混合动力车辆的离合器控制方法与流程

文档序号:13028877阅读:572来源:国知局
混合动力车辆的离合器控制方法与流程

本发明涉及一种混合动力车辆的离合器控制方法。



背景技术:

本部分中的陈述仅是提供与本发明相关的背景信息而不构成现有技术。

一般而言,通过干式离合器将动力从发动机和电机传输至变速器的动力系具有这样的连接结构,其包括:发动机、发动机离合器、电机、干式离合器和变速器,其中变速器可以是自动手动变速器(automatedmanualtransmission,amt)或双离合器变速器(dualclutchtransmission,dct)。图1示出了使用dct的动力系的示例。

为了参考,电机和变速器之间的干式离合器在某些情况下被认为是amt或dct的组件,但是在本文中将其假定为是单独的组件,如图1所例示的那样。

干式离合器(在下文中简称为“离合器”)具有这样的离合器传递扭矩:其根据诸多因素而发生很大的改变,这些因素例如根据离合器组件的单程公差和耐久性来确定的摩擦程度、由高温引起的热变形以及摩擦系数的改变,因此很难精确地确定在车辆行驶时由离合器来传输的传递扭矩。

然而,随着车辆中的离合器受到控制,如果传递扭矩的变化是未知的,那么在接合时离合器可能会过度滑动或者会产生震动,因此需要实时地估算和校正离合器的传递扭矩的特性。

特别地,在混合动力电动车辆(hybridelectricvehicle,hev)的动力系中,其将动力从发动机和电机两者传输至离合器,由于不同于只是将发动机的扭矩传输至变速器的典型的离合器的传输方式,这就需要考虑电机扭矩对离合器的影响来估算和校正离合器的传递扭矩。

上述作为本发明的相关技术而提供的说明仅用于帮助理解本发明的背景,而不应被理解为包括在本领域技术人员已知的相关技术中。

通过本文提供的说明,其它的应用领域将变得明显。应当理解,说明书和具体的示例仅是用于说明的目的而并非意在限制本发明的范围。



技术实现要素:

本发明提供这样一种混合动力车辆的离合器控制方法:通过恰当地校正在向前扭矩下学习的离合器传递扭矩特性,以及在车辆再生制动期间控制离合器,该方法能够更精确地控制在再生制动和换挡期间的离合器传递扭矩,并且能够防止或降低制动性能的变差以及减少换挡震动。

根据本发明的一个方面,提供一种混合动力车辆的离合器控制方法,该方法包括:进入条件确定步骤,其中,控制器确定在再生制动期间是否执行换挡;误差计算步骤,其中,当在再生制动期间执行换挡时,控制器通过从映射扭矩减去观测扭矩来计算扭矩误差,该映射扭矩为基于预先学习的用于离合器致动器行程的离合器传递扭矩映射而计算出离合器传递扭矩,该观测扭矩为通过用于接收变速器输入扭矩和电机转速的离合器扭矩估算器而计算出的离合器传递扭矩;校正步骤,其中,控制器利用在误差计算步骤中计算出的扭矩误差来校正用于离合器致动器行程的离合器传递扭矩映射;离合器控制步骤,其中,控制器利用在校正步骤中经过校正的离合器传递扭矩映射来控制离合器。

所述误差计算步骤可以根据来自离合器传递扭矩映射的当前离合器致动器行程来计算映射扭矩,并且可以使用当前电机扭矩来计算观测扭矩,该当前电机扭矩作为输入至离合器扭矩估算器的变速器输入扭矩。

在所述校正步骤中,通过将扭矩误差乘以增益值来可以获得偏移量,并且通过改变相对于曲线的接触点的曲线的倾斜度,以形成在偏移量计算步骤中计算的偏移量,可以校正对于离合器传递扭矩映射的离合器致动器行程的离合器传递扭矩的曲线。

在所述校正步骤和离合器控制步骤之间,该方法可以进一步包括重复确定步骤,该重复确定步骤利用从校正的映射中计算出的映射扭矩和在校正步骤之后更新的观测扭矩来再次计算扭矩误差,当再次计算的扭矩误差大于或等于参考值时,重复所述校正步骤,而当再次计算的扭矩误差小于参考值时,执行离合器控制步骤。

