叶片翼梁帽的非平面轮廓剖面的拉挤纤维复合材料条带的制作方法

文档序号:18467337发布日期:2019-08-17 02:45阅读:195来源:国知局
叶片翼梁帽的非平面轮廓剖面的拉挤纤维复合材料条带的制作方法

本发明总体上涉及风力涡轮机(也称为风轮机),并且具体而言,涉及风力涡轮机转子叶片的翼梁帽(sparcap)。更具体而言,本发明涉及:拉挤单向纤维复合材料条带;具有这样的拉挤单向纤维复合材料条带的堆叠的翼梁帽;以及用于制造具有这样的拉挤单向纤维复合材料条带的翼梁帽的方法。



背景技术:

风力涡轮机和风力叶片的尺寸不断增加,并且因此,增加了在这样的风力涡轮机转子叶片的制造过程期间要克服的挑战。目前,用于制造风力涡轮机转子叶片(在下文中也称为叶片)的优选材料是通常称为“复合材料”的玻璃纤维和/或碳纤维增强塑料,该玻璃纤维和/或碳纤维增强塑料通常通过手糊成型(handlay-up)和树脂注射模制工艺来处理。叶片的较大的剖面、较长的翼展(span)、较厚的结构部件使得树脂流动的设计和优化非常复杂,并且因此,造成了制造错误的风险增加,所述制造误差例如横向皱纹、树脂浸渍差、气穴、大面积干纤维等等。这些错误可能在很宽的区域上延伸,可能非常耗时并且维修成本非常高,并且可能极大地影响最终产品、即所制造的用于风力涡轮机的叶片的成本和可靠性。此外,复合材料结构的手糊成型变得非常耗时,特别是随着翼梁帽的制造中所需的厚度和层数的增加。

风力涡轮机工业的近期发展已导致主要在翼梁帽构造中引入拉挤单向纤维复合材料条带,即具有单向纤维(ud)增强的复合材料的拉挤条带,该翼梁帽构造代表转子叶片的主要承载部件。

图3示出了常规已知的转子叶片210(在下文中也称为常规叶片210)的翼型部段的剖视图,该叶片210具有在常规叶片210的翼梁帽230中堆叠的拉挤条带235。图5中示意性地描绘了这些结构元件中的一个,即常规已知的拉挤条带235。常规已知的拉挤条带235(在下文中也称为常规条带235)由平面表面限定,并且大致类似于纵向、即沿常规条带235的纵向轴线299为长形的长方体,例如条或板,并且当垂直于纵向轴线299剖切时具有矩形的剖面。图5的这种常规条带235被堆叠在彼此顶上,以形成常规条带235的堆叠。

常规条带235由第一纵向延伸的侧面251和第二纵向延伸的侧面252以及由第一纵向延伸的边缘261和第二纵向延伸的边缘262限定,从而类似于条或板的形状。常规条带235在第一侧面251和第二侧面252上具有第一邻接表面251a和第二邻接表面252a。第一邻接表面251a和第二邻接表面252a通常受第一外围表面251p和第二外围表面252p限制。第一邻接表面251a和第二邻接表面252a沿常规条带235的竖直轴线297隔开,并且第一边缘261和第二边缘262沿条带235的横向轴线隔开。所述轴线、即纵向轴线299、竖直轴线297和横向轴线296相互垂直。第一邻接表面251a和第二邻接表面252a可以覆盖有剥离层片层236。剥离层片层236的表面237与外围表面251p、252p齐平。剥离层片层236在堆叠常规条带235之前被移除。然后,该堆叠被树脂灌注以形成常规的翼梁帽230。

如图3中所示,常规叶片210包括壳体21。壳体21通常由两个半壳体制成,即背风壳体21a和迎风壳体21b,它们二者通常由玻璃纤维增强塑料模制而成。这通常被称为“蝶形叶片”,这是因为它具有两个单独的半壳体21a、21b,该两个单独的半壳体21a、21b随后彼此组装以形成完整的壳体21,例如这两个半壳体21a、21b被胶合在一起以形成壳体21。替代性地,叶片210可包括一体形成的壳体21,即壳体21不具有两个半壳体21a、21b,而是如在西门子的公知的整体叶片构造中那样形成单件。部分的壳体21具有夹层板构造,并且包括夹在壳体21的内、外表面或面板之间的轻质材料的芯(未示出),所述轻质材料例如聚氨酯泡沫、pet泡沫、轻木、胶合板等。在叶片210内的是叶片腔15。叶片210可包括一个或多个翼梁帽230,其通常成对,例如一对翼梁帽230,即翼梁帽230a和230b,或者两对翼梁帽230,即四个翼梁帽(未示出)。每对翼梁帽230、即翼梁帽230a、230b通过也称为腹板34的抗剪腹板34来支撑,该抗剪腹板34与翼梁帽230a、230b一起形成通常已知的工字梁形状。翼梁帽230a、230b通常部分或完全地嵌入壳体21中。每对中的一个翼梁帽230被嵌入背风壳体21a或与之整合,并且该对中的另一个翼梁帽230被嵌入迎风壳体21b或与之整合。

