能够承受超大载荷的双超越自适应自动变速系统的制作方法

文档序号:20514979发布日期:2020-04-24 18:58阅读:92来源:国知局
能够承受超大载荷的双超越自适应自动变速系统的制作方法

本发明涉及变速器技术领域,具体涉及一种能够承受超大载荷的双超越自适应自动变速系统。



背景技术:

现有的电动交通工具由于其传动结构的限制,在行驶过程中,完全由驾驶员在不能准确知晓行驶阻力的情况下,依据经验进行操控,因此,常常不可避免地出现电机工作状态与交通工具实际行驶状况不匹配的情况,造成电机堵转。尤其是交通工具处于启动、爬坡、逆风等低速重载条件时,电机往往需要在低效率、低转速、高扭矩情况下工作,容易引起电机的意外损坏,增加维修和更换成本,同时也会直接影响到电池的续航里程。对于诸如电动物流车等对经济性要求较高的车型而言,传统的变速传动结构显然不能较好的满足其使用要求。

为了解决以上问题,本案发明人团队设计了一系列的凸轮自适应自动变速装置和变速桥,利用行驶阻力驱动凸轮,达到自动换挡和根据行驶阻力自适应匹配车速输出扭矩的目的,具有较好的应用效果。但是,现有凸轮自适应自动变速装置均只适用于后置后驱或者前置后驱的传动方式,传动效率始终不够理想。解决以上问题成为当务之急。



技术实现要素:

为解决以上的技术问题,本发明提供了一种能够承受超大载荷的双超越自适应自动变速系统。

其技术方案如下:

一种能够承受超大载荷的双超越自适应自动变速系统,其要点在于,包括轴系、动力输入机构、高速挡传动机构和低速挡传动机构;

所述轴系包括主轴、可转动地套装在主轴上的主传动套以及分别同轴地设置在主轴两端的第一传动轴和第二传动轴,所述主传动套的一端通过差速器将动力传递给主轴和第二传动轴,所述主轴靠近第一传动轴的一端通过中间传动套带动第一传动轴同步转动;

所述高速挡传动机构包括多片式摩擦离合器和用于对多片式摩擦离合器施加预紧力的弹性元件组,所述动力输入机构通过第一超越离合器将动力传递给多片式摩擦离合器,所述多片式摩擦离合器通过内片螺旋滚道套套装在主传动套上,所述内片螺旋滚道套与主传动套之间形成螺旋传动副,以使内片螺旋滚道套能够沿主传动套轴向滑动;

所述低速挡传动机构包括多排式超越离合器以及在动力输入机构和多排式超越离合器之间减速传动的副轴传动组件,所述多排式超越离合器通过内心轮凸轮套套装在主传动套上,所述内心轮凸轮套与内片螺旋滚道套的对应端面通过端面凸轮副传动配合,以将动力传递到主传动套上。

在第一超越离合器、多片式摩擦离合器和多排式超越离合器的共同配合下,当主传动套承受的载荷不大时,动力输入机构依次经第一超越离合器、多片式摩擦离合器和内片螺旋滚道套,将动力传递到主传动套上,自适应自动变速系统能够高效地传递动力,电机处于高转速、高效率的工作状态,能耗低;当纯电动交通工具处于启动、爬坡、逆风等低速重载条件时,主传动套的转速小于内片螺旋滚道套的转速,内片螺旋滚道套沿主传动套发生轴向位移,多片式摩擦离合器失去预紧力,因而多片式摩擦离合器断开,进入低速挡,动力输入机构依次经副轴传动组件、多排式超越离合器、内心轮凸轮套和内片螺旋滚道套,将动力传递到主传动套上,此时,自适应自动变速系统能够自适应匹配纯电动交通工具的实际行驶工况与电机工况,不仅使其具有强大的爬坡和重载能力,而且使电机始终处于高效平台上,大大提高了电机在爬坡和重载情况下的效率,降低了电机能耗。

采用以上结构,主传动套能够通过差速器将动力传递给主轴和第二传动轴,主轴再通过中间传动套将动力传递给第一传动轴,第一传动轴和第二传动轴能够直接带动车辆左右前轮转动,从而不仅能够利用行驶阻力驱动凸轮,达到自动换挡和根据行驶阻力自适应匹配车速输出扭矩的目的,还能够实现前置前驱的传动方式,传动效率高。

