多模式功率分流混合动力变速器的制作方法

文档序号:11805352阅读:337来源:国知局
多模式功率分流混合动力变速器的制作方法与工艺
本公开涉及用于机动车辆的自动变速器领域。更具体地讲,本公开涉及动力传动系统中的齿轮、离合器、马达的布置以及它们之间的相互连接。
背景技术
:很多车辆在宽范围的车速(包括前进运动和倒车运动两者)下使用。然而,某些类型的发动机只能在较窄的速度范围内高效运转。所以,通常使用能在多个传动比下高效传输动力的变速器。当车辆处于低速时,变速器通常在高传动比下运转,使得发动机扭矩倍增以提高加速度。处于高车速时,使变速器以低传动比运转,以允许与安静、燃料高效的巡航关联的发动机转速。通常,变速器具有安装到车辆结构的壳体、通过发动机曲轴(通常经由诸如变矩器的起步装置)驱动的输入,以及通常经由差速器总成驱动车轮的输出,该差速器总成允许车辆转弯时左车轮和右车轮以稍微不同的转速旋转。在具有横向安装的发动机的前轮驱动车辆中,发动机曲轴轴线通常从车轴轴线偏移。混合动力电动变速器还通过包括一个或更多个可逆电机和一些类型的电能储存装置(例如,电池)来降低燃料消耗。混合动力电动变速器通过多种方式提高燃料效率。大部分内燃发动机在以相对高的功率设定下操作时是最有效的。混合动力电动变速器允许在部分时间以比用于推进所需的功率水平高的功率操作发动机,同时将剩余的功率储存在电池中。然后,在其它时间,发动机关闭,利用储存的能量来推进车辆。虽然发动机产生相同量的总能量,但是它以更高的平均效率来操作。另外,当应用制动器时,可逆电机可获取车辆动能并将车辆动能储存在电池中以稍后用于推进。当车辆静止并且由此不需要推进时,可关闭发动机以省去将另外用于保持怠速的燃料。电动马达提供在发动机关闭的情况下推进车辆并且在需要时快速重启发动机的能力。图1中示出了混合动力电动变速器布局。输入轴10由发动机曲轴驱动。输出轴12驱动车轮。变速器组件被支撑在变速器壳体14内。第一可逆电机16包括固定到壳体14的第一定子18和第一转子20。第二可逆电机22包括固定到壳体14的第二定子24和第二转子26。虽然两个电机均能将电功率转化为机械功率(马达驱动),并将机械功率转化为电功率(发电),但是第一电机可被称为发电机,第二电机可被称为马达。简单行星齿轮组28包括固定地结合到转子20的中心齿轮30、固定地结合到输出轴12的环形齿轮32、固定地结合到输入轴10的齿轮架34和被支撑以相对于齿轮架34旋转并与中心齿轮30和环形齿轮32两者啮合的一组行星齿轮36。齿轮组28在输出轴和第一转子之间分配来自内燃发动机的扭矩。拉威娜(Ravigneux)齿轮组38包括固定地结合到第二转子26的中心齿轮40、环形齿轮42、固定地结合至输出轴12的齿轮架44和被支撑以相对于齿轮架44旋转并与中心齿轮40和环形齿轮42两者啮合的一组长行星齿轮46。拉威娜齿轮组38还包括中心齿轮48和一组短行星齿轮50,短行星齿轮50每个与中心齿轮48和长行星齿轮46中的一个啮合。制动器52选择性地保持环形齿轮42不选择。当制动器52接合时,在转子26和输出轴12之间建立低的减速(underdrive)转速关系。制动器54选择性地保持中心齿轮48不旋转。当制动器54接合时,在转子26和输出轴12之间建立高的减速转速关系。为了沿向前的方向起动车辆,接合制动器52。每当车辆静止时,输出轴12也静止。当输出轴12静止或缓慢运动时,输入轴10的正向旋转使转子20以比输入轴10的转速高的转速沿正向旋转。