用于快速连接AWD系统的同步控制的方法与流程

文档序号:13477168阅读:334来源:国知局
用于快速连接AWD系统的同步控制的方法与流程



背景技术:

能够全轮驱动(awd)的车辆相比于具有仅连接至单个车轴的动力传动系统具有许多优势。特别地,能够全轮驱动的车辆相比于具有仅使用单个车轴来驱动的类似的车辆具有增加的牵引力和增强的驾驶性能。

然而,传统的全轮驱动车辆由于需要第二驱动车轴和动力传动系统的其它部分即使在全轮驱动功能并非有益时也以道路速度连续旋转而处于不利地位。由此,与仅具有单个驱动车轴的车辆相比,传统的全轮驱动车辆倾向于具有减小的燃料效率和总体效率。

全轮驱动车辆越来越多地配备有次要动力驱动系统断开特征部。在这种车辆中,当控制系统检测到不需要全轮驱动功能时,控制系统断开第二驱动车轴(和其它关联的动力传动系统部件),以将动力传动系统置于单车轴驱动模式中。一旦第二驱动车轴断开,就没有至第二驱动车轴的扭矩传递。由此,通过允许第二驱动车轴(和其它相关的动力传动部件)保持在空载状态中,消除了与第二驱动车轴(以及其它相关的动力传动系统部件)相关的速度相关损失。次要动力传动系统断开特征部还可允许对由次要车轴传递的扭矩进行控制。前者有助于减小车辆的燃料消耗,而后者提供非常灵活的扭矩控制。

通常,作为awd系统连接事件的一部分,通过测量诸如齿轮或齿圈(tonewheel)之类的旋转零件的经过两个齿之间的时间来执行次要动力传动系统断开传动轴旋转速度测量。以已知的方法,旋转零件的两个齿之间的旋转距离被精确地知悉。已知的方法包括测量旋转零件上的齿的两个接连的上升缘或两个接连的下降缘。将已知的位置增量除以时间,得到传动轴转速的估计值。替代地,可使用脉冲计数器来计数给定采样周期中的脉冲数。

然而,该方法导致延迟且不精确的测量,特别是在低传动轴转速、即低脉冲计数时。仍存在的挑战在于,具有一种全轮驱动车辆,其将断开(两轮驱动)状态转变为连接(四轮驱动状态),而使得车辆操作者不感觉到从两轮驱动至四轮驱动的转变。

文本的公开描述了利用可调适的模型和传动轴的转速的高分辨率测量来致动离合器的方法和系统。

附图说明

作为说明书的一部分包含在本文中的附图示出了目前公开的主题,且与说明书一起用于阐述所公开的主题的原理并使得本领域技术人员能够制作并使用所公开的主题。

图1是根据目前公开的主题的实施例的具有主要轮组和次要轮组的汽车动力传动系统的一部分的示意性框图;

图2是根据目前公开的主题的另一实施例的具有主要轮组和次要轮组的汽车动力传动系统的一部分的示意性框图;

图3是曲线图,示出了根据目前公开的主题的实施例的离合器的各致动阶段;

图4是流程图,示出了根据图3的离合器的各致动阶段;

图5是流程图,示出了根据图3的阶段3的各步骤;

图6是流程图,示出了根据图3的传动轴的高分辨率速度测量的方法;

图7是曲线图,示出了根据图6的目标轮的高分辨率转速测量;

图8是曲线图,示出了与根据图6的轴的实际转速相比之下的轴的测得的转速;

图9是流程图,示出了根据图5的在线模型调适方法;

图10是曲线图,示出了在根据图5的离合器连接事件期间作为变量的轴摩擦力;

图11是曲线图,示出了根据目前公开的主题的实施例的离合器扭矩与马达位置之间的关系;

图12是流程图,示出了根据图5的离线模型调适方法;

图13是曲线图,示出了离合器位置的变化,以用来补偿根据图5的变化系统;

图14是流程图,示出了根据图5的传动轴的高等级控制的方法。

具体实施方式

应理解,目前公开的主题可具有各种替代的方向和步骤序列,除非明确地指出相反。还要理解,附图中所示和以下说明书中所描述的特定的设备、组件、系统和过程仅是本文所限定的创造性概念的示例性实施例。因而,与所公开的实施例相关的特定的尺寸、方向或其它物理特性不应被看作是限制,除非另有明确的声明。此外,在本申请的该部分中,在本文所描述的各实施例中的相似的元件可用相似的附图标记来共同地指代,但可能并非如此。

图1示出了目前描述的主题的实施例,其中,前轮驱动车辆100包括动力传动系统102,动力传动系统102具有主要车轴104和次要车轴106,从而产生全轮驱动功能。动力传动系统102包括动力源108、变速器110、后驱动单元112、动力传送装置114(例如,动力传递单元)、成对的后轮116以及成对的前轮118。后驱动单元112包括离合器组件(未示出),离合器组件能够控制到成对的后轮116的扭矩和传动轴120的旋转。传动轴120设置在动力传递单元114与后驱动单元112之间。动力传送装置114连接和断开传动轴120。

