一种微流路芯片系列微器件的结构的制造方法与工艺

文档序号:11546818阅读:326来源:国知局
一种微流路芯片系列微器件的结构的制造方法与工艺
一种微流路芯片系列微器件的结构本发明是申请日:2010-09-14,申请号:201080069777.3(PCT申请号:PCT/CN2010/076904),名称:“一种微流路芯片系列微器件的结构”的分案申请。技术领域本发明涉及微流路芯片制造的技术领域,特别与微流程芯片系列微器件的微泵结构有关。

背景技术:
芯片实验室(Labonachip)是当前发展很快的可广泛应用于生命科学、化学及物理学等各个领域实验室研究和日常医学检测的具有广阔前景的技术。微流路(在中国也叫微流控)芯片(Microfluidicchip)技术则是芯片实验室中的主干技术。由于微流体是芯片实验室中的物质的运送载体(如水相中的各种溶解化合物,培养基中的细胞等等),如何控制芯片上微通道及各种芯片微器件中的流体进行精确的流动、转移从而驱动微流路芯片的正常工作。因此,微流路芯片中最基本且最重要的组成部件,即微器件(microdevices)就是芯片上微流体的泵(即微泵)、阀(即开关)、感应微流体压力的静压传感器或者感受微流体速度的速度传感器。由于现有的微泵、微阀等微器件的制造工艺复杂,并没有理想的性能,虽然这个领域的研究者一直在为此做出努力,并不断发明新技术新工艺,微泵、微阀等微器件的技术缺陷仍旧是限制微流路芯片广泛应用的技术瓶颈。例如,置于芯片外部的泵(而不是芯片内置泵)仍旧是主要的驱动芯片内流体的装置。现有的微器件的设计和运行采用电、磁和隔膜控制等几种方式。例如,电渗泵(electroosmoticpump)或电动力阀(electrokineticgatingvalve),由于电压的直接作用不仅不适用于所有流体系统,也会干扰体系的化学物理环境。如果采用此磁控制,则可采用铁磁流体(ferrofluidicpump)利用外部永磁体的移动控制铁磁流体的移动来进行阀的开关和泵的运行,但铁磁流体本身会与芯片微流路中的流体系统接触,外部的永磁体控制也复杂而不易自动化。目前采用最多的是隔膜控制方法,即利用可形变的材料如PDMS(polydimethylsiloxane),在隔膜外施加压力变化来控制阀和泵的运作。隔膜泵(diaphragmpump)的优点是工作起来可靠有力,类似机械泵,但缺点也很明显,如必须要使用可变性材料作为隔膜,这样就不能避免这种材料可能对系统的污染或干扰,另外隔膜泵本省的复杂使得制造的成本及寿命都不理想。因此,现有的微阀、微泵等微流路芯片关键技术存在以上各种缺陷,特别的,对于玻璃芯片(具有最好的光学品质和化学品质)来说,由于玻璃是不可变形的硬质材料,无法在玻璃芯片上制造内置的泵阀系统,使得玻璃芯片的进一步发展受到极大的限制。

技术实现要素:
本发明的目的在于提供一种微流路芯片系列微器件的结构,使微流路控制最基本的微器件可以在硬质芯片材料中一次蚀刻成型。为了达成上述目的,本发明的解决方案是:一种微流路芯片系列微器件的结构,包括一个气体通道和至少一个液体通道,气体通道和各液体通道之间通过微通道连通;所述微器件为微泵,由两个微阀和一个微活塞结合而成;每个微阀包括一个气体通道和三个液体通道,气体通道的一端接气体,气体通道的另一端通过一个逐渐变窄的微通道和中间一个液体通道的一端连通,该微通道的两侧再分别通过一个逐渐变窄的微通道和两个液体通道的一端连通,中间液体通道的另一端和一侧液体通道的另一端合并为进液口,另一侧液体通道的另一侧为出液口;微活塞包括一个气体通道和一个液体通道,气体通道的一端接气体,气体通道的另一端通过一个逐渐变窄的微通道和液体通道的中段连通,液体通道的一端与一个微阀的出液口连接而另一端与另一个微阀的进液口连接。