为概略显示图1的热电联产装置的中央控制装置中储存的程序的流程图。
图11为概略显示本发明实施形态1的变化例的热电联产装置的结构的功能方框图。
图12为概略显示本发明实施形态3的热电联产装置的特征部分结构的功能方框图。
图13为概略显示本发明实施形态4的热电联产装置的特征部分结构的功能方框图。
图14为概略显示本发明实施形态5的热电联产装置的特征部分结构的功能方框图。
图15为概略显示图14的热电联产装置的预告装置控制部中储存的程序的内容流程图。
图16为概略显示本发明实施形态6的热电联产装置的特征部分结构的功能方框图。
图17为图16的热电联产装置的预告装置及携带信息末端的图像显示部上所显示的促进余热利用方法选择菜单的内容图。
图18为概略显示以往的热电联产装置的结构的功能方框图。
具体实施例方式
以下,参照附图,说明本发明的实施形态。
实施形态1图1为用于说明本发明实施形态1的热电联产装置的结构的概略功能方框图。图2为概略显示图1的热电联产装置的中央控制装置的详细结构的功能方框图。
如图1及图2所示,热电联产装置从其功能来说,由发电系统1、余热利用系统2、促进余热利用系统3构成。
发电系统1由发电装置11、对发电装置11供给发电原料的燃料气体(这里为城市煤气)的燃料气体供给管道12、对发电系统11的发电电量进行检测的发电电量检测装置14构成。
这里,发电装置11由燃料电池发电系统构成。在燃料电池发电系统中所使用的燃料电池的种类并无限定,例如,此时,可以使用固体高分子型燃料电池(以下称为″PEFC″)。这里省略图示及说明,但具备″PEFC″的燃料电池发电系统具有以下的系统构成,包括具有以往的系统构成、对所供给的燃料气体进行改性、生成CO浓度低、富含氢的气体(以下,称为″发电燃料气体″)的氢生成装置、使该燃料气体和氧化剂气体进行反应,进行发电的PEFC。在连接于发电装置11的燃料气体供给管道12上,设置有作为燃料使用量检测装置(手段)13的气体流量计。另外,根据发电装置11的结构,使发电电力供给至电力负荷50。在电力负荷50上系统连接有热电联产装置外的其他电力公司的商业用电源52。又,为检测在电力负荷50的使用电量,配设有电力表与电力传感器等作为使用电量的检测装置(手段)51使用。
余热利用系统2由余热回收装置21和蓄热装置22构成。余热回收装置21具有流通发电装置11循环而设置的冷却水循环管道21a、设置于所述管道21a途中的泵21b、通过热交换器21c,和流经上述冷却水循环管道21a内的冷却水之间可进行热交换的结构的余热回收管道21d、设置于余热回收管道21d途中的泵21e及余热回收量检测装置(手段)21f。这里,省略图示,但余热回收量检测装置21f由用于对供给至热交换器21c的冷却水的温度和从热交换器21c取出的余热回收水温度进行检测的温度传感器构成。又,蓄热装置22由连接于余热回收管道21d的储存罐22c、连接于储存罐22c的供水管道22a及热水管道22b构成。而且,热水管道22b再连接至浴桶、厨房等的热水供水末端的热负荷末端40。供水管道22a上配设有供水温度传感器22d,热水供水管道22b上配设有流量计22e及热水温度传感器22f。如下所述,该供水温度传感器22d、流量计22e、及热水温度传感器22f可用作热能使用量的检测装置。
促进余热利用系统3为避免热电供给运转停止,而具有促进在余热利用系统2中的余热的有效利用(即增加有效输出热能的量)的功能,如图2所示,所述系统具有停止工作预告功能的中央控制装置31,和具有停止工作预告功能的预告装置32构成。
中央控制装置31由微计算机等的计算机构成,具有计时装置311、数据收集储存装置312、储存装置313、比较装置314、运算装置315和停止工作预测装置316。这些各个装置311-315,可由CPU读出储存于计算机的内存(ROM或RAM)中的程序实行而实现。
另一方面,预告装置32具有控制部321、图像显示部322、声音信号部323。该控制部321由微计算机等的计算机构成。控制部321也可以是如同中央控制装置31的计算机构成。也可由其他计算机构成。控制部321的构成使传递自中央控制装置31的停止工作预测装置316的停止工作预测信息可被传递,又,图像显示部322的构成使相对应于输出自控制部321的图像信号的图像可显示。声音信号部323的构成可使得输出自控制部321的声音信号对应的警告声可发出。例如,图像显示部322为视频监控器等,声音信号部323为扬声器等构成。
其次,就上述结构的热电联产装置的运转工作作一说明。
热电联产装置运转时,在作为发电装置11的燃料电池发电系统进行发电。由具有PEFC的燃料电池发电系统构成的发电装置11的发电工作,因与以往的燃料电池发电系统相同,在此省略说明。此时,作为发电装置11的燃料电池发电系统的氢生成装置的改性部上,通过燃料气体管道12,供给城市煤气,进行水蒸气的改性反应。由此反应得到的改性气体再在CO改性部、CO净化部等受到处理,降低CO浓度。由此,生成富含氢的发电燃料气体。生成的发电燃料气体供给至PEFC的燃料极侧。另一方面,在PEFC的氧化剂极侧供给空气,作为氧化剂气体。在PEFC,供给的发电燃料气体与空气反应,由此,在发电的同时,发生多量的热(余热)。如此在发电装置11所得到的电力(电能),供给至电力负荷50使用。又,在电力负荷50的使用电力的电量在大于发电装置11所得到的发电电量时,由商业用电源供给电力负荷终末端50以不足部分的电力。
根据上述发电装置11的发电工作,供给至发电装置11的燃料气体(城市煤气)的流量,由燃料使用量检测装置13作时常检测。又,在发电装置11的发电电量由发电电量检测装置14作时常检测。另外,在电力负荷50的使用电量由使用电量检测装置51作时常检测。而且,这些各个检测装置13、14、51的检测信息时常传递至中央控制装置31的数据收集储存装置312中。
