用于补偿压缩机再循环污泥的方法和系统的制作方法_2

文档序号:9920303阅读:来源:国知局
19]在一个示例中,转化器70可以包括多个催化剂砖。在另一个示例中,可以使用每个都具有多个砖的多个排放控制装置。在一个示例中,转化器70可以是三元催化剂。
[0020]控制器12在图1中被显示为常规微型计算机,其包括:微处理器单元102、输入/输出端口 104、只读存储器106(如非瞬时存储器)、随机存取存储器108、保活存储器110和常规的数据总线。除了之前讨论的那些信号之外,控制器12被显示为还接收来自耦接到发动机10的传感器的各种信号,包括:来自耦接到冷却套114的温度传感器112的发动机冷却剂温度(ECT);耦接到加速器踏板130以便感测由脚132施加的力的位置传感器134;耦接到制动器踏板150以便感测由脚152施加的力的位置传感器154;来自耦接到进气歧管44的压力传感器123的发动机歧管压力(MAP)的测量值;来自压力传感器122的发动机升压压力或节气门入口压力的测量值;来自感测曲柄轴40位置的霍尔效应传感器118的发动机位置;来自传感器120的进入发动机的空气质量的测量值;以及来自传感器68的节气门位置的测量值。大气压也可以被感测(传感器未示出)以便由控制器12来处理。在本说明书的优选方面中,发动机位置传感器118在曲柄轴的每一回转中产生预定数目的等间隔脉冲,由此可以确定发动机转速(RPM)。
[0021 ]在操作期间,发动机10中的每个气缸通常经历四冲程循环:所述循环包括进气冲程、压缩冲程、膨胀冲程和排气冲程。在进气冲程期间,通常排气门54关闭而进气门52打开。空气通过进气歧管44被引入燃烧室30,并且活塞36移到气缸底部以便增加燃烧室30内的容积。活塞36在气缸底部附近和在其冲程末端处的位置(例如当燃烧室30处于其最大容积时)通常被本领域技术人员称为下止点(BDC)。
[0022]在压缩冲程期间,进气门52和排气门54关闭。活塞36朝向气缸盖移动以便压缩燃烧室30内的空气。活塞36在其冲程末端和离气缸盖最近的点(例如当燃烧室30处于其最小容积时)通常被本领域技术人员称为上止点(TDC)。在下文被称为喷射的过程中,燃料被引入燃烧室内。在下文被称为点火的过程中,喷射的燃料通过已知的点火装置(诸如火花塞92)点燃,导致燃烧。
[0023]在膨胀冲程期间,膨胀气体推动活塞36返回到下止点。曲柄轴40将活塞运动转换为转动轴的转动扭矩。最终,在排气冲程期间,排气门54打开以释放经燃烧的空气燃料混合物到排气歧管48且活塞返回到上止点。应当注意,以上所示仅仅为示例,且进气门和排气门打开和/或关闭正时可以改变,以便提供正或负气门重叠、延迟进气门关闭或各种其它示例。
[0024]图1的系统提供这样一种系统,其包括:发动机;包括机械耦合到发动机的压缩机的涡轮增压器;与压缩机并行设置在发动机的进气口中的再循环气门;以及控制器,其包括存储在非瞬时存储器中的指令,用于调整再循环气门的传递函数。该系统还包括设置在压缩机下游的进气口中的节气门,并且其中控制器包含附加指令,用于在打开再循环气门时维持恒定的发动机气流。该系统包括:其中通过调整进气歧管节气门的位置来维持恒定的发动机气流。该系统包括:其中再循环气门传递函数包含偏移,并且其中控制器包含修改该偏移的数值的附加指令。该系统还包括附加指令,用于在诊断模式期间响应于参数值来调整传递函数。该系统还包括响应于驾驶员命令扭矩的增加而退出诊断模式。该系统还包括响应于传递函数而操作再循环气门的附加指令。
[0025]现在参考图2,其示出针对再循环气门两侧的固定压降的气流相对压缩机再循环气门角度的预测曲线。X轴代表压缩机再循环气门角度。该角度沿着X轴箭头方向增加,且随着该角度增加,压缩机再循环气门打开量增加。Y轴代表通过压缩机再循环气门的气流。曲线202代表没有沉积物的压缩机再循环气门的特征,而曲线204代表有沉积物的压缩机再循环气门的特征。沉积物可能由引入发动机中的燃料蒸汽和/或材料形成。由于曲线202和曲线204描述在压缩机再循环气门两侧的给定压力比下压缩机再循环气门输入(例如,角度)与输出(例如,气流)之间的关系,因此曲线202和曲线204可以被称为压缩机再循环气门传递函数。
[0026]曲线图显示出有沉积物的压缩机再循环气门(如曲线204)开始允许空气流动的角度比没有沉积物的压缩机再循环气门(如曲线202)所允许的角度更大。沉积物可能部分限制通过压缩机再循环气门的流量。因此,如果控制器调整有沉积物的压缩机再循环气门的角度,在控制器期望有气流的情况下可能没有气流。因此,可能更难以控制中央节气门或发动机进气歧管节气门的上游位置处的压力。指引线(leader)210示出曲线202与曲线204之间的偏移。该偏移代表气流开始穿过没有沉积物的压缩机再循环气门的情况与气流开始穿过有沉积物的压缩机再循环气门的情况之间的压缩机再循环气门角度差。因此,通过确定何时气流开始穿过压缩机再循环气门,可以确定再循环气门角度的偏移。
[0027]现在参考图3,其示出了一种操作发动机的方法。图3的方法可以提供图4中示出的操作序列。此外,图3的方法可以作为存储在非瞬时存储器中的可执行指令被包含在图1的系统中。
[0028]在302处,方法300判断是否存在调适压缩机再循环气门传递函数的条件。在一个示例中,当发动机在预定的发动机转速和负荷范围内操作时,可以存在调适或修改压缩机再循环气门传递函数的条件。响应于存在调适压缩机再循环气门传递函数的条件,可以作出进入压缩机再循环气门诊断模式的请求。此外,可能期望的是在基本恒定的发动机转速和负荷(如变化小于5%)下操作发动机。如果方法300判断存在调适压缩机再循环气门传递函数的条件,则回答为“是”且方法300进行到304。否则回答为“否”且方法300进行到316。
[0029]在316处,方法300基于压缩机再循环气门的当前传递函数来操作压缩机再循环气门。例如,如果升压室或发动机节气门的入口的压力大于理想压力,则可以基于压缩机再循环气门的传递函数将压缩机再循环气门调整到穿过压缩机再循环气门的气流开始增加的角度。在一些示例中,可以响应于期望发动机节气门入口压力与实际发动机节气门入口压力之间的差来调整压缩机再循环气门位置。在根据当前压缩机再循环气门传递函数调整了压缩机再循环气门位置后,方法300进行到退出。
[0030]在304处,方法300完全关闭压缩机再循环气门。通过关闭压缩机再循环气门,可以确立穿过压缩机再循环气门的气流基本为零(例如,小于穿过压缩机再循环气门的最大气流的I % )。在压缩机再循环气门被关闭后,方法300进行到306。
[0031 ]在306处,方法300设置涡轮增压器废气门到预定的静态恒定打开量(例如,20 %打开或18度的角度)。预定的静态恒定打开量可以基于当前发动机转速和负荷。在废气门处于预定的恒定打开量的位置后,方法300进行到308。
[0032]在308处,方法300调整发动机节气门打开量以维持通过发动机的恒定气流。在一个示例中,可以基于节气门两侧的压降来调整发动
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1