翼梁帽230具有例如条或板之类的大致长形的长方体形状,该长方体形状在叶片210的沿翼展方向上为长形,即换句话说,翼梁帽230当垂直于叶片210的翼展剖切时具有矩形剖面。常规已知的翼梁帽230由图5的预制的常规条带235的堆叠构成。常规条带235是碳纤维增强塑料的拉挤条带,并且是基本上平坦的并具有矩形剖面。

在涡轮叶片210的制造期间,使用树脂灌注工艺。壳体21的各种层压层通常通过手糊(hand-lay)来铺叠在模腔中,然后常规条带235被堆叠在要形成翼梁帽230的位置,即散置在背风壳体21a的部分和迎风壳体21b的部分之间,并且真空被施加于模腔。树脂同时从远侧或随后被引入到模具中。真空压力使树脂在层压层和堆叠的条带235之上和周围流动,并且灌注到铺叠层之间以及条带235之间的间隙空间中。最后,树脂灌注的叠层被固化,以硬化树脂,并且将各层压层和条带235结合在一起并结合到彼此,以形成叶片210。

如图3中和示意性地描绘了图3的区域r的详细视图的图4中已描绘的,在条带235和壳体21的形状、即剖面几何形状之间存在差异。条带235是平坦的,即具有平面表面251、252,而壳体21是弯曲的,特别是形成翼梁帽230的最外层和最内层的条带235具有不同的剖面几何形状,即是平面或平坦的,而形成翼梁帽230的这些条带235附近的壳体21是弯曲的。该差异可导致在如图4的区域r2中所示的两个几何形状之间的界面处的树脂富集区域,和/或导致壳体21从拉挤的常规条带235的角部的“刺破(puncturing)”,如在图4的区域r1和r3中示意性地示出的。第一缺陷,即如区域r2中所示的树脂富集区域的形成,可导致翼梁帽230与叶片壳体21之间的界面处的裂纹萌生,该裂纹萌生随后可发展成纵向裂纹和/或转子叶片结构的分层。第二缺陷,即叶片壳体21被常规条带235的角部的刺破,当在树脂灌注期间或之前从真空袋施加压力时,可导致叶片壳体纤维中的纵向褶皱、树脂流动的阻塞和/或叶片壳体纤维切断。

因此,简而言之,在翼梁帽230的制造期间堆叠常规条带235会导致有问题的区域,例如如图4中所示的区域r1、r3和/或区域r2。因此,需要一种技术,其确保至少部分地避免树脂富集区域r2的形成和/或区域r1、r2中壳体21的刺破。



技术实现要素:

本发明的目的在于提供一种技术,其确保至少部分地避免树脂富集区域r2的形成和/或区域r1、r2中壳体21的刺破。

上述目的通过根据本技术的权利要求1的拉挤纤维复合材料条带,通过根据本技术的权利要求8的翼梁帽,通过根据本技术的权利要求9的风力涡轮机转子叶片,以及通过根据本技术的权利要求10的用于制造翼梁帽的方法来实现。在从属权利要求中提供了本技术的有利实施例。