另一方面,伴随发电在发电装置11发生的余热由余热利用系统2的余热回收装置21回收。然后,由蓄热装置22作为有效输出热能供给至热负荷末端40。以下、说明关于余热利用系统2的详细的动作。
首先,在余热回收装置21,冷却水由泵21b加压后,通过冷却水循环管道21a,流通至发电装置11,由此,使发电装置11的余热被冷却水回收。接着,余热从保有余热的被回收的冷却水传热至热交换器21c,再者,余热从热交换器21c传热至流经余热回收管道21d内的余热回收水。如此,通过热交换器21c,在冷却水和余热回收水之间进行热交换,余热回收水被加热,而冷却水被冷却。加热的余热回收水通过余热回收管道21d返回至储存罐22c,再通过余热回收管道21d循环。这样,储存罐22c内的水藉由回收的余热被加热成为温水。
此时,在蓄热装置22,水(此处为自来水)通过供水管道22d供给至储存罐22c,同时储存在储存罐内。该水在泵21e被加压,在余热回收管道22d内循环,如上所述,回收余热。回收余热加热储存罐22c内的水至设定的温度、通过热水管道22b供给至热负荷末端40。其有效输出热能在热负荷末端40中可用作各种用途。在热负荷末端40的有效输出热能的用途并无特别的限定,例如,既可以用作厨房及浴场的热水热能,也可用作追烧洗澡水等的加热能。又可以用作地板取暖、浴室取暖、浴室干燥等的加热能量。
在进行上述余热利用系统2中的余热的回收及利用时,时常由设于余热回收管道21d途中的余热回收量检测装置21f检测余热回收量。另外,由设于供水管道22a途中的供水温度传感器22d对储存罐22c的供水温度进行检测,由设于热水供水管道22b途中的流量计22e对取自储存罐22c的温水流量进行检测,由设于热水供水管道22b途中的热水温度传感器22f对温水温度进行检测。这些各个检测装置21f、22d、22e、22f检测的信息常时传递至中央控制装置31的数据收集储存装置312。
可是,在余热利用系统2中,当回收的余热的储存量(以下,称为″蓄热量″)达到储存界限值QM时,即无法再进行该量以上的回收。具体地,所定温度的温水储存于储存罐22c达储存罐的储存界限值时(即,蓄热量满量),无法继续生成温水或使温水进一步升温。为此,在此场合,热电联产装置无法持续运转,装置停止工作。如前所述,一旦热电联产装置停止工作,则由于装置再起动时需要更多的能量,因此,导致整体的能量效率低下。特别是,在如本实施形态的具有PEFC的燃料电池发电系统作为发电装置11的热电联产装置中,再起动时,由于有必要加热PEFC至可发电的高温,所以,再起动需要较大能量。因此,根据本实施形态的热电联产装置,由促进余热利用系统3,可以如下所述避免装置的运转停止。
促进余热利用系统3主要具有下述功能对热电联产装置的运转作停止工作的预测上,成为判断基准的制订基准模式的功能(以下,称为″基准模式制订功能″),对所制订的基准模式和现在的运转状况进行比较、预测运转停止的功能(以下,称为″停止工作预测功能″),和为避免停止工作,对使用者作出停止工作预告的功能(以下,称为″停止工作预告功能″)。这些功能由构成促进余热利用系统3的中央控制装置31,及具有预告装置32的构成(图2)实现。在中央控制装置31,储存有用于实现该功能的程序。热电联产装置的结构为在可发挥基准模式制订功能的基准模式制订形式,和可发挥停止工作预测功能及停止工作预告功能的促进余热利用形式之间进行切换。所述形式的切换可由中央控制装置31的形式切换操作部(末图示)进行。图10为概略显示图1的热电联产装置的中央控制装置31中储存程序的流程图。以下,就余热利用系统3的各个功能及其实现过程作一说明。
首先,就余热利用系统3的基准模式制订功能作一说明。图3所示为概略显示电力负荷50的一日的电力使用电量的随时间变化的基准模式。图4所示为概略显示发电装置11的一日发电电量的随时间变化的基准模式。图5所示为概略显示热负荷末端40的一日的热能使用量(有效输出热能使用量)的随时间变化的基准模式。图6所示为概略显示余热利用系统2的一日的蓄热量的随时间变化的基准模式。这些基准模式是使用者在实际中,将热电联产装置用于基准模式制订形式下,由此热电联产装置实际储存数据,基于该储存数据而制订。
这里,作为图3一图6在基准模式制订形式下的各个基准模式制订过程,例如,在所定期间中,检测每日电力负荷50的一日中的使用电量的随时间变化、发电装置11的一日中的随时间变化、热负荷末端40的一日中的热能量使用量的随时间变化、及余热利用系统2的一日中的蓄热量的随时间变化,将其数据储存于中央控制装置31的数据收集储存装置312。而且,从所定期间中得到的多日数据,就使用电量、发电电量、热能使用量及蓄热量,分别取得其平均一日的随时间变化模式(即,基准模式)。
又,用于制订基准模式的数据收集时间并无特别限定,只要是可以把握使用者的生活周期的期间即可。所述期间可以是,例如,1-数日,1-数周、1-数月、1-数年等。
具体地,首先,操作形式切换部(末图示),将形式设定为基准模式制订形式。然后,如图10所示,使热电联产装置起动。在设定期间中,24小时持续地,分别检测得到使用电量、发电电量、热能使用量及余热回收量(步骤1)。这里,发电电量检测装置14检测发电电量,使用电量检测装置51检测使用电量,余热回收量检测装置21f检测余热回收量。又,为计算热能使用量,由供水温度传感器22d检测储存罐22c的供水温度,由流量计22e检测供给热水的流量,由热水温度传感器22f检测热水温度。如此,由各个检测装置22d、22e、22f所检测的信息,传递至中央控制装置31的数据收集储存装置312。传递至数据收集储存装置312的供水温度信息、热水流量信息及热水温度信息再传递至运算装置313,在313进行运算。由此,算出热能使用量。算出的热能使用量传递至数据收集储存装置312。另外,传递至数据收集储存装置312的余热回收量再传递至运算装置313,在运算装置313,从所述余热回收量减去上述算出的热利用使用量,算出蓄热量。该算出的蓄热量传递至数据收集储存装置312。这里,在收集上述步骤S1中的使用电量、发电电量、蓄热量及热能使用量的数据时,在各个检测装置进行检测之时,由计时装置311进行检测时刻的计时。而且,来自计时装置311的计时信号与各个检测量数据一起,输入至数据收集储存装置312中(步骤2)。此处,计时装置311中的时刻的计量使用微计算机的时钟。