定子18中的电压被控制使得转子20沿负向施加扭矩以提供反作用扭矩。因此,环形齿轮32在输出轴12上施加与输入轴扭矩成比例的正向扭矩。由于转子正沿与其旋转相反的方向施加扭矩,所以电机16用作发电机产生电功率。定子24中的电压被控制为利用该电功率在中心齿轮40上施加正向扭矩。在制动器52接合的情况下,转子26沿与输出轴12相同的方向以输出轴12的转速的固定地倍数旋转。传动比由中心齿轮40和环形齿轮42上的齿数来确定。不管马达效率如何,针对给定量的电功率,转子26产生的扭矩与转子速度成反比。齿轮组38使转子26产生的扭矩倍增传动比倍,并将扭矩传递到输出轴12。输出轴12上的总扭矩是环形齿轮32施加的扭矩和齿轮架44施加的扭矩的总和。随着车速的增加,转子26的转速可超过其最大的运转速度。通过逐渐释放制动器52同时逐渐接合制动器54可使变速器换入高速操作模式。在制动器54接合的情况下,转子26旋转的转速与制动器52接合时相比是输出轴12的转速的更低的倍数。输入轴12的转速和转子20的转速不受这种换挡的影响。在输出轴转速相对于输入轴转速足够高时,转子20开始沿反向开始旋转。为了继续提供对发动机扭矩的反作用,电机16必须用作马达。电机16需要的电功率必须来自电池或通过操作电机22作为发电机。在这种情况下,功率从电机16循环至输出轴12、至电机22并返回电机16。这种功率的循环使整体功率传输效率降低。制动器52还被接合以沿倒车方向起动车辆。定子24被控制使得转子26沿反向施加扭矩,该扭矩被传递到输出轴12。如果电池荷电状态足够,则电池可反过来提供电机22所需的功率。如果电池荷电状态太低或在一些其他情况下阻止使用电池功率,那么必须通过操作电机16作为发电机产生功率。由于在沿向前的方向起动时,利用电机16作为发电机使环形齿轮32沿正向在输出轴12上施加扭矩。这个扭矩与由电机22通过齿轮组38施加的负扭矩相反,这降低了总的输出轴扭矩。因此,电机22必须产生更多的扭矩。由于电机22的最大扭矩容量是有限的,变速器倒车方向的最大反向扭矩容量远低于向前的最大容量,尤其是在电池荷电状态低时。技术实现要素:一种变速器包括输入轴和输出轴、第一中间轴、第一电机和第二电机、传动装置以及换挡元件。传动装置和换挡元件被构造为建立多个固定的和选择性的转速关系。在第一转子、输入轴和第一中间轴之间建立固定的线性转速关系,例如,通过第一简单行星齿轮组。第一中心齿轮固定地结合到第一转子,第一齿轮架固定地结合到输入轴,第一环形齿轮固定地结合到中间轴。在一些实施例中,可在第二中间轴、输入轴、第一转子和第一中间轴这四个元件之间建立固定的线性转速关系。在第二转子和输出轴之间建立固定的减速转速关系,例如,通过第二简单行星齿轮组。第二中心齿轮固定地结合到第二转子,第二齿轮架固定地结合到输出轴,第二环形齿轮被固定地保持不旋转。在中间轴和输出轴之间建立选择性地减速转速关系。离合器可通过将中间轴选择性地结合到第二中心齿轮而建立这种减速转速关系。或者,可通过制动器与第三行星齿轮组结合来建立这种减速转速关系。一个或更多个离合器直接地或通过锁止第三齿轮组而选择性地将中间轴结合到输出轴。制动器选择性地保持中间轴之一不旋转。一种操作混合动力电动变速器(例如,以上描述的变速器)的方法,包括:接合低挡模式,从低挡模式换到高挡模式,并接合串联模式。在低挡模式,在中间轴和输出之间建立减速转速关系。在高挡模式,中间轴可操作地结合到输出。在串联模式,在输入和第一转子之间建立成比例的转速关系。在一些实施例中,所述方法可包括换到倒挡模式。