在本技术的第一方面,提出了一种拉挤纤维复合材料条带。在下文中也称为条带的拉挤纤维复合材料条带用于与一个或多个类似的条带堆叠,以形成风力涡轮机转子叶片的翼梁帽,所述风力涡轮机转子叶片在下文中也称为叶片。该条带具有由相互对置和纵向延伸的第一侧面和第二侧面以及由第一纵向边缘和第二纵向边缘限定的基本上恒定的剖面。该第一侧面包括第一邻接表面,并且该第二侧面包括第二邻接表面。在下文中一起称为邻接表面的第一邻接表面和第二邻接表面具有非平面轮廓。当所述条带与类似的条带堆叠时,在准备树脂灌注和随后固化树脂以将所述条带与其他类似的条带结合以形成翼梁帽时,与具有平坦或平面的邻接表面的常规已知的条带被嵌入到壳体中时相比,所述条带的邻接表面的非平面轮廓或形状避免了在风力涡轮机转子叶片的壳体和所述条带的界面处形成树脂富集的袋(pocket)或区域。此外,所述邻接表面的非平面轮廓还确保了条带的剖面几何形状基本上与壳体的嵌入条带的区域的剖面几何形状匹配,并且因此,与具有平坦或平面的邻接表面的常规已知的条带相比,至少部分地避免了壳体被条带的角部的刺破。

邻接表面的轮廓(profile)意指表面的外形、廓形、廓型(contour)、形状。当对表面进行整体观察时,邻接表面的轮廓由表面的曲率来表示。

所述拉挤纤维复合材料条带是具有单向纤维(ud)增强的复合材料的拉挤条带。该拉挤条带具有通常沿条带纵向延伸并且因此是单向的由玻璃、碳、芳族聚酰胺和/或玄武岩制成的结构纤维,而将纤维一起保持在条带中并保护它们免受外部物质影响的基质可以是但不限于环氧树脂、乙烯基酯、聚氨酯、聚酯等。

在所述条带的不同实施例中,所述邻接表面分别具有弯曲的轮廓、v形轮廓和开多边形轮廓。在这些形状或轮廓的情况下,条带可以被堆叠成使得条带在几何形状上与整合条带、即形成翼梁帽的区域中的壳体的形状对准或一致。

在所述条带的另一个实施例中,第一侧面还包括两个外围表面区域,这两个外围表面区域各自纵向延伸。第一邻接表面被限制在第一侧面的外围表面区域之间,并且通过第一侧面的外围表面区域与第一纵向边缘和第二纵向边缘分开。类似地,第二侧面还包括两个外围表面区域,这两个外围表面区域各自纵向延伸。第二邻接表面被限制在第二侧面的外围表面区域之间,并且通过第二侧面的外围表面区域与第一纵向边缘和第二纵向边缘分开。在该实施例中,所述外围表面区域中的至少一个被倒角,即包括倒角凹部。在所述条带的另一个实施例中,第一侧面和第二侧面中的至少一个的外围表面区域都被倒角。由于倒角,促进了到所述邻接表面的树脂流动。

在所述条带的另一个实施例中,所述条带包括第一邻接表面上的第一剥离层片层和/或第二邻接表面上的第二剥离层片层。该剥离层片层至少部分地覆盖该剥离层片层存在于其上的邻接表面。该剥离层片层存在于具有非平面轮廓的邻接表面上。可以在堆叠条带之前以及在执行树脂灌注之前移除一个或多个剥离层片,并且该一个或多个剥离层片的移除在移除了剥离层片的邻接表面上提供了粗糙化的表面。

在本技术的第二方面,提出了一种用于风力涡轮机转子叶片的翼梁帽。该翼梁帽包括多个拉挤纤维复合材料条带,其与一个或多个类似的条带堆叠以形成条带的堆叠。这些条带中的每一个如上文针对本技术的第一方面所述。在堆叠中,条带被定向成使得条带的邻接表面中的一个与嵌入条带的区域中的壳体的形状对准或一致,即换句话说,条带被定向成使得条带的廓型大致或基本上遵循壳体在嵌入条带的区域中的廓型。

在本技术的第三方面,提出了一种风力涡轮机转子叶片。在下文中也称为叶片的该风力涡轮机转子叶片具有沿叶片的翼展方向纵向延伸的至少一个翼梁帽。该翼梁帽包括多个拉挤纤维复合材料条带,其与一个或多个类似的条带堆叠。这些条带中的每一个都是根据如上文描述的本技术的第一方面。这些条带中的每一个被定向成使得条带的第一侧面和第二侧面沿叶片的翼展方向纵向延伸并且在叶片的翼面向方向上隔开,并且条带的第一边缘和第二边缘沿叶片的翼展方向纵向延伸,并且在叶片的弦向方向上隔开。