在另一实施例中,如图2中所示,目前公开的主题可用于具有动力传动系统202的后轮驱动车辆200。动力传动系统202包括主要车轴204和次要车轴206,从而产生全轮驱动功能。动力传动系统202还包括动力源208、变速器210、后驱动单元212、动力传送装置214(例如变速箱)、成对的后轮216、成对的前轮218以及前驱动单元219。动力传送装置214被用于使传动轴220旋转起来,传动轴220与半轴联接,半轴与成对的前轮218联接。

本文中公开的主题关于图1中所描绘的车辆布置被进一步描述。本主题提供了一种致动后驱动单元112中的离合器和/或动力传递单元114中的离合器(未示出)的方法。在某实施例中,动力传递单元114可包括爪式(dog-type)离合器。如图3和4中所示,一个或两个离合器的致动包括三个阶段。第一阶段301包括在图3中由附图标记“1”标示的传动轴120高转速阶段。第一阶段301通常在最大离合器致动马达(未示出)速度下发生,且各离合器片之间的间隙快速闭合。第一阶段301的持续时间取决于离合器接合点的位置和离合器致动马达的动力学性能。

第二阶段302包括在图3中由附图标记“2”标示的传动轴120低转速阶段。在第二阶段302中,离合器片的致动接近离合器接合点。第二阶段302允许对传动轴120转速进行更大的控制。第二阶段302传动轴120转速的选择可根据轮116、118的速度来作出。

第三阶段303是在图3中由附图标记“3”标示的传动轴120受控转速阶段。第三阶段303涉及闭合各离合器片之间的间隙,并增加施加至传动轴120的旋转扭矩,直至所施加的扭矩高于传动轴120的摩擦扭矩(静态扭矩)且传动轴120开始旋转。

如图5中所示,离合器致动的第三阶段303可分两部分来描述,第一部分是模型估计和调适306,第二部分是高等级控制314。在第一部分中,可利用两种类型的模型调适来控制传动轴120的转速——在线模型调适310和/或离线模型调适312。

如图5和9中所示,在线模型调适310基于在awd连接事件期间进入系统的传动轴120的转速信息而更新。在在线模型调适310中,步骤316包括创建模型,该模型描摹了离合器扭矩与离合器致动马达位置之间的关系。估计有限数量的系统参数,包括但不限于作用于传动轴120上的摩擦力。图10示出了学习作用于传动轴120上的摩擦力的示例。由于该摩擦力易受外部影响,以及在静态摩擦力与动态摩擦力之间差异的发生,故而难以事先知悉摩擦力值而使得在线模型调适为出色的方案。

接着,在线模型调适310包括步骤318,步骤318包括传动轴120转速的高分辨率测量。高分辨率测量318的方法可用于在第三阶段303期间提供对高等级控制314的更频繁的更新,高等级控制314确定了在次要动力传动系统断开系统中离合器的致动。如图6-8中所示,测量传动轴120转速的方法318包括利用传感器(未示出)来确定传感器脉冲频率330,传感器脉冲频率330包括经过诸如齿轮之类的旋转零件(未示出)上各预定点之间的时间。在某实施例中,齿轮可包括与传动轴120联接或与差速器壳联接的锥齿轮。在某些实施例中,可使用齿圈而不是齿轮。更特别地,如图7中所示,测量传动轴120转速的方法318包括:确定经过第一齿轮齿上升缘与第一齿轮齿下降缘之间的时间,以及经过齿轮的第一齿轮齿下降缘与第二齿轮齿上升缘之间的时间。该步骤提供了对传动轴120转速的更精确的测量,即使在低的传动轴120转速的情况下也行。

两个传感器脉冲、即上升和下降(开和关)状态之间的频率330,测量两个传感器脉冲之间平均的传动轴120转速。然而,如图8中所示,在数据获取和处理期间传动轴120转速的变化是显著的,且实际的传动轴120转速将总是高于由传感器脉冲频率330所标示的所感测的传动轴120转速。

为了处理在数据获取和处理期间传动轴120的加速,测量传动轴120转速的方法318包括:使用例程332来估计在上升状态和下降状态期间获得的传动轴120位置增量。例程332包括步骤334、步骤336和步骤338,步骤334包括确定已知速度参考值的转速,步骤336包括校准传动轴120传感器读数将上升和下降处的点,步骤338包括计算传动轴120传感器读数将上升和下降的位置。

已知的速度参考值可为当后驱动单元112的离合器被接合时车辆100的轮116、118的速度。在步骤336中,轮116、118的速度可用于确定实际的传动轴120转速,实际的传动轴120转速可与传动轴120的上升位置和下降位置增量或输入脉冲比较。也可将在背景技术中描述的传统的转速计算方法与传动轴120转速相比较来执行校准步骤334。在步骤340中,可接着作出对传动轴120转速曲线的精确估计。