根据本发明,一种变速器包括:第一齿轮传动装置,在第一转子、输入和第一中间轴之间固定地建立线性转速关系;第二齿轮传动装置,在第二转子和输出之间固定地建立减速关系;制动器,被构造为在输入和第一转子之间选择性地建立成比例的转速关系;第一离合器,被构造为将第一中间轴选择性地结合到第二转子。根据本发明的一个实施例,所述变速器还包括第二离合器,第二离合器被构造为将第一中间轴选择性地结合到输出。根据本发明的一个实施例,所述制动器通过选择性地保持第一中间轴不旋转而选择性地建立成比例的转速关系。根据本发明的一个实施例,第一齿轮传动装置在第二中间轴、第一转子、输入和第一中间轴之间固定地建立线性转速关系。根据本发明的一个实施例,所述制动器通过选择性地保持第二中间轴不旋转而选择性地建立成比例的转速关系。根据本发明的一个实施例,所述变速器还包括第三离合器,第三离合器被构造为将第二中间轴选择性地结合到第二转子。根据本发明的一个实施例,所述制动器是正向接合制动器。根据本发明的一个实施例,第一离合器和第二离合器是正向接合离合器。根据本发明的一个实施例,第二离合器是摩擦离合器,第一离合器是可控的单向离合器。根据本发明,一种操作混合动力电动变速器的方法,所述变速器具有在第一电机的第一转子、输入和第一中间轴之间建立固定的线性转速关系的第一齿轮传动装置;在第二电机的第二转子和输出之间建立固定的减速关系的第二齿轮传动装置,所述方法包括:接合低挡模式,在所述低挡模式中,第一中间轴结合到第二转子;从低挡模式换到高挡模式,在所述高挡模式中,第一中间轴可操作地结合到输出;接合串联模式,其中,第一转子被约束为以与输入转速成比例的转速旋转。根据本发明的一个实施例,从低挡模式换到高挡模式包括:控制第二电机推进车辆;释放第一换挡元件;在释放第一换挡元件之后,控制第二电机消除第二换挡元件上的相对速度;在消除第二换挡元件上的相对速度之后,接合第二换挡元件。根据本发明的一个实施例,从低挡模式换到高挡模式包括:转换可控单向离合器的状态;逐渐接合摩擦换挡元件使得可控的单向离合器超越。根据本发明的一个实施例,接合串联模式包括保持第一中间轴不旋转。根据本发明的一个实施例,第一齿轮传动装置在第二中间轴、第一转子、输入和第一中间轴之间建立固定的线性转速关系;接合串联模式包括保持第二中间轴不旋转。根据本发明的一个实施例,所述方法还包括接合倒挡模式,其中,第二中间轴结合到第二转子。附图说明图1是现有技术的混合动力变速器齿轮传动装置的示意图。图2是第一混合动力变速器齿轮传动装置的示意图。图3是第二混合动力变速器齿轮传动装置的示意图。图4是第三混合动力变速器齿轮传动装置的示意图。图5是第四混合动力变速器齿轮传动装置的示意图。图6是第五混合动力变速器齿轮传动装置的示意图。图7是与图6的变速器齿轮传动装置对应的杆图。具体实施方式本公开的实施例描述于此。然而,应理解,公开的实施例仅为示例,其它实施例能够采用各种和替代的形式。附图无需按比例绘制;可放大或缩小一些特征以显示特定部件的细节。所以,在此公开的具体结构和功能细节不应解释为限制,而仅为教导本领域技术人员以多种形式使用本发明的代表性基础。本领域内的普通技术人员应理解,参考任一附图示出和描述的多个特征可与一个或更多个其它附图中示出的特征组合,以形成未明确示出或描述的实施例。所示出的特征的组合为典型应用提供代表性实施例。然而,与本公开的教导一致的特征的多种组合和变型可希望用于特定应用或实施。齿轮传动装置是旋转元件和被构造为在旋转元件之间施加指定的转速关系的换挡元件的集合。