随着输入形式切换操作部(末图示)的输入信号,选择基准模式制订形式(步骤3),储存于数据收集储存装置312的使用电量、发电电量、热能使用量及蓄热量的数据和输入的计时信号同时储存于储存装置314中。由此,分别制订使用电量、发电电量、热能使用量及蓄热量的各个基准模式(图3,4,5,6)(步骤S4)。另外,储存装置314中各基准模式作为数值数据储存,图3-图6显示数值数据于图表。
如上所述制订的各个基准模式,是基于使用者的实际使用而制订,由此,与使用装置的各个使用者的生活周期紧密贴切。又,为更正确地反映使用者的生活习惯,例如,在使用者平时或休息日的生活周期中,使用电量及热能使用量的变化模式不同,根据该不同,分别制订与平日的对应基准模式和与休息日对应的基准模式。且,平日和休息日的各基准模式也可被适当的选择(切换)而适用于热电联产装置运转的结构。另外,例如,根据季节不同,使用电量及热能使用量变化时,基此制订与不同季节对应的基准模式,同时,相对应于装置的使用时期,可适当地将对应的基准模式进行选择(切换)的结构,或根据季节不同更新基准模式。
以下,就所制订的图3-图6的各个基准模式作一说明。
如图3所示,电力负荷50的使用电量的基准模式,在从使用者就寝的零时起,至早上6时为0,从起床后开始活动的6时起增加,12时达到最初的峰值A。另一方面,如图4所示,对应于上述使用电量的变动,发电装置11的发电电量也变动。即,从零时起至6时,发电停止,发电电量为0,其后增加,12时达到最大的发电电量GM。此处,由于峰段A使用电量超过发电装置11的最大发电电量GM,因此,此时,仅仅以发电装置11的发电电量,无法保证使用电量的供给。为此,在处于电力便用量的峰段A时,除使用发电装置11的发电外,也可供给商业用电源52供给的电力。超越峰段A,使用电量减少,其后至17时,缓慢变化。根据发电装置11,为与其使用电量的动向相对应,直至T时刻之间、使其缓慢地变化发电电量会进行变化。
另一方面,伴随发电装置11的发电而发生的余热,由余热利用系统2的余热回收装置21回收。由此,蓄热量如图6所示,发生变化。即,蓄热量在热负荷末端40,从未使用热能、且发电工作停止的零时起,至6时(图5及图4),保持一定量(具体地,一定温度的温水以所定量保持于储存罐22c中)。而从6时起至8时,使用热能(图5),及相对应于热能使用量的变动蓄热量减少(图6)。8时至10时,热能使用量再度成为零的期间(图5),在发电装置11进行如上所述的发电(图4),蓄热量增加(图6)。然后,从10时起至14时,再度使用热能(图5),则相对应于热能使用量的变动,蓄热量减少(图6)。从热能使用量再度成为零的14时以后(图5),回收的余热未经使用,蓄积。不久,在T1时刻,蓄热量达到蓄热界限值(量)QM(图6)。所谓蓄热量达到蓄热界限值QM的状态,具体地是指升温至所定温度的水储存于储存罐22c至满量(蓄热界限值),无法再进行升温及供水的状态。在此状态下,无法进行进一步的余热回收。为此,当蓄热量达到蓄热界限值QM时,热电联产装置会自动的停止。这样热电联产装置停止期间,由发电装置11不进行发电,发电电量为零(图4)。由此,其期间的使用电量可全部由商业用电源供给。另外,所谓在T1时刻运转停止,是指运转停止的指令输入装置。如图4所示,在发电电量为零的时刻偏离T1后,这是因为,在时刻T1,装置既使输入停止指令,但实际上要装置动作完全停止,尚须一定的时间。
在18时左右再度开始使用热能(图5),则蓄积至蓄热界限值QM的余热被使用,蓄积量少于蓄热界限值QM。由此,由于再度回收余热成为可能,可以再次起动装置运转。此处,如图6所示,在时刻T2,热电联产装置上输入运转开始指令,装置再度起动,伴随之,由发电工作发生电力(图4)。又,如图4所示,再次发电的时刻偏于时刻T2后,这是因为,在时刻T2,既使将再次运转工作指令输入装置,但实际上装置要成为可发电的状态需要一定的时间的缘故。
如图3及图5所示,在18-24时之间,为电力及热能的使用量一日中最大的时间,相应的发电电量也达最大。使用电量达到峰值B及峰值C时,最大发电电量GM也无法补偿使用电量。因此,从商业用电源52供给电力(图4)。又,伴随18-24时的活跃的发电动作,回收的余热量增加,期间热能的使用量达最大,整体蓄热量减少(图6)。
根据热电供给运转中上述的各个基准模式,如前所述,从时刻T1至时刻T2,一旦运转停止,热电联产装置的热能效率降低。又,在该工作停止期间T1-T2中,由于必须由热电联产装置以外的手段补给电力及热能,因此,其经济性及节能性降低。因此,本实施形态的热电联产装置,藉由使用储存的这些各个基准模式,在促进余热利用形式中的促进余热利用系统3的停止预测功能及停止预告功能,可尽量避免装置的运转停止,可有效利用装置。
图7-图9为用于避免停止工作的热电联产装置的运转说明图。图7所示为所述运转中的发电电量一日中的时间变化图。图8所示为所述运转过程中热能使用量一日中的时间变化图。图9所示为所述运转过程中蓄热量的一日中的时间变化图。又,关于所述运转的工作,参照图10进行说明。
此处,进行说明的前提是,使用者以大致如同制订基准模式时的一日周期进行生活。