采用上述方案后,本发明微流路芯片的最基本微器件(微泵)由芯片内部的压力数字化的气体微线路控制,微器件利用微孔来阻隔气相和液相,没有任何活动部件,也无需任何特殊的透气或弹性的材料,由气——液两相的压力差来驱动气——液界面从而使微器件实现其传感压力、开关流路、液体有效动力输送等功能。微器件可在硬质材料(如玻璃)上一次蚀刻成型,便于低成本集成大量的微器件,也可以在其他材料上采用其他方法达成芯片及这几种基本微器件的结构。附图说明图1a至图1c是液体压力感受器的示意图;图2a至图2c是微阀的示意图;图3a至图3c是微活塞的示意图;图4a至图4b是微泵的示意图;图5a是微阀(MISVA)中气-液界面对气体压力的响应;图5b是不同气压作用下气-液界面在M通道方向上的移动模式;图5c是不同气压作用下气-液界面在左右(L和R)通道方向上的移动模式;图5d是微阀的数字化气压驱动模式;图5e是微阀对数字化气体压力驱动的反应;图6a是微阀在右侧通道压力下的泄漏测试;图6b是微阀承受右侧(R)通道逆向压力的范围;图6c是微阀在左侧(L)和下侧(M)通道压力下的泄漏测试;图6d是微阀承受左侧(R)通道和下侧(M)逆向压力的范围;图7a是微泵推动气泡的动力测试;图7b是微泵不同周期的输出功率;图7c最短泵周期和最大泵输出在反向压力下的变化;图7d泵压头与泵输出速度之间的关系;图8是采用数字化气体压力控制微泵运作的方式。具体实施方式本发明揭示的一种微流路芯片系列微器件,在结构设计上,该系列微器件包括一个气体通道和至少一个液体通道,气体通道和各液体通道之间通过微通道(毛细管)连通。本发明的理论依据是:微通道中气-液界面在气-液两相的压力差与气-液界面的移动方向有确定的关系,利用这种关系可以达到两个方面的目的:A气-液界面的移动可以反映气-液两相的压力差;B通过控制气-液两相的压力差控制气-液界面的移动。下面以具体实施例进行说明。请参见图1a至图1c是液体压力感受器的示意图。液体压力感受器包括在芯片形成的一个气体通道11和一个液体通道12。气体通道11的一端接气体,感受气体压力,气体通道11的另一端通过逐渐变窄的微通道13(微通道13窄的一端为一小孔)和液体通道12的一端连通,液体通道12的另一端接液体,感受与液体压力。液体压力感受器(MISEN,amicrosurfacetensionsensor)的工作原理是:芯片上的微通道13中间可以容纳气体和液体。由于气——液——固相互间的界面张力不同形成气——液界面的弧形(俗称弯月面),这种具有一定曲率的气——液界面上表面张力的非零净结果需要气液两相间压强的差值来维持平衡,否则界面将会移动。这种效应又称毛细作用。这种毛细作用的强弱随着毛细管直径的减小而增强。对于芯片上的微通道13来说,毛细作用的强度随着相当于毛细管直径的微通道13宽度的缩小而增强。如果在微通道13上设计出宽度逐渐收小的类似于狭长三角形的几何形状,那么,位于该三角形微通道12不同位置的气——液界面将具有不同强度的毛细作用,对应着不同程度的气——液两相的压强差值。这样,在两相压力差的推动下,可观测的气——液界面的位置就显示出了气——液两相的压强差值。当气体的压强固定并已知时,如图1a,降低的液体压强增大了气——液两相的压强差值,使得气——液界面朝液体方向移动(见图1b)。如果液体的压强持续降低,则界面可一直移动到三角形连接液体通道的顶点(图1c)。这个顶点实际上是连通压力感受器(MISEN)和液体通道得微孔(MISTA,amicrosurfacetensionalveolus),微孔中的气——液界面由于具有最大的曲率或毛细作用,使得气——液界面在这里能够被阻挡。这样,气——液界面的位置就显示了以气体的压力,这一段三角形的微通道就执行了压力感受器的任务。如果,液体压力不变,则该感受器可用来测量气体的压强。请参见图2a至图2c是微阀(MISVA,amicrosurfacetensionvalve)的示意图。微阀包括在芯片上形成的一个气体通道21和三个液体通道22、23、24。