无论任何换挡元件的状态如何,都施加一些转速关系(称为固定的转速关系)。仅当特定的换挡元件完全接合时才施加其它的转速关系(称为选择性转速关系)。在一列有序的旋转元件中存在线性转速关系,i)当一组旋转元件中的第一个和最后一个旋转元件约束成具有最极端的转速时,ii)当每个其余旋转元件的转速均约束成第一个和最后一个旋转元件的转速的加权平均值时,并且iii)当旋转元件的转速不同时,按照列表顺序约束(增加或减小)它们的转速。元件的转速在元件沿一个方向旋转时为正而在元件沿相反的方向旋转时为负。当元件之间的转速的比是预定值时,这两个元件之间存在成比例的转速关系。如果第二元件总是旋转地比第一元件快并且沿相同的方向,则在第一元件和第二元件之间的成比例的转速关系是超速(overdrive)关系。类似地,如果第二元件总是旋转地比第一元件慢并且沿相同的方向,则在第一元件和第二元件之间的成比例的转速关系是减速关系。如果一组旋转元件被约束成在所有工况中以相同的速度绕着同一轴线旋转,则这组旋转元件彼此固定结合。可通过花键连接、焊接、压装、从普通固体机加工或其它方式固定结合旋转元件。会出现固定结合的元件之间转动位移的轻微变化(例如,由于冲击或轴柔量(shaftcompliance)导致的位移)。彼此均固定结合的一个或更多个旋转元件可以称为轴。相反,两个旋转元件通过换挡元件选择性地结合,只要在换挡元件完全接合时换挡元件便约束这两个旋转元件以相同的速度绕着同一轴线旋转,并且在至少一些其它工况中这两个旋转元件以不同的转速自由旋转。通过选择性地将旋转元件连接到壳体而保持旋转元件不旋转的换挡元件称为制动器。将两个或更多个旋转元件选择性地彼此结合的换挡元件称为离合器。换挡元件可以是主动控制的装置(例如液压或电动致动的离合器或制动器)或者可以是被动装置(例如单向离合器或制动器)。如果功率流路径在元件之间建立成比例的转速关系,则元件被可驱动地连接。如果元件适于固定地可驱动地连接到发动机,那么该元件是变速器的输入。变速器输入可以通过被设计为吸收扭转振动的减震器而结合到发动机。如果元件适于固定地可驱动地连接到变速器外部的组件(例如,车轮或分动箱),那么该元件是变速器的输出。图2中示出了改进的混合动力电动变速器布局。输入轴10由发动机曲轴驱动。输出轴12驱动车轮。变速器组件被支撑在变速器壳体14内。第一可逆电机16包括固定到壳体14的第一定子18和第一转子20。第二可逆电机22包括固定到壳体14的第二定子24和第二转子26。第一简单行星齿轮组28包括固定地结合到转子20的中心齿轮30、固定地结合到中间轴60的环形齿轮32、固定地结合到输入轴10的齿轮架34和被支撑以相对于齿轮架34旋转并与中心齿轮30和环形齿轮32两者啮合的一组行星齿轮36。齿轮组28在中间轴和第一转子之间分配来自内燃发动机的扭矩。第二简单行星齿轮组62包括固定地结合到转子26的中心齿轮64、固定地保持不选择的环形齿轮66、固定地结合到输出轴12的齿轮架68和被支撑以相对于齿轮架68旋转并与中心齿轮64和环形齿轮66两者啮合的一组行星齿轮70。齿轮组62在转子26和输出轴12之间固定地建立减速转速关系。其他类型的齿轮传动装置(例如,使用轴线分动齿轮的那些齿轮传动装置)能够建立固定的减速转速关系。离合器72将中间轴60选择性地结合到中心齿轮64和转子26,由此在中间轴60和输出轴12之间选择性地建立减速转速关系。离合器74将中间轴60选择性地结合到输出轴12。