在本技术的第四方面,提出了一种用于制造用于风力涡轮机转子叶片的翼梁帽的方法。在本技术的该方法中,提供多个拉挤纤维复合材料条带。这些条带中的每一个都是根据上文所述的本技术的第一方面。然后,这些条带被堆叠在模具中以形成条带的堆叠。这些条带被堆叠成使得条带的廓型大致或基本上遵循壳体在嵌入或堆叠条带的区域中的廓型。其后,在所述方法中,树脂被供应到所述堆叠。最后,在所述方法中,树脂被固化,以将相邻的条带结合在一起,并且将壳体与条带结合。

在所述方法的一个实施例中,所述条带中的一个或多个包括至少部分地覆盖第一邻接表面的第一剥离层片层和/或至少部分地覆盖第二邻接表面的第二剥离层片层。该剥离层片层存在于具有非平面轮廓的表面上。在所述方法中,在将条带堆叠在模具中以形成条带的堆叠之前,第一剥离层片和/或第二剥离层片从它们相应的邻接表面被移除。

附图说明

通过结合附图参考对本技术的实施例的以下描述,本技术的上述属性及其他特征和优点以及实现它们的方式将变得更加显而易见,并且将更好地理解本技术本身,附图中:

图1示意性地描绘了具有风力涡轮机转子叶片的风力涡轮机,在该风力涡轮机转子叶片中可以结合由本技术的拉挤纤维复合材料条带制成的翼梁帽;

图2示意性地描绘了风力涡轮机转子叶片,其中可以结合由本技术的拉挤纤维复合材料条带制成的翼梁帽;

图3描绘了常规已知的涡轮叶片的翼型件的剖视图,该翼型件具有由常规已知的拉挤条带制成的常规已知的翼梁帽;

图4描绘了图3的区域r的详细视图;

图5描绘了用于制造常规已知的翼梁帽的常规已知的拉挤条带;

图6示意性地描绘了本技术的拉挤纤维复合材料条带的一个示例性实施例的透视图;

图7示意性地描绘了图6的拉挤条带的剖视图,其描绘了条带的邻接表面的非平面轮廓;

图8示意性地描绘了彼此堆叠以便制造本技术的翼梁帽的两个图6的拉挤纤维复合材料条带的示例性实施例的剖视图;

图9示意性地描绘了相对于意在形成翼梁帽的风力涡轮机转子叶片的壳体的区域彼此堆叠的条带的剖视图,所述条带具有拥有弯曲的轮廓的邻接表面;

图10示意性地描绘了相对于意在形成翼梁帽的风力涡轮机转子叶片的壳体的区域彼此堆叠的条带的剖视图,所述条带具有拥有v形轮廓的邻接表面;

图11示意性地描绘了相对于意在形成翼梁帽的风力涡轮机转子叶片的壳体的区域彼此堆叠的条带的剖视图,所述条带具有拥有开多边形轮廓的邻接表面;

图12示意性地描绘了根据本技术的各方面的本技术的拉挤条带的示例性实施例的透视图,其相应地描绘了第一邻接表面和第二邻接表面上的第一剥离层片层(peelplylayer)和第二剥离层片层;

图13描绘了具有由本技术的条带制成的翼梁帽的图2的风力涡轮机转子叶片的翼型件的示例性实施例的剖视图;以及

图14呈现了描绘根据本技术的各方面的用于制造用于风力涡轮机转子叶片的翼梁帽的方法的流程图。

具体实施方式

在下文中,详细地描述了本技术的上述和其他特征。参照附图描述了各种实施例,其中相同的附图标记始终用于表示相同的元件。在下面的描述中,出于解释的目的,阐述了许多具体细节以便提供对一个或多个实施例的透彻理解。可以注意到,所示实施例旨在解释而非限制本发明。可能显而易见的是,可以在没有这些具体细节的情况下实践这些实施例。

可以注意到,在本公开中,术语“第一”、“第二”、“第三”等在本文中仅用于促进论述,并且除非另有指示,否则不具有特定的时间或按时间顺序的意义。

图1示出了本技术的风力涡轮机100的示例性实施例。风力涡轮机100包括塔架120,其被安装在基座(未示出)上。机舱122被安装在塔架120的顶部上,并且可借助于例如偏摆轴承和偏摆马达之类的偏摆角调整机构121相对于塔架120旋转。偏摆角调整机构121用于使机舱122围绕称为偏摆轴线的竖直轴线(未示出)旋转,该竖直轴线与塔架120的纵向延伸部对准。偏摆角调整机构121在风力涡轮机100的操作期间使机舱122旋转,以确保机舱122与风力涡轮机100所经受的当前风向适当地对准。