气体通道22的一端接气体,气体通道22的另一端通过一个逐渐变窄的微通道25和一个液体通道22的一端连通,该微通道25的两侧再分别通过一个逐渐变窄的微通道26(微孔)和一个液体通道23的一端连通(作为液体流入的入口)以及通过一个逐渐变窄的微通道27(微孔)和一个液体通道24的一端连通(作为液体流出的出口),三个液体通道22、23、24的另一端各自接液体。由于微孔(MISTA)内在较大的气——液两相的压强差下能够形成稳定的气——液界面,这个界面阻挡了液体或气体通过微孔内的界面,这实际上起到了阻挡流体的作用。当这个气——液界面离开微孔的时候,流体便可以重新流过微孔。在液体压力感受器(MISEN)的两侧各开一个小孔(MISTA)与两个液体通道相连(见图2a,通常顶端的液体通道与其中一个侧通道相连),气体压力升高时气——液界面的移动使得MISEN中被气体充满(见图2b和图2c)并在两侧的小孔中形成稳定的气——液界面(MISTA)从而阻隔液体通道的连接,达到切断液体流动的目的,这相当于是执行微阀的关闭功能。当气体压力减小时,气——液界面移回到原来的气体通道中,使得MISEN重新被液体充满,液体通道重新连通,这相当于微阀的开启状态。气体通道的气体压力在控制下处于高位或低位就关闭或开启了微阀。由于没有任何活动部件,这种阀是无磨损而长寿命的。当然,微阀也可以包括一个气体通道和两个液体通道,气体通道的一端接气体,气体通道的另一端通过一个逐渐变窄的微通道和一个液体通道的一端连通,而该微通道只有一侧(左边或者右边)再通过一个逐渐变窄的微通道(微孔)和另外一个液体通道的一端连通,两个液体通道的另一端各自接液体。图5a至图5e描述了气——液两相的压强差值与气——液界面在感受器中位置的关系以及多次重复的可靠性测试结果。具体地说,图5a是微阀(MISVA)中气-液界面对气体压力的响应。在V形微阀中,气-液界面会随着气体压力的增加(图中上部)而向下移动(向M通道),也会向左右两边的L和R通道移动。图中粗线A表示移动距离的测量方式。图5b是不同气压作用下气-液界面在M通道方向上的移动模式。气液界面受到气压来回变动的影响的向M通道来回移动,其移动的距离被测量(见图5a),其方向由箭头标出。图5c是不同气压作用下气-液界面在左右(L和R)通道方向上的移动模式。气液界面受到气压来回变动的影响的向L或R通道来回移动,其移动的距离被测量(见图5a),其方向由相对应的箭头标出。图5d是微阀的数字化气压驱动模式。将气压设置为2kPa和4kPa,气压在两个压力间反复转换,即可驱动微阀的开关。图5e是微阀对数字化气体压力驱动的反应。微阀开关功能的实现由气液界面的移动来实现。数字化气压的周期性指令驱动气液界面有规律地可靠地精确地移动,从而实现阀的开关功能(即连通微流和断开微流的功能)。图6a至图6d是微阀性能的测试结果。数据显示微阀可承受1.5kPa的压力而不渗漏。具体地说,图6a是微阀在右侧通道压力下的泄漏测试。在一定的反向压力下(来自右侧通道的PR),气-液界面的逆向移动,当气-液界面承受不了压力而与另一个通道联通时,阀产生泄漏。图6b是微阀承受右侧(R)通道逆向压力的范围。当来自右侧通道的压力增加时,气-液界面在压力的作用下移动,当压力接近2kPa时,气-液界面的移动超过了限度,产生泄漏,该泄漏的流速突然变高。图6c是微阀在左侧(L)和下侧(M)通道压力下的泄漏测试。在一定的反向压力下(PL来自左侧通道L和PM来自下侧通道M),气-液界面的逆向移动,当气-液界面承受不了压力而与另一个通道联通时,阀产生泄漏。图6d是微阀承受左侧(R)通道和下侧(M)逆向压力的范围。当来自右侧通道的压力增加时,气-液界面在压力的作用下移动,当压力接近1.6-1.7kPa时,气-液界面的移动超过了限度,产生泄漏,该泄漏的流速突然变高。请参见图3a至图3c是微活塞的示意图。