制动器76选择性地保持中间轴60不旋转。为了沿向前的方向起动车辆,接合离合器72。每当车辆静止时,输出轴12也静止。在离合器72接合的情况下,当车辆静止时,中间轴60也静止。当中间轴60静止或缓慢运动时,输入轴10的正向旋转使转子20以比输入轴10的转速高的转速沿正向旋转。定子18中的电压被控制使得转子20沿负向施加扭矩以提供反作用扭矩。因此,环形齿轮32在中间轴60上施加与输入轴扭矩成比例的正向扭矩,这将通过离合器72传递到输出轴12。由于转子正沿其旋转的相反的方向施加扭矩,所以电机16用作发电机产生电功率。定子24中的电压被控制为利用该电功率在中心齿轮64上施加正向扭矩。齿轮组62使转子26产生的扭矩倍增固定的传动比倍,并将扭矩传递到输出轴12。输出轴12上的总扭矩是环形齿轮32施加的扭矩和转子26施加的扭矩的总和的固定的传动比倍。这与图1的传动装置不同,在图1中,环形齿轮32施加的扭矩倍增固定的传动比倍。因此,在相同齿数和马达容量的情况下,图2的传动装置能够比图1的传动装置产生更多的扭矩以沿向前的方向起动车辆。随着车速的增加,中间轴60的转速将增加。在中间轴转速相对于输入轴转速足够高的情况下,转子20减速并且最终开始沿相反的方向旋转。最大效率通常出现在马达20的转速接近零并且所有的功率都机械地传递时。当转子20开始反向旋转时,电机16必须用作马达,电机22必须用作发电机,并且效率下降。响应于车速增加,可通过逐渐分离离合器72并逐渐接合离合器74而使变速器换入高挡的范围。可分阶段实现该换挡。在第一阶段,调节发动机、电机16和电机22的输出扭矩使得电机22利用储存的电池功率提供所有的推进。然后,释放离合器72。在所有的换挡元件释放的情况下,电机16和发动机被控制为使中间轴60的转速和输出轴12的转速同步。最后,接合离合器74。在离合器74接合的情况下,中间轴60与输出轴12以相同的转速旋转,而不是以成倍的转速旋转。图2的传动装置可以在以下情况下操作:转子20的转速接近最佳转速的时间百分比大于图1的传动装置,从而提高平均功率传递效率。为了沿倒车方向起动车辆,接合制动器76并且释放离合器72和74两者。转子20以输入轴10的转速的固定的倍数旋转。电机16产生的电功率被供应至电机22,电机22被控制为在中心齿轮64上产生负方向的扭矩。然后该扭矩倍增齿轮组62的固定的传动比倍并被传递至输出轴12。与图1的传动装置不同,没有扭矩从环形齿轮32传递至输出轴12。由于所有的功率被电机16转换为电功率,然后由电机22转换回机械功率,这称为串联操作模式。由电机22产生的全部扭矩被传递至输出轴12。正如图1的传动装置,在荷电状态足够时,至电机22的功率可由电池功率供应。然而,与图1的传动装置不同,当利用发动机来供应功率时,输出扭矩容量不会下降。在每个操作模式下的换挡元件的状态概括在表1中。表1727476串联X低挡X高挡X图3中示出了另一个混合动力电动变速器布置。第三简单行星齿轮组78包括中心齿轮80、固定地结合至中间轴60的环形齿轮82、固定地结合至输出轴12的齿轮架84和被支撑以相对于齿轮架84旋转并与中心齿轮80和环形齿轮82两者啮合的一组行星齿轮86。制动器88选择性地保持中心齿轮80不旋转。离合器90将中心齿轮80选择性地结合至齿轮架84。将齿轮组78的任意两个构件相互结合将中间轴60可操作地结合至输出轴12。相对于图2的传动装置,额外的齿轮组78在中间轴60和输出轴12之间允许与转子26和输出轴12之间的固定的传动比不同的低挡范围传动比的选择。