用于对scr-催化器进行动态的破裂识别的方法

文档序号:5241255阅读:134来源:国知局
用于对scr-催化器进行动态的破裂识别的方法
【专利摘要】介绍了一种用于动态的破裂识别的方法和组件。该组件包括至少一个传输元件、传感器特性曲线存储在其中的至少一个存储单元、至少一个调节器和评估逻辑电路(4)。
【专利说明】用于对SCR-催化器进行动态的破裂识别的方法
【背景技术】
[0001]在机动车中所使用的催化器用于废气处理,以减小废气中的有害物质排放。已知不同类型的催化器,例如三元催化器、未调整的催化器、氧化催化器和还有SCR-催化器。
[0002]在SCR-催化器中,所谓的选择性催化还原(SCR:selective catalyticreduction)被用作用于还原氮氧化物的方法。在SCR-催化器处的化学反应是选择性的,因此优选地来还原氮氧化物(NO,N02),而很大程度上来抑制不期望的副反应,例如将硫氧化成二氧化硫。
[0003]在应用于机动车中的内燃机中,借助SCR方法的氮氧化物还原证明为困难的,因为在那里存在变换的运行条件,这使还原剂的配量变困难。
[0004]对于SCR催化器的运行来配量还原剂,其中,在SCR之后对NOx传感器值进行调节。NOx传感器对NH3具有横向灵敏性。如果在系统中发生过配量,那么在SCR反应之后产生所谓的NH3-逃逸(Schlupf)或如果在SCR之后在系统中构建有阻隔催化器(Sperrkatalysator),在SCR之后又产生提高的NOx排放。
[0005]因此,NOx传感器示出了特性曲线中的多义性(Mehrdeutigkeit)。因此不能可靠地区分是配量太少而存在NOx排放,还是配量太高且由于在阻隔催化器中的NH3转化而存在NH3-逃逸或提高的NOx排放。
[0006]当仅需要通过SCR催化器的较小的NOx转化率时,不出现所说明的问题。那么在系统中的转化远离带有所谓的逃逸极限的最大可能的转化。但是为了节省燃料的发动机调校或者催化器的有效利用必须实现高转化率。
[0007]解开特性曲线的多义性的另一可能性在于人为地提供还原剂的配给量的较小的变化。通过在SCR之后的N0x值的合适的评估,可识别出NH3-逃逸的存在。这样的方式在文件DE102009012092A1中来说明。
[0008]然而仅当系统在静止状态中时,这样的评估才起作用,因此才延迟地识别出NH3-逃逸的存在。

【发明内容】

[0009]介绍一种用于动态的破裂识别的方法,在其中可在运行中快速识别出由于在阻塞催化器中的NH3转化而出现的NH3-逃逸或提高的NOx排放。不必等待SCR-催化器的静止的运行点。对于该方法不需要执行还原剂的配给量的特别变化,不必改变SCR-系统的常规的调节器运行。
[0010]在用于动态识别在废气后处理设备中运行的SCR-催化器的破裂或者NH3-逃逸的方法中,由在SCR-催化器之前向废气流添加的还原剂的配量比率(Dosierrate)根据SCR-催化器的动态特性的模型(在其中应用取决于SCR-催化器的一个或者多个运行参数例如温度或者废气质量流量的参数)对于描绘正常运行的区域的至少一个线性传感器特性曲线和描绘破裂或者NH3-逃逸的区域的至少一个线性传感器特性曲线分别来确定对转化率的期望值。将该期望值与从由布置在SCR-催化器下游的NOx传感器所确定的测量值所确定的实际转化率相比较。对于特性曲线中的每个分别来计算用于将实际转化率与期望值相匹配的调整参数(Stellgroesse),并且选择计算出最小调整参数的特性曲线。如果是描绘破裂或者NH3-逃逸的区域的特性曲线,这表示破裂或者NH3-逃逸并且可将该信息反馈到还原剂的配量的控制部处。
[0011]所介绍的方法不仅可在没有附加的阻隔催化器的废气后处理设备中用于在SCR-催化器之后氧化NH3,而且可应用在具有这样的阻隔催化器的系统中。
[0012]除了识别NH3-逃逸之外,附加地可在SCR-催化器的所观察的运行点中来确定可最大达到的转化率。SCR-催化器的所确定的最大转化率附加地可用于监控SCR-催化器,例如用于跟踪催化器老化。