在所述校正步骤中的增益值可以大于0并且可以小于或等于1。

根据本发明,通过恰当地校正在向前扭矩下学习的离合器传递扭矩特性,以及在车辆再生制动期间控制离合器,能够更精确地控制在再生制动和换挡期间的离合器传递扭矩,并且能够防止或减少制动性能的变差以及换挡震动。

通过本文提供的说明,其它的应用领域将变得明显。应当理解说明书和具体示例仅旨在用于说明的目的而并非旨在限制本发明的范围。

附图说明

为了使本发明可以得到更好地理解,现在将会参考附图并对以示例的方式给出的本发明的各种形式进行描述,这些附图中:

图1为例示性的示出了相关技术中的混合动力dct车辆的动力系的示意图;

图2为例示性的示出了基于离合器致动器的行程的传递扭矩特性的实时学习的示意图;

图3为示出了本发明的离合器控制方法可以应用的混合动力车辆的动力系的示意图;

图4为示出了根据本发明的混合动力车辆的离合器控制方法的构成的示意图;

图5为示出了根据本发明的校正用于离合器制动器行程的离合器传递扭矩曲线的示例性的示意图。

本文描述的附图仅用于说明的目的且并非旨在以任何方式限制本发明的范围。

具体实施方式

如下描述本质上为示例性的且并不旨在限制本发明、本发明的应用或使用。应当理解,在整个附图中,对应的附图标记指示相同或对应的部件和特征。

在电动车辆模式(ev模式)的再生制动期间,通过仅利用电机的反向驱动来执行制动,并且假定离合器在变速器和电机之间传输向后的扭矩,如图2所示,施加至离合器的向后的传递扭矩导致了与向前的传递扭矩不同的行为。

图2示出了根据离合器致动器(其用于控制离合器)的行程来实时地学习传递扭矩特性的示例。参考图2,能够看出向前扭矩(其为这样的扭矩:该扭矩通过离合器从发动机和电机传输至变速器以向前驱动车辆)的学习点不同于向后扭矩(其通过离合器从车辆的驱动轮传输至电机)的学习点。因此,根据离合器致动器的行程,离合器传递扭矩特性按照传输经过同一离合器的扭矩的传递方向而不同。

产生这种现象的原因被认为是:发动机扭矩的不精确性影响了在向前扭矩下的离合器传递扭矩特性,而在向后扭矩下,离合器传递扭矩的学习是在仅利用相对精确的电机扭矩的情况下执行的。

当将向前扭矩下的经学习的离合器传递扭矩特性应用至在向后扭矩下的再生制动时期,而不考虑离合器传递扭矩特性根据传递扭矩的方向而改变的事实时,如上所述,由于不恰当的离合器传递扭矩控制,会导致制动性能下降,并且产生换挡震动。

参考图3,发动机e和驱动电机m连接至发动机离合器ec,来自发动机e和电机m的动力可以经由dct(双离合器变速器)而供应至驱动轮w,dct的两个离合器1分别由离合器致动器3控制,用于换挡挡位的齿轮凭借换挡致动器4(其选择性地驱动同步装置)而切换,离合器致动器3和换挡致动器4由dct控制器5来进行控制,而控制器接收来自aps7(加速踏板位置传感器)的信号以识别油门踏板的踩踏量,并且接收来自bps9(制动踏板位置传感器)的信号以接收关于制动踏板的操作的信息。

dct控制器5接收例如发动机扭矩和发动机转速的信息,并且可以与混合动力控制单元hcu(其为更高级别的控制器)进行通信,而该更高级别的控制器执行例如分配驱动电机m的再生制动力和机械制动力的控制。

dct控制器5和更高的控制器可以是单独的形式,或者可以整合在同一单元中。类似的,它们可以与发动机控制器(其用于控制发动机)整合或者与发动机控制器分开,并且可以与发动机控制器进行通信。

