连续可变气门升程机构的控制方法、系统及车辆与流程

文档序号:14830518发布日期:2018-06-30 10:14阅读:159来源:国知局
连续可变气门升程机构的控制方法、系统及车辆与流程

本发明涉及汽车技术领域,特别涉及一种连续可变气门升程机构的控制方法、系统及车辆。



背景技术:

随着环境问题的日益严峻,低排放和环保已经成为发动机进入市场的前提条件,传统汽油发动机通过改变节气门调节进气量的大小来改变发动机负荷的大小,在小负荷工况下,节气门开度很小,节气门后真空度很大,发动机换气过程的泵气损失很大,这就是汽油机工作效率比柴油机低的一个重要原因。为了提升发动机的效率,提出了连续可变气门升程技术,相关技术中,由于连续可变气门升程机构的电控元器件较多,如果电控元器件发生故障,可能导致连续可变气门升程机构的自动改变气门升程功能失效,有时候车辆不能够启动,尤其冷启动不能顺利进行,车辆抛锚而不能行驶,需要等待拖车到达后拖到维修站维修,影响车辆的维修效率。



技术实现要素:

有鉴于此,本发明旨在提出一种连续可变气门升程机构的控制方法,该方法可以在连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,保证车辆顺利启动和行驶。

为达到上述目的,本发明的技术方案是这样实现的:

一种连续可变气门升程机构的控制方法,包括以下步骤:当所述连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,控制所述连续可变气门升程机构进入跛行模式;驱动所述连续可变气门升程机构强制向最大升程位置动作;当所述连续可变气门升程机构至最大升程位置时触发自锁功能,以将所述连续可变气门升程机构自锁在最大升程位置。

进一步的,导致自动改变气门升程功能失效的连续可变气门升程机构的故障包括:连续可变气门升程机构的电控元器件故障;和/或电机三相线路中至少一相失效。

进一步的,所述连续可变气门升程机构设置为在最大升程位置时所述连续可变气门升程机构的滚轮组件对所述偏心轮的合力方向过所述偏心轴的轴心,以在所述跛行模式下所述连续可变气门升程机构至最大升程位置时自锁在所述最大升程位置。

进一步的,将所述连续可变气门升程机构自锁在最大升程位置之后,还包括:对节气门的开度进行控制,以使车辆能够启动及行驶。

相对于现有技术,本发明所述的连续可变气门升程机构的控制方法具有以下优势:

本发明实施例的连续可变气门升程机构的控制方法,当连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,控制连续可变气门升程机构进入跛行模式,将连续可变气门升程机构强制向最大升程位置动作,并到达最大升程位置后自锁在最大升程位置,从而使车辆可以顺利的启动和行驶,方便驾驶员将车辆开到维修地点进行维修,提升维修效率。

本发明的第二个目的在于提出一种连续可变气门升程机构的控制系统,该系统可以在连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,保证车辆顺利启动和行驶。

为达到上述目的,本发明的技术方案是这样实现的:

一种连续可变气门升程机构的控制系统,包括:模式切换模块,用于当所述连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,控制所述连续可变气门升程机构进入跛行模式;驱动模块,用于驱动所述连续可变气门升程机构强制向最大升程位置动作,并当所述连续可变气门升程机构至最大升程位置时触发自锁功能,以将所述连续可变气门升程机构自锁在最大升程位置。

进一步的,导致自动改变气门升程功能失效的连续可变气门升程机构的故障包括:连续可变气门升程机构的电控元器件故障;和/或电机三相线路中至少一相失效。

进一步的,所述连续可变气门升程机构设置为在最大升程位置时所述连续可变气门升程机构的滚轮组件对所述偏心轮的合力方向过所述偏心轴的轴心,以在所述跛行模式下所述连续可变气门升程机构至最大升程位置时自锁在所述最大升程位置。

进一步的,还包括:控制模块,用于在所述连续可变气门升程机构自锁在最大升程位置之后,对节气门的开度进行控制,以使车辆能够启动及行驶。

所述的连续可变气门升程机构的控制系统与上述的连续可变气门升程机构的控制方法相对于现有技术所具有的优势相同,在此不再赘述。

本发明的第三个目的在于提出一种车辆,该车辆可以在连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,保证车辆顺利启动和行驶。

为达到上述目的,本发明的技术方案是这样实现的:

一种车辆,设置有如上述任意一个实施例所述的连续可变气门升程机构的控制系统。

所述的车辆与上述的连续可变气门升程机构的控制系统相对于现有技术所具有的优势相同,在此不再赘述。

附图说明

构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为本发明实施例所述的连续可变气门升程机构的结构示意图;

图2为本发明实施例所述的偏心轴在最小升程位置的结构示意图;

图3为本发明实施例所述的偏心轴在最大升程位置的结构示意图;

图4为本发明实施例所述的连续可变气门升程机构的控制方法的流程图;