图3的传动装置的操作与图2的传动装置的操作类似。为了沿向前的方向起动车辆,接合制动器88。响应于车速增加,变速器可通过逐渐分离制动器88并逐渐接合离合器90而换入高挡范围。由于输出轴转速和中间轴转速之间在低挡范围下的比与图2的传动装置不同,所以这种换挡可发生在不同的车速下。如图2的传动装置中,可在使用电机22的同时使用电机16使转速同步从而分阶段完成所述换挡,以推进车辆。在每个操作模式下的换挡元件的状态概括在表2中。表2768890串联X低挡X高挡X图4中示出了另一个混合动力电动变速器布置。与图3的传动装置中的固定结合不同,齿轮架84通过离合器92选择性地结合到输出轴12。离合器94将齿轮架84选择性地结合到环形齿轮82,从而将齿轮组78的所有元件可操作地结合到中间轴60。图4的传动装置的操作与图2和图3的传动装置的操作类似,除了在每个操作范围中接合两个换挡元件而不是仅接合一个换挡元件。为了沿向前的方向起动车辆,接合制动器88和离合器92。响应于车速增加,变速器可逐渐之间分离制动器88并逐渐接合离合器94而换入高挡范围。如图2和图3的传动装置中,可在使用电机22的同时使用电机16使转速同步,从而分阶段完成所述换挡,以推进车辆。为了沿倒车方向起动车辆,制动器88和离合器94接合。在每个操作模式下的换挡元件的状态概括在表3中。表3图5中示出了前轮驱动混合动力电动变速器布置。在前轮驱动车辆中,驱动车轮绕与发动机曲轴平行但从发动机曲轴偏移的轴线旋转。差速器(diff)100位于前轮轴线上或差不多位于前轮轴线上。(轴线的细微差异可通过等速万向节来调节)。在一些实施例中,功率从曲轴轴线上的输出元件通过由具有固定的传动比的副轴传动装置或链和链轮组成的单个功率流路径而传递至差速器轴线。在其它实施例中,诸如图5的实施例,轴线分动传动装置还可用于在变速器组件之间建立一些转速关系。输出轴102绕与曲轴轴线和差速器轴线平行但从曲轴轴线和差速器轴线偏移的第三轴线旋转。固定结合至输出轴102的齿轮104与固定地结合至差速器架的齿轮106啮合。牵引马达22的转子26驱动绕第四平行轴线旋转的马达轴108。固定地结合至马达轴108的齿轮110与固定地结合至输出轴102的齿轮112啮合,从而实现在图2至图4的实施例中由行星齿轮组62实现的固定的扭矩放大倍数和减速。齿轮114选择性地结合至环形齿轮32并与固定地结合至输出轴102的齿轮116啮合。齿轮114的齿数与齿轮116的齿数接近,但不必完全相同。齿轮114、116和离合器74共同可选地使环形齿轮32和输出轴以几乎相同的转速旋转,虽然沿相反的方向,从而建立高挡范围操作模式。齿轮118具有与固定地结合至马达轴108的齿轮120的齿数接近相同的齿数。惰齿轮122绕第五轴线旋转并与齿轮118和齿轮120两者啮合。离合器72将环形齿轮32选择性地结合至齿轮118。离合器72和齿轮118、齿轮120和齿轮122共同可选地使马达轴108和环形齿轮32以几乎相同的转速旋转,以建立低挡范围操作模式。最后,制动器76选择性地保持环形齿轮32不旋转以建立串联操作模式。图5的传动装置的操作与图2和图3的传动装置的操作类似。图6中示出了另一个混合动力电动变速器布置。三个简单行星齿轮组130、140和150每者包括中心齿轮、环形齿轮和支撑与中心齿轮和环形齿轮两者啮合的行星齿轮的齿轮架。齿轮架136固定地结合至输入10。转子20、环形齿轮134和齿轮架146互相固定地结合。中心齿轮132固定地结合至中心齿轮142。