参考图4,本发明的一种形式包括:进入条件确定步骤(s10),其中,控制器5确定在再生制动期间换挡是否执行;误差计算步骤(s20),其中,当在再生制动期间执行换挡时,控制器5通过从映射扭矩减去观测扭矩来计算扭矩误差,该映射扭矩是根据预先学习的关于离合器致动器行程的离合器传递扭矩映射而计算的离合器传递扭矩,该观测扭矩是通过用于接收变速器输入扭矩和电机转速的离合器扭矩估算器来计算的离合器传递扭矩;校正步骤(s30),其中,控制器5利用在误差计算步骤(s20)中计算的扭矩误差来校正用于离合器致动器行程的离合器传递扭矩映射;以及离合器控制步骤(s50),其中,控制器5利用在校正步骤(s30)中校正的映射来控制离合器。

也即,在进入条件确定步骤(s10)中,本发明确定在再生制动期间换挡是否执行,当在再生制动期间换挡执行时,本发明通过误差计算步骤(s20)来计算扭矩误差、基于扭矩误差来校正映射、并且基于经过校正的映射来控制离合器,从而能够改善制动的线性度(其表现为当在再生制动期间执行换挡时的制动力的线性变化)、防止或减少伴随换挡的震动、并且防止或减少换挡响应变差。

在进入条件确定步骤(s10),控制器5可以基于从bps9(制动踏板位置传感器)接收的关于驾驶员是否操作制动踏板的信号来确定制动情况,因而控制器5可以从hcu接收关于再生制动情况的信息,并且通过考虑车辆速度等来检查换挡是否开始来确定进入条件。

在误差计算步骤(s20),控制器5从映射中计算对应于当前离合器致动器行程的离合器传递扭矩,以作为映射扭矩,并且使用用于变速器输入扭矩(其输入至离合器扭矩估算器)的当前电机扭矩,以计算观测扭矩。

该离合器扭矩估算器可以类似于本领域公知的离合器扭矩估算器,其基于发动机扭矩和发动机转速来计算离合器扭矩,但是,根据本发明,离合器扭矩是基于电机扭矩和电机转速来计算的。

使用电机扭矩作为输入至离合器扭矩估算器的变速器输入扭矩的原因在于,存在再生制动情况,因此发动机离合器是不接合的,因此电机是可以将扭矩实际地传输至变速器的唯一部件。

在校正步骤(s30),通过将扭矩误差乘以增益值来获得偏移量,并且通过改变相对于曲线的接触点(touchpoint)的曲线的倾斜度,以形成在偏移量计算步骤中计算的偏移量,来校正对于映射的离合器致动器行程的离合器传递扭矩的曲线(t-s曲线)。

例如,当获得偏移量时,如图5所示,利用相对于接触点的偏移量,通过转换t-s曲线旋转来校正t-s曲线。

接触点是这样的点,在该点处,当离合器传递扭矩接近于0时,扭矩开始传输,也即,在该点处,离合器物理上开始发生相互接触。

重复确定步骤(s40),其中,利用基于校正的映射而计算的映射扭矩和在校正步骤(s30)之后更新的观测扭矩来再次计算扭矩误差,当再次计算的扭矩误差等于或大于参考值时,重复该校正步骤(s30),而当再次计算的扭矩误差小于参考值时,执行离合器控制步骤(s50)。重复确定步骤(s40)在校正步骤(s30)和离合器控制步骤(s50)之间进行,以实现更精确和更恰当的校正。

在本发明的一些形式中,在校正步骤(s30)中的增益值可以设定为大于0并且不大于1,从而映射不会校正为立刻去除扭矩误差,而是通过重复过程来减小扭矩误差的同时,而是更缓和且更精确地校正映射。

因此,用于比较扭矩误差的参考值是通过考虑增益值、映射的校正速度和校正的精确性,经过反复的测试和分析而适当地设定的。

如上所述,当在再生制动期间执行换挡时,根据本发明,使用对于该状况进行了恰当地校正的映射来控制离合器,从而能够适当地维持制动性能,并且适当地控制了用于换挡的离合器,借此能够避免或减少制动性能变差。

尽管参考附图所示的具体形式来描述本发明,但是对于本领域技术人员来说显然的是,可以对本发明以各种不同方式进行改变和修改,而不会脱离本发明的范围。

本发明的描述本质仅为示例性的,因而不偏离本发明的实质的变体形式意在落入本发明的范围内。这些变体形式不应被视为偏离本发明的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1