微活塞包括在芯片上形成的一个气体通道31和一个液体通道32。气体通道31的一端接气体,气体通道31的另一端通过一个逐渐变窄的微通道33和液体通道32的中段连通,液体通道32的两端都接液体。如液体压力感受器MISEN的工作原理相同,但将通道设计为长而宽度均匀的空间来容纳气——液界面的移动并以微孔来阻隔气体进入液体通道这就是微活塞(MISTON,amicrosurfacetensionpiston)。该微活塞可通过长度来对微活塞的体积进行限定。当气体压力处于低位时,界面朝气体方向移动,液体通道中的液体流入MISTON(见图3a至图3c)。当气体压力处于高位时,界面朝液体方向移动,MISTON中的液体在气体压力的作用下被注入液体通道。微活塞的运作方式与微压力感受器相似。请参见图4a至图4b是微泵的示意图。微泵(MISPU)作为动力微器件由两个微阀41、43和一个微活塞42结合而成。微阀41包括一个气体通道411和三个液体通道412、413、414,微阀43包括一个气体通道431和三个液体通道432、433、434,微阀41、43的结构如前所述,其中,微阀41液体通道412的另一端和液体通道413的另一端合并为微阀41的进液口,液体通道414的另一侧为微阀41的出液口,微阀43液体通道432的另一端和液体通道433的另一端合并为微阀43的进液口,液体通道434的另一侧为微阀43的出液口。微活塞42包括一个气体通道421和一个液体通道422,微活塞42的结构如前所述,在微泵中,液体通道422的一端与微阀41的出液口连接而另一端与微阀43的进液口连接。微阀41作为进口阀,微阀43作为出口阀(二者可交换),微活塞42则作为吸入和注入器件,利用一系列数字化气体的压力控制可以得到稳定的泵输出。当进口阀打开时(图4a),出口阀关闭,微活塞42从进口阀吸入液体。当微活塞42被液体充满后,关闭进口阀,开启出口阀(图4b),将微活塞42中的液体从出口阀压出。至此,微泵的一个工作循环结束。不断地循环,则液体不断地从进口阀被吸入并从出口阀注入到下一个微通道,从而形成泵输出。图7a至图7c是泵输出的测试结果。泵输出最快可达到10nl/s。具体地说,图7a是微泵推动气泡的动力测试。利用泵推动位通道中的气泡,可以通过测量微通道中气泡的移动来计算泵在每个过程中的动力情况。图中PO为计算得到的泵输出(Pumpoutput)。图中表示出了微阀开关及活塞动作时的泵输出数据。图7b是微泵不同周期的输出功率。图中不同的线段及数字表示不同泵周期的体积输出数据。同时,泵前端所受到的反向压力也表示在图中。由于泵输出的体积直接进入垂直管道,因此泵出体积直接可换算为反向压力(kPa)。图7c最短泵周期和最大泵输出在反向压力下的变化。将泵设置为最快(泵周期为15s),当反向压力不断升高的时候,泵的输出能力逐渐减弱(上面的线)。图7d泵压头与泵输出速度之间的关系。压头的增加(及通过反向压力的测定得出)使得泵的输出线性降低。图8是采用数字化气体压力控制微泵运作的方式。将气压简单设置为高压和低压,即0和1。通过将数字化的气体压力指令输送到进口阀、微活塞和出口阀,则泵就开始工作,产生一定的压头和流量。图中利用不同的线段表示了在数字化气体压力指令的驱动下不同的泵组件的工作情况。本发明提供的微器件都由芯片内部的压力数字化的气体微线路控制,每一种微器件都利用微孔来阻隔气相和液相,没有任何活动部件,也无需任何特殊的透气或弹性的材料,由气——液两相的压力差来驱动气——液界面从而使微器件实现其传感压力、开关流路、液体有效动力输送等功能。上述微器件的控制方法类似于数字化电路控制的办法,设置两个固定的高低气相压力,控制系统利用固定的气相及液相压力差,实现微器件的计算机自动控制。这是一套易于集成、工作可靠简单的微流路控制器件。上述实施例和图式并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1