风力涡轮机100还包括转子110,其具有至少一个转子叶片10,并且通常具有三个转子叶片10,但是在图1的透视图中,仅两个转子叶片10可见。图2中示意性地描绘了转子叶片10中的一个。转子110可围绕旋转轴线110a旋转。转子叶片10通常被安装在驱动轴环112处,该驱动轴环112也称为轮毂112,该转子叶片10在下文中也称为叶片10,或者当提及叶片10中的一个时称为叶片10。轮毂112被安装成借助于主轴承(未示出)相对于机舱122可旋转。轮毂112可绕旋转轴线110a旋转。叶片10中的每一个相对于旋转轴线110a径向延伸并且具有翼型部段20。

在轮毂112和每个转子叶片10之间设置有叶片调整机构116,以便通过使相应的叶片10绕叶片10的纵向轴线(未示出)旋转来调整叶片10的叶片桨距角。每个叶片10的纵向轴线与相应的叶片10的纵向延伸部基本上平行地对准。叶片调整机构116用于调整相应的叶片10的叶片桨距角。

风力涡轮机100包括主轴125,其将转子110、特别是轮毂112可旋转地耦接到收容在机舱122内的发电机128。轮毂112被连接到发电机128的转子。在风力涡轮机100的示例性实施例(未示出)中,轮毂112被直接连接到发电机128的转子,因此风力涡轮机100被称为无齿轮的直接驱动风力涡轮机100。作为替代,如图1的示例性实施例中所示,风力涡轮机100包括设置在机舱122内的齿轮箱124,并且主轴125经由该齿轮箱124将轮毂112连接到发电机128,由此风力涡轮机100被称为齿轮传动风力涡轮机100。齿轮箱124被用于将转子110的转数转换成主轴125的较高转数,并且因此,转换成发电机128的转子的较高转数。此外,设置制动器126以便例如在非常强风的情况下和/或在突发事件的情况下停止风力涡轮机100的操作或降低转子110的旋转速度。

风力涡轮机100还包括控制系统150,其用于以期望的操作参数来操作风力涡轮机100,例如以期望的偏摆角,以期望的叶片桨距,以转子110的期望的旋转速度等等。执行对操作参数的控制和/或调整以在现有条件下,例如在现有的风况和其他天气条件下,获得优化的发电。

风力涡轮机100还可包括不同的传感器,例如旋转速度传感器143、功率传感器144、角度传感器142等,这些不同的传感器向风力涡轮机100的控制机构150或其他部件提供输入,以优化风力涡轮机100的操作。

此外,如图2中所示,转子叶片10还包括具有根部11a的根部部段11和翼型部段20。通常,转子叶片10包括处于根部部段11和翼型部段20之间的过渡部段90。在下文中也称为翼型件20的翼型部段20包括具有末端12a的末端部段12。根部11a和末端12a被转子叶片10的翼展16分开,该翼展16沿循转子叶片10的形状。沿翼展16或平行于翼展16的方向被称为翼展方向16d。包括其中的末端12a的末端部段12当从末端12a测量时从末端121朝向根部11a延伸直到叶片10的总长度的大约33.3%(百分比)、即三分之一的翼展位置。末端12a在末端部段12内朝向根部11a延伸直到大约一米的翼展位置。转子叶片10包括具有前缘14a的前缘部段14和具有后缘13a的后缘部段13。后缘部段13围绕后缘13a。类似地,前缘部段14围绕前缘14a。

在垂直于翼展16的每个翼展位置处,可以限定连接前缘14a和后缘13a的弦线17。沿弦线17或平行于弦线17的方向被称为弦向方向17d。图2描绘了处于两个不同的翼展位置处的两个这样的弦线17。此外,与翼展方向16d和弦向方向17d相互垂直的方向被称为翼面向方向(flap-wisedirection)9d。转子叶片10具有肩部18,其是转子叶片10的弦线17具有最大弦长的部段,即在图2的示例中处于朝向根部11a描绘的弦线17处。