在热电联产装置运转时,首先,操作形式切换操作部,将工作形式设定于促进余热利用的形式。然后,如图10所示,如同基准模式的制订,如前所述地对使用电量、发电电量、余热回收量、及热能使用量进行检测,其信息传递至中央控制装置31的数据收集储存装置312(步骤S1)。又,通过计时装置311,使计时信号与这些信息同时传递至数据收集储存装置312(步骤S2)。
接着,根据输入形式切换操作部(为图示)的输入信息,选择促进余热利用形式(步骤S3),使用收集于数据收集储存装置312的数据,中央控制装置31的比较装置314(图2),将检测的现在的运转状况中的使用电量及热能使用量,以及发电电量、蓄热量的时间变化,和储存于储存装置313的上述各个基准模式(图3-图6)进行比较(步骤S5)。另外,运算装置315(图2)将可蓄热残留量(具体地,蓄热界限值QM和现时的蓄热量之差)用假定热能使用量为零时的现时的单位时间的余热回收量除,由此,算出在假定不进行热能量使用的场合从现时,可持续多长期间的运转,即,算出可持续运转的时间TR(步骤6)。
将和基准模式的比较结果及算出的可持续运转时间TR的结果传递至停止工作预测装置316(图2),基于该信息,停止工作预测装置316进行判断,在现时状态下持续运转时,蓄热量是否达到蓄热界限值QM,装置是否停止工作(即,作出停止工作的预测)(步骤S7)。在停止工作预测装置316的判断中,在无法预测运转停止时,继续进行运转。另一方面,在运转停止工作可预测的场合,余热利用促进系统3发挥停止工作预告功能。
例如,如图9所示,在时刻T3,蓄热量达到所定量QL(具体地,储存罐22c内的温水达设定水位),则中央控制装置31进行上述步骤S4-步骤S6的动作,由此,停止工作预测装置316判断,在从现时时刻T3在经过持续运转时间TR的时刻T1,蓄热量达到蓄热界限值QM,装置停止运转。于是,在中央控制装置31的停止工作预测装置316得到的停止预测信息,如图2所示,传递至促进余热利用系统3的预告装置32的控制部321。基于该信息从控制部321输出图像信号,图像显示部322显示预告运转停止的图像。另外,向声音信号部323输出声音信号,以发出预告运转停止的警告声。由此,在时刻T3,在预告装置32的图像显示部322显示停止预告图像,并从声音信号部323发出为了停止预告的警告声(图10的步骤S8)。这里,例如,在图像显示部322显示警告短信及可持续运转时间TR。同时,从声音信号部323发出警告蜂鸣声。由此,唤起使用者的注意。
使用者由上述预告装置32进行停止工作预告之后,在热电联产装置的持续运转中(即,从时刻T3至可持续运转期间TR经过的期间T3-T1中),选择是否促进余热利用。例如,使用者听到预告装置32发出的警告声,唤起对装置运转将停止工作的注意。然后,根据使用者自己的判断,为避免装置停止运转,在由于蓄热量达到蓄热界限值QM而装置运转停止之前,选择实行所定的热利用。例如,根据储存于储存装置313的图5的基准模式,将预定在18-24时的期间使用的热能ES的一部分热能ES1,从早于18时的时刻T3至T4,提前集中使用。提前集中使用的热能ES1的用途无特别的限定,例如,根据基准模式,可用于在18时以后进行的对浴桶的放热水(用热水灌满浴桶)等。
如图9所示,藉由从时刻T3至T4对热能Es1的使用(以下,称为热能利用促进),蓄热量既使在预测的运转停止的时刻T1,也不会达到蓄热界限值QM。由此,根据基准模式,从运转停止时刻T1至时刻T2的期间T1-T2,也继续装置的运转。
如图8所示,从时刻T3至T4,使用热能ES1之后,至时刻T5,热能的使用量再度成为零,但由于热能使用量ES1的使用,蓄热量从蓄热界限值QM大幅度减少(图9),因此,既使T4-T5期间热能的使用量为零,也可在此期间进行余热回收,使装置运转继续。而且,在时刻T5以后,热能量ES2被再度使用。该热能使用量ES2在图5所示的基准模式中,相当于在约18-约24时期间所使用的热能ES的一部分,因此和热能使用量ES1合计,相等于热能使用量ES。
藉由上述对热能利用促进,可以使热电联产装置持续运转。如图7所示,从时刻T1至时刻T2的期间T1-T2,即,在基准模式中,在完全由商业用电源52供给电力的期间,也由热电联产装置发电,可获得发电电量GS。由于18时以后为一日中使用电量最多的时候,在该期间T1-T2,用热电联产装置补偿电力是有效的。又,伴随期间T1-T2期间的发电生成的余热可以用作为热能,所以,在一日中热能使用量最多的18时以后,可由热电联产装置稳定供给热能。又,热电联产装置的运转率提高,装置再起动所需能量消耗可抑制。
根据上述,采用可进行促进余热利用的热电联产装置,可以提高经济性、节能性。又,此时,因为使热电联产装置可自动地预测停止运转,同时,也唤起使用者注意而进行预告,从而,使用者既使没有经常对装置的运转状态进行监视等的特别注意,也容易进行对余热促进利用。另外,上述结构的装置不会大幅度改变以往的热电联产装置的结构,容易实现。
在使用者认知运转停止预告,但没有有意进行对余热促进利用的场合,在如图6的基准模式中,如前所述,余热回收量达到蓄热界限值QM,热电联产装置停止。是否进行促进余热利用,使用者可根据其时状况,作任意选择,非强制利用。既便使用者不作选择,此时,根据上述结构,也可以将装置的运转停止次数减少至少于以往,从而得到上述效果。
又,根据上述,为促进余热利用,在基准模式(图5)中,就18时以后所使用的热能ES的一部分ES1提前使用的场合进行了说明,但也可对所有的热能ES作提前使用。
另外,作为本实施形态的变化例,热电联产装置也可具有如图11所示的结构。如图11所示,本实施例中的热电联产装置具有如同图1的装置结构,余热回收装置21的结构与图1所示的不同。