[0013]此外介绍了一种组件,其适合于执行该方法。该组件包括至少一个传输元件(Uebertragungsglied)、传感器特性曲线存储在其中的至少一个存储单元、至少一个调节器和评估逻辑电路(Auswertelogik)。作为传输元件可应用动态模型,其例如包括PT1-元件、带有死时间(Tt)的PT1-元件或者PT2-元件。作为调节器例如可应用P1-调节器、适应性调节器或者适应性P1-调节器。
[0014]本发明的另外的优点和设计方案由说明书和附图得出。
[0015]应理解的是,前面所提及的和接下来还待阐述的特征不仅可以以分别说明的组合而且可以以其它组合或者单独使用,而不离开本发明的范围。
【专利附图】

【附图说明】
[0016]本发明根据实施形式在附图中示意性地示出并且接下来参考附图详细地来说明。
[0017]图1示出了 SCR-催化器的动态特性的抽象的图示;
[0018]图2示出了对于不同的最大转化率的传感器-特性曲线的示例;
[0019]图3示出了 SCR-催化器的动态特性的分解成子模型的总模型的示例;
[0020]图4示意性地示出了在所说明的方法中所使用的观测器结构(Beobachterstruktur)的不例;
[0021]图5示意性地示出了所说明的方法的实施形式。
[0022]在附图中所使用的附图标记:
[0023]alpha:配量比率 alpha ;
[0024]eta:转化率 eta ;
[0025]a:具有带有Tt的PT1的G(S);
[0026]b:带有横向灵敏性的传感器-特性曲线;
[0027]c:适应性P1-调节器;
[0028]d:取决于催化器温度的参数;
[0029]e:特性曲线正常运行;
[0030]f:特性曲线破裂运行,最大转化=1.0 ;
[0031]g:特性曲线破裂运行,最大转化=0.9 ;
[0032]h:特性曲线破裂运行,最大转化=0.8 ;
[0033]G:总模型:不带破裂的正常运行和具有不同的最大转化率的破裂;
[0034]N:不带破裂的系统模型;[0035]Dl.0系统模型破裂,最大转化=1.0 ;
[0036]D0.9系统模型破裂,最大转化=0.9 ;
[0037]D0.8系统模型破裂,最大转化=0.8 ;
[0038]M动态特性的模型PT1+死时间;
[0039]KL相应的特性曲线;
[0040]B观测器:PI_调节器;
[0041]ID实际配量比率;
[0042]IU实际转化率;
[0043]S调整参数观测器;
[0044]SCR实际的SCR催化器;
[0045]BI观测器正常运行;
[0046]B2观测器破裂,最大转化=1.0 ;
[0047]B3观测器破裂,最大转化=0.9 ;
[0048]B4观测器破裂,最大转化=0.8 ;
[0049]A评估逻辑电路。
【具体实施方式】
[0050] 图1示出了 SCR-催化器的动态特性的抽象图示,其中,传输元件I在该情况中实施为带有死时间(Tt)的PTl-元件,适应有取决于催化器温度的参数。输入量是配量比率alpha,输出量是转化率eta。传感器特性表示为带有在转化最大时的转折点(Knickpunkt)的特性曲线,其中,传感器对NH3的横向灵敏性反映在破裂区域中的特性曲线的负斜率中。参数可通过围绕额定转化的跳跃试验(Sprungversuch)或者由模型计算来确定。传感器特性曲线存储在存储单元2中。配量比率的控制经由调节器3实现,在所示出的情况中其是适应性P1-调节器。
[0051]图2示出了对于不同的最大转化率的传感器特性曲线。特性曲线分别由两个部分直线(Teilgerade)构成,对于正常运行的带有正斜率的部分直线和对于破裂区域的带有负斜率的部分直线。在正常运行与破裂区域之间的转换点(可识别为特性曲线的最大值)取决于催化器的相应的最大转化率。在图2中示出对于0.8,0.9和1.0的最大转化率的特性曲线。