在风力涡轮机100中,叶片10中的一个或多个包括根据本技术的图13中所示的一个或多个翼梁帽30。根据本技术,本技术的翼梁帽30包括这样的翼梁帽30的部件,即如图6至图12中所示的拉挤条带1。本技术还提出了如图14中所示的用于使用本技术的拉挤条带1来制造这样的翼梁帽30的方法500。在下文中,参照图6至图14结合图1和图2来进一步解释本技术。可以注意到,本技术的转子叶片10仅由于翼梁帽30和拉挤条带1而与如图3中所示的常规已知的转子叶片210不同,并且转子叶片10的其他部件与上文参照图3针对常规叶片210所述的相同,所述部件例如腹板34、背风壳体21a和迎风壳体21b等。本技术与常规已知的技术相比之间的区别在于区别于常规条带235的结构的拉挤条带1的几何结构,以及在于区别于由常规条带235形成的翼梁帽230的通过使用拉挤条带1而产生的翼梁帽30。

图6和图7示出了本技术的拉挤条带1的示例性实施例。如前所述,在下文中也称为条带1的拉挤条带1为拉挤单向纤维复合材料条带。图6至图13中所描绘的条带1是具有单向纤维(ud)增强的复合材料的拉挤条带,即条带1具有通常沿条带1纵向延伸并且因此是单向的由玻璃、碳、芳族聚酰胺和/或玄武岩制成的结构纤维,而将纤维一起保持在条带1中并保护纤维免受外部物质影响的基质可以是但不限于环氧树脂、乙烯基酯、聚氨酯、聚酯等。每个条带1通过拉挤成型形成,该拉挤成型是类似于挤出的连续过程,其中例如玻璃纤维或碳纤维之类的纤维被拉动通过液体树脂的供应装置,即通过将纤维保持在一起的基质材料,以及通过将条带1成形为根据本技术的形状的模。然后,树脂、即基质材料被固化,例如通过在开放的腔室中加热,或者通过采用加热的模,该加热的模当条带1被拉挤时固化树脂。

条带1被用于形成图13的翼梁帽30,这是通过将条带1与一个或多个类似的条带1堆叠,以形成风力涡轮机100的转子叶片10的翼梁帽30。如图6和图7中所示,条带1具有纵向轴线99,其大致沿条带1在制造时被拉挤的方向延伸,并且该方向也是条带1的纤维(未示出)延伸的方向。条带1具有第一侧面51和与第一侧面51相对的第二侧面52以及第一边缘61和与第一边缘61相对的第二边缘62。条带1具有基本上恒定的剖面,即条带1在沿纵向轴线99的位置处维持其剖面的形状和尺寸。条带1由第一和第二相互对置且纵向延伸的侧面51、52以及由第一纵向边缘和第二纵向边缘61、62限定,即侧面51、52以及边缘61、62大致平行于条带1的纵向轴线99延伸。

第一侧面51包括第一邻接表面51a。第一邻接表面51a可以是第一侧面51的整个表面,即覆盖第一边缘61和第二边缘62之间的整个宽度范围(expanse)。替代性地,第一邻接表面51a可以是第一侧面51的整个表面的主要部分,并且可以受第一侧面51的朝向第一边缘61和第二边缘62的边界或外围区域51p、51p'或外围表面区域51p、51p'限制,或者换句话说,第一侧面51的表面具有三个区域,即两个外围表面区域51p、51p'和夹在这两个外围表面区域51p、51p'之间的第一邻接表面51a。外围表面52p、52p'将第二邻接表面52a与第一边缘61和第二边缘62分开。沿第一侧面51并垂直于纵向轴线99测量的每个外围表面区域51p、51p'的宽度、即每个外围表面区域51p、51p'的宽度范围可以在沿第一侧面51并垂直于纵向轴线99测量的第一边缘61和第二边缘62之间的距离的2%和10%之间。具有外围区域51p、51p'的优点在于,外围区域51p、51p'的存在允许在拉挤成型过程期间在第一侧面51的表面上结合剥离层片(在图6和图7中未示出)。当剥离层片在拉挤成型过程期间被结合在第一侧面51的表面上时,被该剥离层片覆盖的第一侧面51的表面的面积或区域是第一邻接表面51a,并且未被该剥离层片覆盖的第一侧面51的表面的面积或区域是外围表面区域51p、51p'。当剥离层片被结合在第一侧面51的表面上时,该剥离层片的表面与外围表面区域51p、51p'齐平。