即,在本实施例的热电联产装置中,余热回收装置21由直接连接储存罐22c和发电装置11的余热回收管道21d、设置于余热回收管道21d途中的泵21e构成。而未设置有如同实施形态1的冷却水循环管道21a及热交换器21c。以此结构,通过余热回收管道21d,流经发电装置11的储存罐22c内的水,可具有与发电装置11之间的直接的热交换,由此,吸收发电装置11的余热,水被加热作为温水供给。所述结构的热电联产装置中在图1所示装置中,也可获得同样效果。
实施形态2本发明实施形态2有关的热电联产装置具有如同实施形态1的热电联产装置的结构,并可如同实施形态1进行运转,但下述几点与实施形态1不同。
即,根据本实施形态的热电联产装置,在时刻T3预测到装置停止工作,则如同实施形态1,由预告装置32的图像显示部322及声音信号部32 3进行停止工作的预告。这里,在自时刻T3至预测停止工作时刻的T1期间,即,在时刻T3起至可持续运转时间TR的T3-T1期间,反复进行带有图像显示及警告声发生的停止工作预告。例如,在可持续运转时间TR期间,以所定时间间隔反复进行停止工作预告。由此,唤起使用者对于运转停止的注意的程度增大。其结果,使用者在时刻T3起至可持续运转时间TR的T3-T1期间,失去如实施形态1所述、选择是否进行促进余热利用的机会的可能性降低,可以稳靠地进行所述选择。
实施形态3图12为概略显示本发明的实施形态3的热电联产装置的特征部分结构的功能方框图。本实施形态的热电联产装置与实施形态1不同的是,预告装置具有如图12所示的结构,其他的结构与实施形态1一样。另外,在本实施形态中,热电联产装置进行与实施形态1同样的工作,但下述几点与实施形态1不同。
本实施形态的热电联产装置的预告装置32,其控制部321还包括声音合成装置(手段)324。该预告装置32在进行运转停止预告时,如同实施形态1的场合,不仅可发出蜂鸣警告声,且可由声音信号部323发出提醒具体的促进余热利用的发声建议。
即,在该装置中,停止预测信息从中央控制装置31的停止预测装置316传递至预告装置32的控制部321时,从控制部321将声音合成信号输出至声音合成装置324,声音合成,发出,如″热水马上要满了,热电联产装置的运转将停止,浴桶要不要放入热水?″,或者,″热水马上要满了,热电联产装置的运转将停止,是不是请您现在入浴?″等的发声建议。此时,如同实施形态1也可同时发出蜂鸣警告声。由此发声建议,唤起使用者对于运转停止的注意。再向使用者提出(告知)促进余热利用的具体方法。为此,使用者可参考所述建议,进行如实施形态1所述的、在因蓄热量达到蓄热量界限值QM所导致的装置的运转停止之前对余热进行使用。使用者不一定采用发声建议所建议的方法,但可根据当时的状况,适当选择使用于促进余热利用的热能用途,或选择不实施所述利用促进。
发声建议提醒的利用促进方法(即,用于促进利用的热能的使用用途)的内容,并无特别限定,较好的是适合于使用者的生活习惯、周期的方法。特别优选的是,提醒实施可提前使用的、根据使用者的生活周期可推断其后将发生的热能利用。这里,例如,提醒实施可提前使用的、18-24时期间的热能使用用途(具体地,如对浴桶的放水、入浴等)。由于所述提醒符合实际的使用者的生活周期、习惯,实施可能性较大,同时也容易为使用者接受,是一个有效的建议方法。
如上所述,根据本实施形态,促进余热利用的具体方法,由发声建议可提醒表现为容易为使用者明白的,因此,可以更加容易、确切地实施余热的利用促进。从而,可进一步提高热电联产装置的运转率,提高经济性利节能性。
实施形态4图13为概略显示本发明的实施形态4的热电联产装置的特征部分结构的功能方框图。本实施形态的热电联产装置,其中央控制装置具有如同图13所示结构,这一点与实施形态3的装置不同,其他和实施形态3的结构一样。而且,本实施形态的热电联产装置与实施形态3同样进行工作,但下述几点不同于实施形态3。
本实施形态的热电联产装置,其中央控制装置31在具有唤起注意电平值的设定装置317A,和唤起注意电平值的输入操作部317B的同时,预告装置32还具有携带信息末端32’。
唤起注意电平值的设定装置317A及唤起注意电平值的输入操作部317B输入并设定了预告的最佳实施条件,以使在装置的运转停止预告时,可有效地唤起各个使用者的注意。例如,在可持续运转时间TR期间,以何种频率进行预告,或者,以何种表现方法(具体地,为显示图像或使用种类等)进行预告等。由此,使得用于唤起使用者对于预告的关注(换言之唤起注意)的程度是不同的。又,用于唤起各使用者注意的唤起程度也存在个人之间的差别。因此,使用者输入对使用者自身最适合的唤起注意的程度,可由此设定针对各个不同使用者的预告的实施条件。唤起注意电平值的输入操作部317B可由例如键盘及鼠标等的计算机的输入操纵工具构成。
另外,使用者从唤起注意电平值输入操作部317B向唤起注意电平值设定装置317A输入唤起注意电平,则输入的唤起注意电平值储存于储存装置313,由此设定唤起注意的电平值。该唤起注意电平值与来自停止工作预测装置316的停止工作预测信息一起,传递至预告装置32的控制部321。控制部321控制图像显示部322及声音信号部323,以与该传递的唤起注意电平相对应的频率进行预告。
例如,在为了确实地进行余热利用的促进,反复进行预告,进行积极且确实的注意唤起的场合,及在如不反复进行预告就无法唤起使用者注意的场合等,使用者从唤起注意电平值输入操作部317B向唤起注意电平值设定装置317A输入强电平值。于是,设定该强电平值,该设定的强电平值与来自停止工作预测装置316的停止工作预测信息一起,传递至预告装置32的控制部321。控制部321控制图像显示部322及声音信号部323,以增加预告的频率。
另一方面,在不反复进行预告也可唤起使用者注意的场合,使用者从唤起注意电平值输入操作部317B向唤起注意电平值设定装置317A输入弱电平值。于是设定该弱电平值,该设定的弱电平与来自停止工作预测装置316的停止工作预测信息一起,传递至预告装置32的控制部321。控制部321控制图像显示部322及声音信号部323,以抑制预告的频率。