例程332还包括步骤342,该步骤确定传动轴120转速曲线的积分。利用传动轴120转速曲线的积分和传感器的上升和下降状态次数,可估计上升位置和下降位置增量。由于上升和下降位置增量之和事先已知且不会变化,故而可进行精度检查。接着,可使用滤波器以稳健的方式来更新上升和下降位置增量的值。所使用的滤波器可包括但不限于:卡尔曼滤波器和/或(递归)最小二乘滤波器。

在线模型调适310还包括步骤320,步骤320将传动轴120转速传感器信息与离合器扭矩与离合器致动马达位置关系的模型316相结合。步骤320允许确定传动轴120的摩擦力和其它参数。在线模型调适310的步骤322包括将传动轴120的摩擦力参数输入模型316中。模型316中的摩擦力参数可例如通过离线测量离合器的摩擦力参数而被初始化。随着传动轴120的摩擦力在离合器致动事件期间改变(例如,静态摩擦相比于动态摩擦),传动轴120的摩擦力是在离合器致动事件的时间期间可变的参数(参见图10)。

以上等式示出了离合器扭矩与离合器致动马达位置的模型和实际的传动轴120的转速测量值之间的关系。在以上等式中,θi代表测得的/估计的(相对的)传动轴120的旋转位置,而等式的右手侧包含了模型信息的处理。tclutch,model代表模型化的离合器扭矩;posclutch(t)代表传动轴120的已知位置增量的测量值;tfrict(t)代表传动轴120的摩擦力;且代表模型化的传动轴120的转速。积分提供了对传动轴120的旋转位置的稳健估计。可利用多种估计算法来估计摩擦力,多种估计算法包括但不限于:卡尔曼滤波器和递归最小二乘算法。图11示出了离散位置增量与时间的关系的示意图。

如图5和12中所示,离线模型调适312发生在离合器致动系统未接合时,例如,在两个或更多个连续发生连接事件之间。离线模型调适312包括步骤324,步骤324包括储存后驱动单元112的离合器扭矩与离合器致动马达位置关系的模型。离线模型调适312的步骤326在离合器致动事件期间收集数据(即,数据在传动轴120的加速旋转期间被收集),并在有足够的计算能力时处理数据。离线模型调适312的步骤328包括使用来自完整的离合器致动事件的信息来调适离合器扭矩与离合器致动马达位置之间的关系的模型324。

图13示出了一示例,其中,通过使用离合器扭矩与离合器致动马达位置的模型等式以及传动轴120的转速和离合器位置信息的集合来调适离合器扭矩模型。如图13中所见,这可能导致原始曲线的平移(虚线:调适曲线1)或形状的调适(点划线:调适曲线2)。该方法允许补偿由于例如磨损效应而导致的变化系统。

离合器致动的第三阶段303的第二部分包括对传动轴120的高等级控制314。图14中示出了该高等级控制314的一实施例。高等级控制314利用在线模型调适310的离合器扭矩模型316和离线模型调适312的离合器扭矩模型324以及离合器致动系统的动态模型(未示出)来输出用于驱动元件的设定点(例如,离合器致动器马达扭矩/离合器的接合力,或在电动液压系统中的电流)。

高等级控制314利用在线模型调适310和离线模型调适312来处理离合器致动系统的动力学性能并最小化所需的传动轴转速的任何超调(overshoot)。当获得所需的转速时,传动轴120的加速度等于零。可使用模型预测控制或多环控制架构来最小化所需的传动轴转速的超调。

在图14中示出了多环控制架构的示例。高等级控制314的步骤346包括:基于传动轴120的转速信息利用反馈控制器来生成传动轴120的加速度设定点。接着,步骤348利用离合器扭矩模型中的传动轴120的加速度设定点。高等级控制314还包括生成轴向位置设定点的步骤350。步骤252包括:反馈控制器利用轴向位置设定点来生成离合器致动马达扭矩的设定点。

多环控制架构的步骤354还包括自适应前馈。前馈确保离合器制动系统的动力学性能不妨碍对所需传动轴120的转速的最小超调的限制。

传动轴120转速的设定点可被预定或当在线时被计算,使得传动轴120转速的设定点满足用于动力传递单元114接合的速度差标准。传动轴120转速的设定点可被在线调整,并由此允许但不限于在离合器致动事件的持续时间与所允许的系统噪声、振动和平顺度之间的权衡。传动轴120转速的设定点基于断开系统的驱动侧的瞬时值,且由此在传动轴120的加速期间变化。

一旦达到目标的传动轴120转速的设定点,传动轴120的转速控制将确保实际的转速保持在设定点周围一定的界限内,即设定点保持基于断开系统速度的驱动侧被更新。

尽管以上已描述了目前公开的主题的各种实施例,但应理解,它们作为示例而非限制呈现。对相关领域技术人员而言显而易见的是,所公开的主题可以其它特定的形式实施而不脱离其精神和必要特征。因而,以上所描述的实施例要在所有方面作为示例性而非限制性地被看待。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1