类似地,第二侧面52包括第二邻接表面52a。第二邻接表面52a可以是第二侧面52的整个表面,即覆盖第一边缘61和第二边缘62之间的整个宽度范围。替代性地,第二邻接表面52a可以是第二侧面52的整个表面的主要部分,并且可以受第二侧面52的朝向第一边缘61和第二边缘62的边界或外围区域52p、52p'或外围表面区域52p、52p'限制,或者换句话说,第二侧面52的表面具有三个区域,即两个外围表面区域52p、52p'和夹在这两个外围表面区域52p、52p'之间的第二邻接表面52a。外围表面52p、52p'将第二邻接表面52a与第一边缘61和第二边缘62分开。沿第二侧面52并垂直于纵向轴线99测量的每个外围表面区域52p、52p'的宽度、即每个外围表面区域52p、52p'的宽度范围可以在沿第二侧面52并垂直于纵向轴线99测量的第一边缘61和第二边缘62之间的距离的2%和10%之间。具有外围区域52p、52p'的优点在于,外围区域52p、52p'的存在允许在拉挤成型过程期间在第二侧面52的表面上结合剥离层片(在图6和图7中未示出)。当剥离层片在拉挤成型过程期间被结合在第二侧面52的表面上时,被该剥离层片覆盖的第二侧面52的表面的面积或区域是第二邻接表面52a,并且未被该剥离层片覆盖的第二侧面52的表面的面积或区域是外围表面区域52p、52p'。当剥离层片被结合在第二侧面52的表面上时,该剥离层片的表面与外围表面区域52p、52p'齐平。

根据本技术的各方面,第一邻接表面51a和第二邻接表面52a具有非平面轮廓。在下文中一起称为邻接表面51a、52a的第一邻接表面51a和第二邻接表面52a的轮廓在几何形状上相似,即如果第一邻接表面51a是弯曲的,则第二邻接表面52a类似地弯曲,或者如果第一邻接表面51a是v形的,则第二邻接表面52a是类似地v形,依此类推。如本文所用的“非平面”意味着不形成平坦的平面或平面表面。

图6和图7示出了由相互垂直的纵向轴线99、横向轴线96和竖直轴线97形成的三轴坐标系,以进一步解释邻接表面51a、52a的非平面轮廓。第一边缘61和第二边缘62沿横向轴线96隔开,而第一邻接表面51a和第二邻接表面52a沿竖直轴线97隔开,这还限定了条带1的厚度。如在图6和图7中可以看到的,邻接表面51a、52a不平行于横向轴线96,并且因此,不形成平坦的平面。此外,邻接表面51a、52a不平行于由横向轴线96和纵向轴线99形成的平面,即换句话说,邻接表面51a、52a中的每一个相互不平行于横向轴线96和纵向轴线99。通过将示出了常规条带235的图5与描绘了本技术的条带1的图6进行比较,来进一步解释常规条带235与本技术的条带1的几何形状之间的差异。如从图5中可以看到的,常规条带235的邻接表面251a、252a平行于常规条带235的横向轴线296,或者换句话说,相互平行于常规条带235的横向轴线296和纵向轴线299。

条带1的邻接表面51a、52a的非平面轮廓可以通过邻接表面51a、52a来实现,该邻接表面51a、52a如图6至图9中所描绘的是弯曲的,或者可以是如图10中所描绘的v形,或者可以是如图11中所描绘的开多边形。当为开多边形时,条带1在形状上是棱柱形的。

除了具有拥有非平面轮廓的邻接表面之外,条带1还可以包括倒角凹部3,如图7和图8中所描绘的。倒角凹部3纵向延伸,即沿纵向轴线99延伸。倒角凹部3可以存在于第一侧面51和第二侧面52中的任一者或两者的外围表面区域51p、51p'中。任何侧面、即第一侧面51和/或第二侧面52的外围表面区域51p、51p'中的一个或两个可以被倒角。倒角凹部3是邻接表面51a、52a与第一边缘61和第二边缘62之间的过渡边缘,并且因此,当倒角凹部3被结合在外围表面区域51p、51p'中时,第一边缘61和第二边缘62不垂直于外围表面区域51p、51p'对准。

图12描绘了条带1的又一个实施例。在该实施例中,条带1包括第一邻接表面51a上的第一剥离层片层36和/或第二邻接表面52a上的第二剥离层片层38。剥离层片层36、38至少部分地覆盖剥离层片层36、38存在于其上的邻接表面51a、52a。剥离层片层36、38的表面37与条带1的侧面51、52的外围区域51p、51p'、52p、52p'的表面齐平。在如图12中所描绘的优选实施例中,剥离层片层36延伸到倒角凹部3。因此,在于叶片10的制造期间移除剥离层片层36、38并注入树脂的情况下,促进了从倒角凹部3进入到邻接表面51a、52a中的树脂流动。