[0052]对于所说明的方法,将带有不同的最大转化率的破裂区域和正常运行的所有可能的变体综合成总模型。该总模型被分成相应的线性的子模型(其分别由时间特性(PTpPT1和死时间,或者PT2)和线性特性曲线构成)并且将子模型转换成调节技术上线性的模型。对于每个子模型设计所属的观测器结构并且基于相应的模型计算来确定计算上的配给量,其导致模型和现实的精确一致。为了能够达到固定的精度,使用P1-观测器。来比较对于不同的线性子模型所获得的观测器-调整参数。带有最小的观测器-调整参数的模型最好地与该系统的实际特性相配。该模型被选择并且关于是否存在破裂和哪个是实际系统的最大转化率给出说明。在选择时应考虑的是,分别排除其最大转化率相应于当前的实际转化率的模型,因为不可能区分正常运行和带有当前的实际转化率的破裂-运行。
[0053]在图3中示出了对转换成线性子模型的总模型的示例。其包括用于正常运行的子模型和用于破裂的三个子模型,其分别带有不同的最大转化率,示出分别带有传输元件I和存储在存储单元2中的传感器特性曲线。对于在破裂区域中的子模型的初始方程(Ausgangsgleichung)是直线,其不延伸通过原点。直线的斜率由NOx传感器对NH3的横向灵敏性得出而y轴截距(Achsenabschnitt)由其斜率和最大转化得出。
[0054]图4示出了在所说明的方法中所使用的观测器结构5,其包括传输元件1、带有传感器特性曲线的存储单元2和调节器3。所观察的子模型利用实际的转化来调节,其中,观测器5相应于利用固定精度的P1-调节器调节到实际的转化上并且观测器5的调节干预(Stelleingriff)建立在实际的转化与在子模型中计算出的转化之间的一致。
[0055]图5示意性地示出了所说明的方法的实施形式。通过评估逻辑电路4来比较观测器5的在所使用的子模型中计算出的调整参数。带有最小的观测器-调整参数的子模型是显示出与实际系统的最佳一致的子模型。该子模型被选择并且由此来确定是否存在破裂和哪个具有SCR-催化器的最大转化率。
[0056]所说明的系统允许识别SCR-催化器的破裂或NH3的逃逸和确定SCR-催化器的最大转化率,而不需要系统的人为激励。通过带有调节器的系统的运行自动实现的激励就足够。该方法仅要求较小的计算耗费,因为仅简单的线性模型和P1-调节器须被计算而不需要复杂的模型计算。
【权利要求】
1.一种用于监控在废气后处理设备中运行的SCR-催化器的方法,在其中: a.由在所述SCR-催化器之前向废气流添加的还原剂的配量比率根据所述SCR-催化器的动态特性的模型对于描绘正常运行的区域的至少一个线性传感器特性曲线和描绘破裂或者NH3-逃逸的区域的至少一个线性传感器特性曲线分别来确定对转化率的期望值; b.将该期望值与从由布置在所述SCR-催化器下游的NOx传感器所确定的测量值所确定的实际转化率相比较; c.对于每个特性曲线分别计算出用于将所述实际转化率与所述期望值相匹配的调整参数; d.选择计算出最小调整参数的特性曲线。
2.根据权利要求1所述的方法,在其中所述监控包括动态识别催化器破裂。
3.根据权利要求1或者2所述的方法,在其中所述监控包括确定所述催化器的最大转化率。
4.根据权利要求1-3中任一项所述的方法,在其中多个不同的特性曲线描绘破裂的区域。
5.根据权利要求4所述的方法,在其中不同的所述特性曲线相应于不同的最大转化率。
6.根据前述权利要求中任一项所述的方法,在其中在所述SCR-催化器的动态特性的模型中所使用的参数取决于SCR-催化器的一个或者多个运行参数。
7.一种尤其用于执行根据权利要求1-6中任一项所述的方法的组件,其包括至少一个传输元件(I)、传感器特性曲线存储在其中的至少一个存储单元(2)、至少一个调节器(3)和评估逻辑电路⑷。
8.根据权利要求7所述的组件,在其中至少一个所述传输元件(I)包括动态模型。
9.根据权利要求7或者8所述的组件,在其中至少一个所述调节器(3)包括P1-调节器。
10.根据权利要求7-9中任一项所述的组件,在其中至少一个所述调节器(3)包括适应性调节器。
【文档编号】F01N9/00GK103649481SQ201280009426
【公开日】2014年3月19日 申请日期:2012年2月7日 优先权日:2011年2月16日
【发明者】J·尼迈耶 申请人:Mtu腓特烈港有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1