转子26固定地结合至环形齿轮154。齿轮架156固定地结合至输出12。中心齿轮152被固定地保持不旋转。中心齿轮132和中心齿轮142通过离合器72选择性地结合至转子26并通过离合器74选择性地结合至输出12。环形齿轮144通过离合器160选择性地结合至转子26并通过制动器162选择性地保持不旋转。车辆沿向前的方向的操作与图2的传动装置的操作类似。为了沿向前的方向起动车辆,接合离合器72。在起动期间,电机16产生功率并且电机22提供额外的输出扭矩。一些功率从输入10通过齿轮组130、齿轮组140和离合器72传递至环形齿轮154。剩余的功率通过电机16和22电力地传递。在电气路径中的一些功率可被储存在电池中。或者,电池可用于向电气路径提供额外的功率。齿轮组150使扭矩倍增。由于固定中心齿轮而不是如图2至图4中的固定环形齿轮,所以扭矩放大倍数比例小于在那些传动装置中的扭矩放大倍数比例。响应于车速增加,变速器可通过逐渐分离离合器72并逐渐接合离合器74而换入高挡范围。正如图2至图5的传动装置,该换挡可分阶段完成,在换挡期间电机22满足输出扭矩需求。因为齿轮组150比图2的齿轮组62提供更少的扭矩倍增,所以与该换挡相关的传动比变化比图2的传动装置的传动比变化小。为了沿倒车方向起动车辆,接合离合器160。转子20施加反作用扭矩,导致负扭矩从环形齿轮144通过离合器160传递到环形齿轮154。因此,与之前的传动装置不同,部分功率反向机械地传输。其余的功率通过电机16和22电力传输。正如在低挡和高挡的向前驱动模式中的操作,在电路径中的功率可利用来自电池的功率补充或可转移到电池。通过接合制动器162而使串联模式也是可用的。在每个操作模式下的换挡元件的状态概括在表4中。除了以上讨论的四种模式之外,通过同时接合两个换挡元件而可用四种固定传动比模式。在这些四种操作模式中,在输入10和输出12之间建立具有预定的传动比的成比例的转速关系。所有功率可从输入10机械地传输至输出12。可将来自电池的功率经由电机16或电机22补充发动机产生的功率。或者,可在发电模式下利用电机16或电机22将一些功率转到电池。更多个固定的传动比模式中的一种还可用作在连续可变模式之间换挡的中间阶段。例如,从低挡模式换到高挡模式可通过这种方式完成:首先接合制动器162以进入固定的传动比模式B,然后释放离合器72以进入串联模式,然后接合离合器74以进入固定的传动比模式D,然后释放制动器162以进入高挡模式。每当离合器要被接合时,电机可被控制为使转速同步。表47274160162倒挡X串联X低挡X高挡X固定的传动比模式AXX固定的传动比模式BXX固定的传动比模式CXX固定的传动比模式DXX图7是示出图6的传动装置中的几个转速关系的杆图。这些转速关系中的一些也建立在图2至图5的传动装置中。杆164和166示出了固定的线性转速关系。杆164示出了在i)中心齿轮132和142,ii)齿轮架136,iii)环形齿轮134和齿轮架146以及iv)环形齿轮144之间的固定的线性转速关系。其它齿轮传动装置在四个轴之间建立固定的线性转速关系,例如,拉威娜齿轮组、阶梯小齿轮组和其它相互连接的成对的简单小行星齿轮组和双小行星齿轮组。杆166示出了在i)中心齿轮152,ii)齿轮架156,iii)环形齿轮154之间的固定的线性转速关系。其它齿轮传动装置在三个轴之间建立固定的线性转速关系。在三个轴中的一个固定地保持不旋转的情况下,在其它两个轴之间建立固定的成比例的转速关系。