电动燃料泵的制作方法

文档序号:5239465阅读:153来源:国知局
专利名称:电动燃料泵的制作方法
技术领域
本发明涉及电动驱动方式的流体泵,具体涉及一种在车辆用内燃机中将燃料从燃料箱压送到发动机中的电动燃料泵。
背景技术
图5为例如日本专利特公平7-3239号公报中揭示的以往的电动燃料泵的纵剖面图,图6为沿图5的VI-VI线的放大剖面图,图7为泵流路内产生的半径方向负荷分布的说明图,图8为与叶轮所受负荷相对的轴承反作用力的说明图。
图中,1表示泵壳的装配体,该泵壳装配体1由泵壳本体2和罩盖3构成,泵壳装配体1内容置有呈圆板状并沿外周缘部具有叶片部5的叶轮4,并通过后述的中心轴6可旋转地对该叶轮4加以支承。
泵壳装配体1容置有沿叶轮4的叶片部5延伸的圆弧带状的泵流路7,在泵流路7的两端部开口有吸入口8和排出口9。另外,在叶轮4的中心嵌插有电动机15的转子16的中心轴6,通过将其两端分别与泵壳装配体1和支架24配设的轴承17和轴承18可旋转地对转子16加以支承。
泵壳装配体1和端盖19通过电动机15的圆筒状的轭铁20相互连接,在轭铁20的内周部沿环状配设有永磁铁25,在该永磁铁25的内部容置有转子16。另外,在泵壳装配体1和端盖19之间配设有储存由排出口9排出的燃料的液体室21,该液体室21与具有设于端盖19的单向阀22的液体出口23连通,支架24配设有与用于向转子16的铁心(未图示)供给电流的整流子26滑动接合供电用电刷27。
以下说明以往的电动燃料泵的动作。
在上述结构的电动燃料泵中,由于通过电动机15使叶轮4沿顺时针方向旋转驱动(图6),将燃料从吸入口8吸入泵流路7的一端部,该燃料在泵流路7中沿顺时针方向流动的同时升压,从其另一端的排出口9连通液体室21,并经单向阀22由液体出口23排出。
另外,叶轮4的外周缘部在上述升压时在泵流路7内产生因从吸入口8至排出口9逐渐增加的压力分布引起的半径方向负荷分布10(图7),作为其合力对于叶轮4作用半径方向的负荷11(以下称为叶轮负荷11)。其结果,嵌插在叶轮4中的转子16的中心轴6在承受叶轮负荷11的同时,并从可旋转地支承中心轴6的轴承17和18对于中心轴6作用轴承反作用力12、13(图8)。同时,在轴承17和轴承18上作用与上述轴承反作用力12、13方向相反、大小相同的轴承负荷。
在作为车辆用内燃机的燃料泵使用的场合,例如从液体出口23排出燃料时的排出压力为250kPa的情况下,上述叶轮负荷11达到约1kgf,燃料泵的排出压力因供给燃料的车辆用内燃机的效率改进及排气改进等目的而呈逐年增加趋势,与此相应,叶轮负荷也在增加。
以往的电动燃料泵由于采用上述结构,一旦加在轴承17、18上的负荷因叶轮负荷11而增加时,电动机15的耗电即因中心轴6与轴承17、18之间的滑动阻力的增加而增加,作为电动燃料泵的效率则下降。另外,与轴承17、18的中心轴6的接触部还存在磨耗增加的问题。
本发明的目的在于解决上述问题,提供一种通过减少因叶轮负荷引起的轴承负荷而使燃料泵效率下降和轴承磨耗难以产生的电动燃料泵。
发明概述本发明的电动燃料泵具有呈圆板状并沿外周缘部具有叶片部的叶轮,可旋转地支承叶轮并配设有沿叶轮的叶片部延伸的圆弧带状的泵流路和在该泵流路的两端部开口的吸入口和排出口的泵壳装配体,具有嵌插在叶轮中心的中心轴和固定在该中心轴上的铁心的转子,可旋转地支承转子的中心轴的轴承,在转子的外周配设成同心状的一对永磁铁,其特征在于,将永磁铁配置成与叶轮因泵流路内的压力分布所受负荷的方向相对并在转子上产生相反方向的负荷。
另外,在将永磁铁以与叶轮所受负荷的方向垂直的转子的中心线为基准配置在两侧的同时,从使上述负荷产生侧看时,将相对侧的永磁铁的轴向中心配置成比另一方的永磁铁的轴向中心更向叶轮侧偏置。
另外,一方的永磁铁的轴向中心和铁心的轴向中心的偏置量与另一方的永磁铁的轴向中心和铁心的轴向中心的偏置量相同,偏置方向互为相反。
另外,靠近叶轮的永磁铁系通过调整凸部加以定位。
附图简单说明