再有,根据本实施形态,预告装置32具有携带信息末端32’,因此,使用者既使离开预告装置32旁,也可藉由携带信息末端32’的持有,可以可靠地接受停止工作预告。例如,携带信息末端32′为具有通信部(发、收信部)和图像显示部、声音信号部(都末图示)的远程控制器。另一方面,预告装置32也具有通信部(末图示)。而且,携带信息末端32’的动作通过该携带信息末端32′,及预告装置32的通信部,由控制部321控制。藉由来自预告装置32的控制部321的指令,在携带信息末端32’,在图像显示部显示用于预告运转停止的图像的同时,从声音信号部发出警告声及发声建议。在所述携带信息末端32’上的预告动作中,如同在预告装置32的预告动作一样,与输入中央控制装置31的唤起注意电平输入操作部317B的唤起注意电平值相对应地,进行预告动作。
根据本实施形态的结构,在实施形态3中,可获得如同前述的效果。再有,这里可以根据各个使用者的不同,在设定的最佳实施条件下进行预告。同时,可以与使用者的居所无关地,确实地接受预告。由此,可以更加确实的进行对于促进余热利用的选择。又,所述预告是使用者自己设定的、与唤起注意电平值相对应作出的预告,因此,所述预告在心理上也可接受。
在上述中,是就运转的停止工作预告和促进余热利用方法的提醒二者进行的场合说明了预告装置32,但既使在例如实施形态1及实施形态2那样,不进行促进余热利用方法的提案的场合,也可适用本实施形态。
实施形态5
图14为概略显示本发明的实施形态5的变化例的热电联产装置的特征部分结构的功能方框图。图15为概略显示用于实施图4的热电联产装置特征动作,储存于预告装置控制部中的程序内容的流程图。
本实施形态5的热电联产装置,除了其预告装置32在具有图14所示结构这一点不同于实施形态4以外,其他结构如同实施形态4。本实施形态的装置的工作如同实施形态4,但以下几点不同于实施形态4。
如图14及图15所示,本实施形态的热电联产装置的预告装置32控制部321还具有数据储存装置321A和数据选择装置321B。根据所述装置,如同实施形态4,相对应于由唤起注意电平设定装置317A设定的唤起注意电平值,在预告装置32及携带信息末端32’的图像显示部322上显示图像,同时,从声音信号部323发出警告声和发声建议。特别是,这里,预告装置32及携带信息末端32′的图像显示部322上显示动物图像,以便使用者可当场理解停止工作预告。另外,在以动物叫声为警告声从信号部323发出的同时,由发生建议进行提醒。
用于预告的动物图像可相对应于唤起注意的电平值而决定,在强电平值场合,可使用可更加强烈地唤起使用者注意的动物;在弱电平值场合,可使用比强电平值的场合用的动物唤起程度较弱的动物。
这里,预告装置32的控制部321的数据储存装置321A储存有多种与唤起注意的电平值相对应的动物数据,所述动物数据可使唤起注意的电平值的差异具体化,并具有不同的给予使用者的印象。给予使用者的印象强度,可由例如,动物大小、性质等决定。此时,作为与强电平值对应的动物,如虎的数据,作为与弱电平值对应的动物,如猫的数据可储存于数据存储装置321A中。
如图15所示,例如,控制部321从中央控制装置31在接受停止工作预测信息的同时,也接受强电平值作为唤起注意电平值(步骤S11),数据选择装置321B从数据储存装置321A选择虎(步骤S12)。而且,基于选择结果的信号从控制部321输出至预告装置32及携带信息末端32′的图像显示部322,在预告装置32的图像显示部322及携带信息末端32’的未图示的图像显示部显示虎的图像(步骤S13)。又,从控制部321来的信号输出到声音合成手段324,虎的叫声和发声建议被合成。并其从预告装置32的声音信号部323及携带信息末端32′的末图示的声音信号部发出。
另一方面,控制部321从中央控制装置31在接受停止工作预测信息的同时,也接受弱电平值作为唤起注意电平值(步骤S11),数据选择装置321B从数据储存装置321A选择猫(步骤S12)。而且,基于选择结果的信号从控制部321输出至预告装置32及携带信息末端32′的图像显示部322,在预告装置32的图像显示部322及携带信息末端32’的末图示的图像显示部显示猫的图像(步骤S13)。又,从控制部321来的信号输出到声音合成手段324,猫的叫声和发声建议被合成。并其从预告装置32的声音信号部323及携带信息末端32’的末图示的声音信号部发出。
如此,使用与唤起注意电平值对应的不同动物,以使用者容易理解的表现形式进行预告,由此,使用者可以更加确切地接受预告。因此,可以获得如同实施形态4的效果。
在上述中,针对利用虎和猫实行预告和提醒的场合进行了说明,但动物种类并不限于这些,只要是可以使用者当即理解的表现形式,也可以使用动物以外的表现形式。
实施形态6图16为概略显示本发明的实施形态6的热电联产装置的特征部分结构的功能方框图。图17为图16的热电联产装置的预告装置及携带信息末端的图像显示部上所显示的促进余热利用方法选择菜单的内容的图。
本实施形态的热电联产装置,除了下述几点不同于实施形态4的热电联产装置以外,其他如同实施形态4。
即,在本实施形态中,中央控制装置31中省略了唤起注意电平设定装置317A及唤起注意电平输入操作部317B。且,预告装置32上设有应答输入装置331,携带信息末端上也设有应答输入装置(末图示)。应答输入装置上设有鼠标等的已知操作输入装置。又,作为热负荷末端40的热水供给系统具有浴桶40A和取暖装置40B,它们由预告装置31的控制部321控制。
根据如上所述构成的本实施形态的热电联产装置,其预告装置31的控制部321控制声音信号部323,以在从中央控制装置31的停止工作预测装置316接受停止工作预测信息的同时,也控制图像显示部322以显示图17所示的促进余热利用方法的选择菜单。又,控制部321同样控制携带信息末端32’,以从声音信号部发出所定的建议的同时,也在图像显示部322显示图17所示的促进余热利用方法的选择菜单。