图5为本发明实施例所述的连续可变气门升程机构的控制系统的结构框图。

附图标记说明:

连续可变气门升程机构100,凸轮轴1,支撑座2,偏心轴3,滚轮组件4,滚子摇臂5,中间摆臂6,外侧调节螺钉7,中间摆臂销轴8,内侧调节螺钉9,固定支架10,复位弹簧11,气门12,定位套13,定位销14,凸轮轴小盖15,缸盖16,连续可变气门升程机构的控制系统500,模式切换模块510,驱动模块520。

具体实施方式

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

下面将参考附图并结合实施例来详细说明本发明。

如图1所示,连续可变气门升程机构100可以包括凸轮轴1、支撑座2、偏心轴3、滚轮组件4、滚子摇臂5、中间摆臂6、外侧调节螺钉7、中间摆臂销轴8、内侧调节螺钉9、固定支架10、复位弹簧11、气门12、定位套13、定位销14、凸轮轴小盖15、缸盖16及偏心轴驱动装置。

凸轮轴1、偏心轴3与固定支架10均安装在支撑座2上,凸轮轴1与偏心轴3可自由旋转,支撑座2安装在缸盖16上。

凸轮轴1与发动机的曲轴相连,比如可以通过链传动相连,凸轮轴1旋转驱动滚轮组件4,复位弹簧11使中间摆臂6的滚轮与滚轮组件4紧密接触,滚轮组件4把运动传递到中间摆臂6,中间摆臂6驱动滚子摇臂5,进而打开或关闭气门12。

偏心轴驱动装置与偏心轴3动力耦合连接,以控制偏心轴3做顺时针或逆时针两个方向的转动,偏心轴驱动装置可以为控制电机,控制电机的输出轴可以设置为蜗杆,偏心轴3可以固定连接有涡轮,蜗杆与涡轮啮合,以使控制电机与偏心轴3动力耦合连接。

偏心轴3上固定连接有偏心轮,偏心轴3旋转时,偏心轴3的偏心轮驱动滚轮组件4,改变滚轮组件4与中间摆臂6的滚轮接触点,从而调节气门升程及气门开启的持续期。

中间摆臂6通过中间摆臂销轴8安装在固定支架上,外侧调节螺钉7和内侧调节螺钉9可固定也可调节中间摆臂销轴8的位置,通过转动外侧调节螺钉7或内侧调节螺钉9可改变中间摆臂销轴8的位置,从而调节中间摆臂6的旋转中心。每个固定支架10可以装有两个中间摆臂6,固定支架6装在支撑座2上。

下面描述根据本发明实施例的连续可变气门升程机构的控制方法。

其中,连续可变气门升程机构100的同缸的两个气门12所对应的偏心轮的型线可以不同,也就是说,同缸的两个气门12的升程可以不完全同步。

首先,需要说明的是,本发明实施例的连续可变气门升程机构的控制方法是在连续可变气门升程机构发生故障的情况下的一种对连续可变气门升程机构的控制策略。当连续可变气门升程机构没有出现故障时,可以按照常规的控制策略对连续可变气门升程机构进行控制,结合图1-图3所示,例如:在连续可变气门升程机构没有出现故障,与中间推杆相接触的复位弹簧11,以及配气机构的气门弹簧,二者弹簧力会作用在中间推杆上,中间推杆与滚轮组件接触4,弹簧力的合力传递到滚轮组件4。滚轮组件4同时受到凸轮轴1的作用力。滚轮组件4所受的合力传递到偏心轴3的偏心轮上,这个作用力会使偏心轮向小升程旋转。由连续可变气门升程机构(CVVL)的控制电机驱动控制偏心轴3的位置,因此,在正常情况下,偏心轮的位置是可以控制的。

然而,在某些情况下,例如连续可变气门升程机构发生故障而导致自动改变气门升程功能失效的情况下,偏心轮的位置不受主动控制,如果连续可变气门升程机构没有处在最大升程位置附近,偏心轮会在所受合力的作用下,自动向小升程转动。如果偏心轮停留在小升程位置,发动机将不能冷启动。

需要说明的是,连续可变气门升程机构发生故障而导致自动改变气门升程功能失效包括但不限于连续可变气门升程机构的电控元器件故障和/或电机三相线路中至少一相失效,即:连续可变气门升程机构(CVVL)的电控元器件及电机三相线路中某一相失效。

因此,本发明实施例的连续可变气门升程机构的控制方法可以在连续可变气门升程机构发生故障的情况下,能够保证车辆启动成功并且可以行驶。

如图4所示,根据本发明一个实施例的连续可变气门升程机构的控制方法包括如下步骤

S401:当连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,控制连续可变气门升程机构进入跛行模式。其中,导致自动改变气门升程功能失效的连续可变气门升程机构的故障包括:连续可变气门升程机构的电控元器件故障和/或电机三相线路中至少一相失效。