图1为本发明一实施形态的电动燃料泵的纵剖面图。
图2为沿图1的II-II线的放大剖面图。
图3为沿图1的III-III线的放大剖面图。
图4为沿图3的IV-IV线的主要部分局部侧剖面图。
图5为表示以往的电动燃料泵的纵剖面图。
图6为沿图5的VI-VI线的放大剖面图。
图7为泵流路内产生的半径方向负荷分布的说明图。
图8为与叶轮所受负荷相对的轴承反作用力的说明图。
实施发明的最佳形态图1为本发明一实施形态的电动燃料泵的纵剖面图,图2为沿图1的II-II线的放大剖面图,图3为沿图1的III-III线的放大剖面图,图4为沿图3的IV-IV线的主要部分局部侧剖面图。图中,30、31为永磁铁,32为由磁性体形成的引导永磁铁30、31产生的磁力线的转子16的铁心,1-13、15-24、26和27为与上述背景技术中同样的装置,说明从略。
永磁铁30、31在以与叶轮因泵流路7内的压力分布而沿半径方向所受负荷11(以下称为叶轮负荷11)的方向垂直的转子16的中心线CL为基准配置在两侧(图3)的同时,并配置成永磁铁31的轴向中心31a比另一个永磁铁30的轴向中心30a更偏置于相对叶轮4侧,永磁铁31的轴向中心31a和铁心32的轴向中心32a的偏置量L1与永磁铁30的轴向中心30a和铁心32的轴向中心32a的偏置量L2相同,偏置方向为互为相反方向(图4)。
其次说明这种结构的电动燃料泵的动作。
由于通过电动机15使叶轮4沿顺时针方向旋转驱动(图2)而将燃料由吸入口8吸入泵流路7的一端部,该燃料在泵流路7中沿顺时针方向流动的同时升压,由另一端部的排出口9连通液体室21,并经单向阀22由液体出口23排出(图1)。
另外,叶轮4的外周缘部在上述升压时在泵流路7内产生因从吸入口8至排出口9逐渐增加的压力分布引起的半径方向负荷分布10(图7),叶轮负荷11(图2)作为其合力起作用。其结果,如图4所示,嵌插在叶轮4中的转子16的中心轴6在承受叶轮负荷11的同时,并从可旋转地支承中心轴6的轴承17和18对于中心轴6作用轴承反作用力12、13。同时,在轴承17和轴承18上作用与上述轴承反作用力12、13方向相反、大小相同的轴承负荷。
永磁铁31的轴向中心31a与作为磁性体的铁心32的轴向中心32a相对并配置成仅向叶轮4侧偏置L1,在永磁铁31和铁心32中产生要使轴向中心成为同一位置的力。然而永磁铁31系与轭铁20固定,其结果是向下的磁性吸力F1在铁心32中起作用。
另外,永磁铁30的轴向中心30a与作为磁性体的铁心32的轴向中心32a相对并配置成与永磁铁31的偏置方向相反侧仅偏置L2,在永磁铁30和铁心32中产生要使轴向中心成为同一位置的力。然而永磁铁30系与轭铁20固定,其结果是向上的磁性吸力F2在铁心32中起作用。
上述的结果,是在转子16中连接以作为矢量的F1和F2的终点的线与铁心32的轴向中心线32a的交点O作为回转中心并产生回转力矩M。如以r1为从回转中心O至矢量F1的开始点的距离,以r2为至矢量F2的开始点的距离,则回转力矩M以下式表示M=F1·r1+F2·r2由于回转力矩M,从轴承17对于中心轴6作用有轴承反作用力F4,从轴承18则作用有轴承反作用力F3。如以r3为从回转中心O至轴承18的距离,以r4为至轴承17的距离,则F3、F4与回转力矩M的关系以下式表示F3·r3+F4·r4=M由于永磁铁30、31以与叶轮4因泵流路7内的压力分布而产生的沿半径方向所受叶轮负荷11的方向垂直的转子16的中心线CL为基准配置在两侧,轴承反作用力F3、F4与作为叶轮负荷11的反作用力起作用的轴承反作用力12、13相对,并在同一直线上沿相反方向起作用。
其结果,由于从轴承17、18对于中心轴6作用的轴承反作用力F3、F4而减轻了作为叶轮负荷11的反作用力起作用的轴承反作用力12、13,也减轻了因加在轴承17和轴承18上的叶轮负荷11引起的轴承负荷。