促进余热利用方法的选择菜单由表示具体菜单的1-3的编号,和″对浴桶放热水″(编号1)、″取暖″(编号2)、及,″什么都不进行″(编号3)的三个菜单构成。另外,作为所定的建议,例如,可发出发声建议″热水快满了,热电联产装置将停止工作,请输入编号,从显示的选择菜单选择一个促进余热利用方法″。使用者从显示的选择菜单选择一个希望的菜单,使用应答输入装置331等,将对应的编号输入控制部321,控制部321根据输入编号进行以下的动作。
在输入编号1的场合,控制部321对浴桶40A放热水。这可由例如,控制部321打开浴桶40A的放热水用的栓。一定时间后关闭而进行。又,取代之,也可在浴桶40A上设置用于检测上限热水水位的水位传感器,控制部321打开浴桶40A的放热水用的栓一定时间后,接受到由所述水位传感器检测的上限水位信号时,关闭放热水用的栓。如此,在蓄热量达到蓄热界限值之前,可利用积蓄于储存罐22c的余热,避免了热电联产装置的运转停止。
在输入编号2的场合,控制部321起动取暖装置40B。由此,积蓄于储存罐22c的余热可提前利用,避免了热电联产装置的运转停止。
另一方面,在输入编号3的场合,控制部321不进行为了促进余热利用的控制。其结果,蓄热量饱满时,热电联产装置停止工作。
如此,根据本实施形态,可基于使用者的意愿,促进余热利用,且,所述余热利用由热电联产装置自动进行,所以,可以进一步提高热电联产装置的节能性及经济性。
变化例其次,说明本实施形态的变化例。在本变化例中,预告装置31的控制部321在控制声音信号部323,便从中央控制装置31的停止工作预测装置316接受停止工作预测信息,发出包括提示余热利用的能量成本降低的短信的所定建议的同时,也控制图像显示部322,以除了显示促进余热利用方法选择菜单之外,也显示上述短信。另外,同样,预告装置31的控制部321控制携带信息末端32′,以从声音信号部发出包含上述短信的所定建议的同时,在图像显示部除了显示促进余热利用方法选择菜单之外,也显示上述短信。
提示余热利用的能量成本降低额的短信,可作成,例如,″如果采用浴桶放热水,避免运转停止工作的方案,可以降低约为XXX元的能量成本;如果采用采暖,避免运转停止工作的方案,可以降低约为YYY元的能量成本。″又,所述短信预先储存于控制部321的储存部,在进行上述能量成本降低额的提示之时,从储存部读出,使用。
又,在上述实施形态2-6中,是就余热回收装置21由冷却水循环管道21a和余热回收管道21d二者构成的场合进行了说明,但也可以如同实施形态1的变化例所述,其结构为余热回收装置21仅由余热回收管道21构成,储存管22的水作为冷却水直接从发电装置11回收余热。
又,在上述实施形态1-6中,是就热电联产装置的一日运转制订其使用电量、发电电量、热能使用量及余热回收量的各个基准模式,以便基于这些基准模式促进余热的有效利用,但各个基准模式不必限于一日中的变化。例如,可以是这样的结构制订根据通过1个月、1年的变化的基准模式,以便基于所述基准模式,通过1个月、1年的期间促进余热的有效利用。或者,例如,也可以前一日、前一月、前一年同一月等的运转为基准模式。
再有,在上述实施形态1-6中,是就中央控制装置31具有基准模式的制订功能,基于实际进行的热电联产装置的运转制订各个基准模式的结构进行了说明,但,除此之外,也可以是这样的结构中央控制装置31自身并不具有基准模式的制订功能,取而代之的是,各个基准模式预先储存于中央控制装置31中。例如,也可以将工商业者制订的基准模式预先储存的结构的装置,如同实施形态1-5,根据中央控制装置31具有基准模式的制订功能的结构,由于可以得到正确反映使用装置的各位使用者的生活周期的基准模式,因此,可以籍由使用该基准模式进行余热利用,可以更加有效地提高经济性及节能性。
以上,在实施形态1-6中,是就发电装置11为燃料电池系统,作为燃料电池具有PEFC的场合进行说明。但燃料电池并不限于PEFC,例如,也可以是固体氧化物型燃料电池(SOFC)等。再有,本发明也可以包括除燃料电池发电系统以外的发电装置11。例如,作为发电装置11,也可包括燃气发动机及精密透平。又,燃气发动机及精密透平比较燃料电池可以快速再起动,因此,其再起动所需的能量消耗量比燃料电池少。由此,在发电装置11为燃料电池发电系统的热电联产装置中,本发明的效果更加有效。
又,在上述实施形态1-6中,是就将热电联产装置使用于家庭的场合进行说明,但如将热电联产装置使用产、商业的场合,也同样适用本发明。
对本领域的技术人员来说,从上述说明可以明白本发明的许多改进及其他的实施形态。因此,上述说明应解释为仅仅是一种举例,且是出于向本领域的技术人员展示实施本发明的最佳形态的目的而提供。在不脱离本发明精神的范围内,可以对其具体结构及/或功能作出实质性的变更。
权利要求
1.一种热电联产装置,所述装置包括其构成可在发电的同时对电力负荷供给电力的发电装置,将上述发电装置生成的余热进行回收的余热回收装置,将上述余热回收装置回收的所述余热作为热能进行储存以便可使用的蓄热装置,因上述蓄热装置中的蓄热量饱满、而预测上述发电装置的运转停止工作的停止工作预测装置,基于上述停止工作预测装置对上述停止工作的预测,而对上述发电装置的运转停止进行预告的停止工作预告装置。
2.如权利要求1所述的热电联产装置,其特征在于,上述停止工作预测装置也可基于上述余热回收装置中的余热回收量的随时间变化、上述蓄热装置中的热能使用量的随时间变化、及上述蓄热装置中的蓄热量的时间变化,对上述发电装置的运转停止工作进行预测。