图8至图11示出了通过将条带1放置在另一条带1的顶部上而形成的堆叠32。可以注意到,在图13至图14中以及在参考所描述的附图的定向的本技术的其他附图中使用了诸如“顶”、“底”、“前”、“后”之类的方向术语。本发明的部件可以沿多种不同的定向来定位。因此,所述方向术语用于说明的目的而决不是限制性的。例如,条带1的堆叠可以是并排的而不是一个在另一个顶部上。还可以注意到,尽管在图8至图10的堆叠中仅描绘了两个条带1,并且在图11中仅描绘了三个条带1,但是通常,堆叠中条带1的数量可以更大,例如在4个和12个之间或更多。待堆叠的条带1的数量取决于许多因素,例如,条带1的厚度、翼梁帽30的期望厚度等。图8的堆叠32示出了堆叠的两个相同的图7的条带1。如可以看到的,两个条带1的邻接表面51a、52a都是非平面的。图9、图10和图11示出了相对于风力涡轮机转子叶片10的壳体21的嵌入条带1以形成翼梁帽30的区域的堆叠的条带1。如在图9至图11中可以看到的,条带1以如下方式堆叠,即:使得条带1的形状或廓型大致与风力涡轮机转子叶片10的壳体21的嵌入条带1以形成翼梁帽30的区域的形状或廓型一致或对准。如通过图4与图9、图10和图11的比较可以看到的,由于条带1的非平面轮廓,在本技术中至少部分地避免了与区域r1、r2和r3类似的区域的形成。

图14描绘了流程图,其示出了用于制造用于风力涡轮机转子叶片10的翼梁帽30、即翼梁帽30a、30b中的一个或多个的方法500。在方法500中,在步骤510中提供多个条带1。每个条带1如上文参照图5至图11所述。然后,条带1被堆叠在模具中以形成条带的堆叠。在方法500中,在步骤510之后的步骤530中,条带1如上文参照图8至图11所述的来堆叠。在完成方法500的该阶段之后,模具具有条带1的堆叠32并且具有被放置成形成叶片10的壳体21的多个部分的部件。其后,在方法500中的步骤530之后,在步骤540中,树脂被供应到堆叠32和放置在模具中的壳体21的其他部件。步骤530中的树脂流动可以通过真空辅助树脂传递模塑(vartm)过程来实现。最后,在方法500中,在步骤550中,树脂被固化,以将相邻的条带1结合在一起,并且将条带1与壳体21的部件结合。可以注意到,树脂的供应需要在模具中产生部分体积并泵入树脂等等,然而,这些步骤在通过树脂注入的风力涡轮机叶片制造的领域中是常规已知的,并且因此,为简洁起见在本文中不再进一步详细解释。

当用于方法500的条带1包括如上文参照图12所述的第一剥离层片层36和/或第二剥离层片层38时,方法500的实施例在执行步骤530之前包括步骤520,在该步骤520中,第一剥离层片36和/或第二剥离层片38从它们相应的邻接表面51a、52a被移除。

可以注意到,本技术的条带1被用于如图13中所示的具有所谓的“结构壳体设计”的风力涡轮机叶片10,其中翼梁帽30a、30b被整合或嵌入壳体21、即外壳21的结构内。此外,图13中所描绘的翼梁帽30a、30b的数量仅用于示例性目的,并且本领域技术人员可以理解的是,本技术的叶片10可以具有两个翼梁帽30,即仅一对翼梁帽30,如图13中所示,或者可以具有四个(未示出)或多于四个(未示出)翼梁帽30,例如形成三对不同的翼梁帽30的六个翼梁帽30。

还可以注意到,本技术适用于西门子的公知的“整体叶片”构造,其中与蝶形叶片构造不同,背风壳体和迎风壳体不是分开制造的。在该整体叶片构造中,整个壳体被制造成作为整体壳体的单件,并且因此,不具有分开制造的背风和迎风侧。

虽然已参考某些实施例详细地描述了本技术,但是应当理解,本技术不限于那些具体的实施例。相反,鉴于描述用于实践本发明的示例性模式的本公开,在不脱离本发明的范围和精神的情况下,许多修改和变型对于本领域技术人员来说将是显而易见的。因此,本发明的范围通过所附权利要求而不是通过前面的描述来表示。落入权利要求的等同物的含义和范围内的所有变化、修改和变型都应被认为是处于权利要求的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1