其它齿轮传动装置(例如,图5的齿轮110、112、104和106)建立固定的成比例的转速关系。还建立了多个选择性的转速关系。接合离合器72在转子20、输入10和转子26之间选择性地建立线性转速关系。接合离合器74在转子20、输入10和输出12之间选择性地建立线性转速关系。接合图2中的制动器76或图6中的制动器162在转子20和输入10之间选择性地建立成比例的转速关系。接合离合器160在输入10、转子20和转子26之间选择性地建立线性转速关系。在每个齿轮传动装置中的每个换挡元件可以是液压致动的湿式多片摩擦离合器或制动器。多片离合器或制动器包括离合器包,离合器包的摩擦片键连接到与分隔板(separatorplate)间隔开的元件之一,分隔板键连接到其它元件(对于制动器,所述元件之一是壳体)。施加到活塞的液压压力挤压离合器包,使得摩擦片和隔板之间的摩擦从一个元件向另一个元件传递扭矩。扭矩容量与通过活塞施加的法向力成比例,进而与液压压力成比例。控制器通过调节至阀体中的电磁阀的电流来调节扭矩容量,进而调节液压压力。增压后的液压流体可通过发动机驱动的泵提供或通过电动马达驱动的泵提供。如果利用发动机驱动的泵,可以做出启动发动机而不依赖于液压压力以接合离合器的规定。例如,换挡元件之一(诸如用于串联模式的元件)可被电致动而不是液压致动。在没有离合器接合时可利用电池功率驱动电机22来推进车辆。然后,可利用电致动和用于将发动机带到运转速度的电机16来建立串联模式。一旦发动机运转,则发动机驱动的泵将使其它换挡元件能够接合以建立其它驱动模式。或者,换挡元件中的一些或所有的换挡元件可以是正向接合换挡元件,例如,爪式离合器或可控的单向离合器。正向接合换挡元件不依赖于摩擦来传递扭矩并且通常在分离时产生更小的寄生阻力。然而,正向接合换挡元件不能逐渐接合同时吸收能量。如以上讨论的,可通过在使用电机22用于推进的同时使用电机16使元件的转速同步而在不消散换挡元件之间能量的情况下完成低挡和高挡之间的换挡。换入倒挡模式或换出倒挡模式将通常在车辆几乎静止并且扭矩需求为零的情况下来完成。因此,也可在不消散换挡元件之间的能量并且在接合之前利用电机16使元件转速同步的情况下完成这些换挡。在一些实施例中,从低挡到高挡的换档中的即将分离的元件(72或88)可以是可控的单向离合器而用于该换挡的即将接合的元件(74、90或94)是摩擦离合器。在低挡模式下,并且在图4的传动装置的串联模式中,可控的单向离合器处于其防止沿任意方向相对旋转的状态。在从低挡换到高挡之前,可控的单向离合器处于其防止仅沿一个方向相对旋转的状态。随着即将接合的离合器扭矩容量逐渐增加,可控的单向离合器被动地释放。虽然上文描述了示例性实施例,但是并不意味着这些实施例描述了权利要求包含的所有可能的形式。说明书中使用的词语为描述性词语而非限制,并且应理解,在不脱离本公开的精神和范围的情况下可以作出各种改变。如上所述,可以对多个实施例的特征进行组合以形成本发明没有明确描述或说明的进一步的实施例。虽然关于一个或更多个期望的特性,各种实施例已经被描述为提供优点或优于其它实施例或现有技术的实施方式,但本领域的普通技术人员认识到,可以牺牲一个或更多个特点或特性,以实现期望的整体系统属性,这取决于具体的应用和实施。这样,关于一个或更多个特性,被描述为不如其它实施例或现有技术的实施方式理想的实施例并不在本公开的范围之外,并且可以期望用于特定的应用。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1