3.如权利要求2所述的热电联产装置,其特征在于,上述停止工作预测装置至少,基于作为显示上述余热回收量随时间变化的基准模式的发电电量基准模式、作为上述热能使用量随时间变化的基准模式的热能使用量基准模式、作为上述蓄热量随时间变化的基准模式的蓄热量基准模式,对上述发电装置的运转停止工作进行预测。
4.如权利要求3所述的热电联产装置,其特征在于,上述停止工作预测装置具有储存装置,上述储存装置上可储存有预先另外制订的上述发电电量基准模式、上述热能使用量基准模式、及上述蓄热量基准模式。
5.如权利要求3所述的热电联产装置,其特征在于,上述停止工作预测装置可取得在所定期间运行的上述发电电量、上述热能使用量及上述蓄热量的各随时间变化模式,从该取得的各随时间变化模式,制订上述发电电量基准模式、上述热能使用量基准模式、及上述蓄热量基准模式。
6.如权利要求3所述的热电联产装置,其特征在于,上述停止工作预测装置取得现在运行中的上述发电电量、上述热能使用量及上述蓄热量,将该取得的各随时间变化与对应于各上述基准模式进行比较,同时,运算从现时起至上述蓄热量满量期间的可持续运转时间,基于该比较及运算的结果,预测上述发电装置的运转是否停止,上述停止工作预告装置基于来自上述停止工作预测装置的停止工作信息,至少由图像及声音中的至少一种进行上述停止工作预告。
7.如权利要求6所述的热电联产装置,其特征在于,上述停止工作预测装置将上述蓄热装置中的可蓄热残量用单位时间内的实质性余热回收量去除,算出上述可持续运转的时间。
8.如权利要求7所述的热电联产装置,其特征在于,上述停止工作预测装置包括将上述发电电量进行检测的发电电量检测装置;将上述热能使用量进行检测的热能使用量检测装置;将上述余热回收量进行检测的余热回收量检测装置;将获自上述发电电量检测装置、上述热能使用量检测装置、上述余热回收量检测装置的各个检测信息进行收集及储存的数据收集储存装置;进行计时的计时装置;从上述余热回收量和上述热能使用量运算上述蓄热量,且运算上述可持续运转时间的运算装置;将储存于上述数据收集储存装置的、来自上述发电电量检测装置及上述热能使用量检测装置的各个检测信息和由上述运算装置运算的蓄热量、来自上述计时装置的计时信号、获得的针对各个、就上述发电电量、上述热能使用量、及上述蓄热量的上述随时间变化模式作为上述基准模式储存的储存装置;将现时运转中取得的上述发电电量、上述热能使用量及上述余热回收量,与各个对应的上述基准模式进行比较的比较装置;从上述运算的上述运转可持续时间和上述比较装置的比较结果,判断运转是否停止的停止工作预测判断装置;上述停止工作预告装置具有基于来自上述停止工作预测装置的上述停止工作预测信息,显示图像的图像显示装置及发声的声音信号装置中的至少一种。
9.如权利要求7所述的热电联产装置,其特征在于,上述停止工作预告装置在上述可持续运转时间内,以所定的时间间隔进行上述停止工作预告。
10.如权利要求6所述的热电联产装置,其特征在于,由上述停止工作预告装置所实施的上述停止工作的预告包括基于储存于上述停止工作预告装置的所述储存装置的热能使用量的所述基准模式,在上述停止工作预测时刻之前将热能的使用告知实行的促进余热利用建议。
11.如权利要求10所述的热电联产装置,其特征在于,上述促进余热利用建议包括是否自动的实施热能使用的选择,在使用者选择实施时,上述停止工作预告装置控制上述热电联产装置,以便上述热能使用可自动的实施。
12.如权利要求10所述的热电联产装置,其特征在于,上述热能使用为伴随入浴的热能使用,上述促进余热利用建议推荐入浴时的热水的使用。
13.如权利要求1所述的热电联产装置,其特征在于,上述停止工作预测装置还具有用于设定唤起使用者对于来自上述停止工作预告装置的上述停止工作预告的注意的唤起电平值的唤起注意电平值设定装置,上述停止工作预告装置对应于由上述唤起注意电平值设定装置设定的所述唤起注意电平值,进行上述停止工作预告。
14.如权利要求13所述的热电联产装置,其特征在于,上述停止工作预告装置由上述停止预测装置的上述唤起注意电平值设定装置所设定的上述唤起注意电平值相对应的频率及显示方法中之任一种,通过上述图像显示装置及上述声音信号装置中之至少一种进行上述停止工作预告。
15,如权利要求14所述的热电联产装置,其特征在于,上述停止工作预告装置还具有储存有多个不同的上述唤起注意电平值相对应的多个不同的预告显示数据的数据储存装置,和由上述唤起注意电平值设定装置设定的上述唤起注意电平值相对应、选择储存于上述数据储存装置中的上述预告显示数据的数据选择装置。
16.如权利要求15所述的热电联产装置,其特征在于,上述数据储存装置中至少储存有多个不同的上述唤起注意电平值相对应的、多个不同的动物图像及叫声中至少一种,藉由上述数据选择装置选择的上述多个不同的动物图像及叫声中至少一种,进行所述的停止工作的预告。
17.如权利要求1所述的热电联产装置,其特征在于,上述发电装置由燃料电池发电系统构成。
全文摘要
本发明提供一种热电联产装置,所述装置由具有发电装置的发电系统、用于对发电装置生成的余热进行回收、蓄热的同时,可将此余热有效用作输出热能的余热利用系统、为避免因蓄热量饱满而使上述发电装置停止工作,用于对余热利用系统中的有效输出热能的利用进行促进的促进余热利用系统而构成。所述促进余热利用系统具有停止工作预测功能和停止工作预告功能,所述停止工作预测功能是对基准曲线和现时的运转状态进行比较,算出可持续运转时间,由此进行停止工作的预测;所述停止工作预告功能是根据所得到的停止工作预测信息,用图像或声音对使用者作出运转停止的预告。
文档编号F02G5/00GK1598279SQ200410011919
公开日2005年3月23日 申请日期2004年9月20日 优先权日2003年9月18日
发明者宫内伸二, 上田哲也, 尾关正高 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1