也就是说,连续可变气门升程机构的电控元器件及电机三相线路中某一相失效,连续可变气门升程机构的常规控制策略失效,此时,将会触连续可变气门升程机构的跛行模式。

S402:驱动连续可变气门升程机构强制向最大升程位置动作。当触连续可变气门升程机构的跛行模式之后,电机将强制驱动连续可变气门升程机构强制向最大升程位置动作。

S403:当连续可变气门升程机构至最大升程位置时触发自锁功能,以将连续可变气门升程机构自锁在最大升程位置。

连续可变气门升程机构设置为在最大升程位置时连续可变气门升程机构的滚轮组件对偏心轮的合力方向过偏心轴的轴心,以在跛行模式下连续可变气门升程机构至最大升程位置时自锁在最大升程位置。

连续可变气门升程机构100处于最大升程位置,可以为发动机启动做准备。具体地,如图3所示,连续可变气门升程机构100设置为在最大升程位置时连续可变气门升程机构100的滚轮组件对偏心轮的合力F的方向过偏心轴3的轴心,以在自学习成功后,将连续可变气门升程机构100自锁在最大升程位置。偏心轮在最大升程处型线压力角大于摩擦角,且滚轮组件对偏心轮的合力方向过偏心轴3的轴心,这样,偏心轮与滚轮组件形成自锁,使连续可变气门升程机构100自锁在最大升程位置,以便发动机可以顺利启动,尤其冷启动能够顺利进行。

进一步地,将连续可变气门升程机构自锁在最大升程位置之后,还包括:对节气门的开度进行控制,以使车辆能够启动及行驶。即:在进入跛行模式之后,首先将连续可变气门升程机构自锁在最大升程位置,以便发动机可以顺利启动。然后,可以通过驾驶员等对节气门的开度进行控制,以控制车辆负荷,便于驾驶员将车辆顺利启动后开往维修站进行维修,不至于发动机无法启动导致车辆无法行驶。即:跛行模式下,通过节气门控制负荷大小,车辆可以进行正常冷启动和加速、减速、怠速等,保证车辆可以开到维修地点进行维修。

根据本发明实施例的连续可变气门升程机构的控制方法,当连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,控制连续可变气门升程机构进入跛行模式,将连续可变气门升程机构强制向最大升程位置动作,并到达最大升程位置后自锁在最大升程位置,从而使车辆可以顺利的启动和行驶,方便驾驶员将车辆开到维修地点进行维修,提升维修效率。

图5是根据本发明一个实施例的连续可变气门升程机构的控制系统的结构框图。如图5所示,根据本发明一个实施例的连续可变气门升程机构的控制系统500,包括:模式切换模块510和驱动模块520。

其中,模式切换模块510用于当所述连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,控制所述连续可变气门升程机构进入跛行模式。驱动模块520用于驱动所述连续可变气门升程机构强制向最大升程位置动作,并当所述连续可变气门升程机构至最大升程位置时触发自锁功能,以将所述连续可变气门升程机构自锁在最大升程位置。

在本发明的一个实施例中,导致自动改变气门升程功能失效的连续可变气门升程机构的故障包括:连续可变气门升程机构的电控元器件故障和/或电机三相线路中至少一相失效。

在本发明的一个实施例中,所述连续可变气门升程机构设置为在最大升程位置时所述连续可变气门升程机构的滚轮组件对所述偏心轮的合力方向过所述偏心轴的轴心,以在所述跛行模式下所述连续可变气门升程机构至最大升程位置时自锁在所述最大升程位置。

在本发明的一个实施例中,还包括:控制模块(图5中没有示出),控制模块用于在所述连续可变气门升程机构自锁在最大升程位置之后,对节气门的开度进行控制,以使车辆能够启动及行驶。

根据本发明实施例的连续可变气门升程机构的控制系统,当连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,控制连续可变气门升程机构进入跛行模式,将连续可变气门升程机构强制向最大升程位置动作,并到达最大升程位置后自锁在最大升程位置,从而使车辆可以顺利的启动和行驶,方便驾驶员将车辆开到维修地点进行维修,提升维修效率。

需要说明的是,本发明实施例的连续可变气门升程机构的控制系统的具体实现方式与本发明实施例的连续可变气门升程机构的控制方法的具体实现方式类似,具体请参见方法部分的描述,为了减少冗余,此处不做赘述。

进一步地,本发明的实施例公开了一种车辆,设置有如上述任意一个实施例中的连续可变气门升程机构的控制系统。该车辆当连续可变气门升程机构发生故障而导致自动改变气门升程功能失效时,控制连续可变气门升程机构进入跛行模式,将连续可变气门升程机构强制向最大升程位置动作,并到达最大升程位置后自锁在最大升程位置,从而使车辆可以顺利的启动和行驶,方便驾驶员将车辆开到维修地点进行维修,提升维修效率。

另外,根据本发明上述实施例的车辆的其它构成以及作用对于本领域的普通技术人员而言都是已知的,为了减少冗余,此处不做赘述。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1