在上述实施例中,由于将与铁心32的轴向中心32a相对的永磁铁30的轴向中心30a的偏置量L2和与铁心32的轴向中心32a相对的永磁铁31的轴向中心31a的偏置量L1相加的偏置量L引起的轴承反作用力F3、F4的大小不同,偏置量L必须相应于叶轮负荷11的大小进行调整,但也可通过在支架24中一体配设有实验求得的偏置量L与同样尺寸的调整凸部24a(图1),当将支架24嵌插在轭铁20中时,即通过调整凸部24a的作用自动地决定永磁铁31的固定位置。另外,在车辆用内燃机的燃料泵情况下,偏置量L例如为0.5-5毫米。
另外,在本实施例中,虽然是将永磁铁31的轴向中心31a与永磁铁30的轴向中心30a相比配置成向叶轮侧偏置,并配置成永磁铁30的轴向中心30a与铁心32的轴向中心32a的偏置量和永磁铁31的轴向中心31a与铁心32的轴向中心32a的偏置量相同,但从产生叶轮负荷11侧看时,由于只要配置成使相反侧的永磁铁的轴向中心向叶轮4侧偏置即产生轴承反作用力F3、F4,从而能与上述实施例一样降低因叶轮负荷11引起的轴承负荷。
并且,在上述实施例中,转子16的铁心32与永磁铁30、31之间的空隙尺寸是均匀形成的,但该空隙尺寸在轴向位置上则是不同的,例如使永磁铁30与铁心32的相对面形成在靠近叶轮4侧处空隙狭窄,如在转子16上产生回转力矩M,则由于产生轴承反作用力F3、F4,故与上述实施例同样能降低因叶轮负荷11引起的轴承负荷。
在上述结构的电动燃料泵中,能使因叶轮负荷引起的轴承负荷降低,防止燃料泵效率降低及轴承磨耗。
工业上利用可能性本发明的电动燃料泵由于具有呈圆板状并沿外周缘部具有叶片部的叶轮,可旋转地支承叶轮并配设有沿叶轮的叶片部延伸的圆弧带状的泵流路和在该泵流路的两端部开口的吸入口和排出口的泵壳装配体,具有嵌插在叶轮中心的中心轴和固定在该中心轴上的铁心的转子,可旋转地支承转子的中心轴的轴承,在转子的外周配设成同心状的一对永磁铁,并将永磁铁配置成与叶轮因泵流路内的压力分布所受负荷的方向相对并在转子上产生相反方向的负荷,故能降低轴承负荷,防止燃料泵效率降低及轴承磨耗。
另外,本发明涉及的虽然是降低加在电动燃料泵的电动机轴承上的轴承负荷,但对于燃料泵以外的电动机中施加在轴承上的负荷也能适用,并同样能降低磨耗。
权利要求
1.一种电动燃料泵,具有呈圆板状并沿外周缘部具有叶片部的叶轮,可旋转地支承所述叶轮并配设有沿所述叶轮的叶片部延伸的圆弧带状的泵流路和在该泵流路的两端部开口的吸入口和排出口的泵壳装配体,具有嵌插在所述叶轮中心的中心轴和固定在该中心轴上的铁心的转子,可旋转地支承所述转子的中心轴的轴承,在所述转子的外周配设成同心状的一对永磁铁,其特征在于,将所述永磁铁配置成与所述叶轮因所述泵流路内的压力分布所受负荷的方向相对并在所述转子上产生相反方向的负荷。
2.如权利要求1所述的电动燃料泵,其特征在于,在将所述永磁铁以与所述叶轮所受负荷的方向垂直的所述转子的中心线为基准配置在两侧的同时,从使所述负荷产生侧看时,将相对侧一方的永磁铁的轴向中心配置成比另一方的永磁铁的轴向中心更向叶轮侧偏置。
3.如权利要求2所述的电动燃料泵,其特征在于,一方的永磁铁的轴向中心与铁心的轴向中心的偏置量和另一方的永磁铁的轴向中心与铁心的轴向中心的偏置量相同,偏置方向互为相反。
4.如权利要求2所述的电动燃料泵,其特征在于,靠近叶轮的永磁铁系通过调整凸部加以定位。
全文摘要
将永磁铁(30,31)配置成以与叶轮(4)因泵流路(7)内的压力分布而所受负荷的方向垂直的转子(16)的中心线为基准配置在两侧的同时,通过将永磁铁(31)的轴向中心(31a)配置成比另一方的永磁铁(30)的轴向中心(30a)更向叶轮(4)侧偏置,并在转子(16)上产生回转力矩,故能获得使加在轴承(17,18)上的负荷降低、并防止泵效率降低及轴承(17,18)磨耗的电动燃料泵。
文档编号F02M37/08GK1326534SQ99813542
公开日2001年12月12日 申请日期1999年9月30日 优先权日1999年9月30日
发明者吉冈浩 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1