作为优选:所述内心轮凸轮套包括同轴设置的动力输出子套和离合安装子套组成,所述动力输出子套可转动地套装在主传动套上,且动力输出子套远离离合安装子套的一端端面与内片螺旋滚道套的对应端面通过端面凸轮副传动配合,所述多排式超越离合器套装在离合安装子套上,所述离合安装子套的一端与动力输出子套固定连接,另一端通过内心轮安装套可转动地套装在主传动套上。采用以上结构,既能够可靠地安装多排式超越离合器,又能够稳定可靠地将多排式超越离合器的动力传递给内片螺旋滚道套,同时便于进行轻量化设计。

作为优选:所述内心轮安装套与传动套之间设置有第一滚针轴承,所述主传动套与内心轮安装套之间设置有第一端面轴承,所述动力输出子套与主传动套之间设置有第二滚针轴承,所述动力输出子套靠近离合安装子套的一端设置有第二端面轴承,在所述主传动套上设置有用于定位第二端面轴承的端面轴承安装组件,所述第二端面轴承和端面轴承安装组件位于离合安装子套和主传动套之间的间隙中。采用以上结构,既能够保证内心轮凸轮套和多排式超越离合器的可靠安装以及相邻部件的可靠配合,同时又能够减小内心轮凸轮套质量和体积,实现轻量化设计。

作为优选:所述多片式摩擦离合器包括设置在内片螺旋滚道套上的摩擦片支撑件以及若干交替排列在摩擦片支撑件和内片螺旋滚道套之间的外摩擦片和内摩擦片,各外摩擦片能够沿摩擦片支撑件轴向滑动,各内摩擦片能够沿内片螺旋滚道套轴向滑动;

所述动力输入机构能够通过第一超越离合器将动力传递给摩擦片支撑件,所述弹性元件组能够对内片螺旋滚道套施加预紧力,以压紧各外摩擦片和内摩擦片,所述内片螺旋滚道套与主传动套之间形成螺旋传动副,使内片螺旋滚道套能够沿主传动套轴向滑动,从而压缩弹性元件组,以释放各外摩擦片和内摩擦片。

采用以上结构,将多片式摩擦离合器中的摩擦结构设置为若干交替排列的外摩擦片和内摩擦片,使承受的扭矩分散在各外摩擦片和内摩擦片上,通过各外摩擦片和内摩擦片分担磨损,大大降低了滑摩损耗,克服传统盘式摩擦离合器的缺陷,从而大幅提高了多片式摩擦离合器的耐磨性、稳定性和可靠性,延长了使用寿命,能够作为大扭矩动力传递装置。

作为优选:所述内片螺旋滚道套包括呈圆盘形结构的摩擦片压紧盘和呈圆筒形结构的输出螺旋滚道筒,所述输出螺旋滚道筒套装在主传动套上,并与主传动套之间形成螺旋传动副,所述内心轮凸轮套与输出螺旋滚道筒相互靠近的一端凸轮型面配合,形成端面凸轮副传动副,所述摩擦片压紧盘固套在输出螺旋滚道筒的一端;

所述摩擦片支撑件包括呈圆盘形结构的摩擦片支撑盘和呈圆筒形结构的外片花键套,所述动力输入机构能够将动力传递给摩擦片支撑盘,所述摩擦片支撑盘与摩擦片压紧盘平行,所述外片花键套同轴地套在输出螺旋滚道筒的外部,其一端与摩擦片支撑盘的外缘花键配合,另一端可转动地支承在摩擦片压紧盘的外缘上,各外摩擦片的外缘均与外片花键套的内壁花键配合,各内摩擦片的內缘均与输出螺旋滚道筒的外壁花键配合。

采用以上结构,整体结构和配合稳定可靠,处于低速挡传动时,利用内心轮凸轮套与输出螺旋滚道筒的端面凸轮副传动副,能够压缩弹性元件组,使摩擦离合器处于分离状态,从而进入慢挡传动,并且,端面凸轮副传动配合稳定可靠,易于加工制造。

作为优选:在所述输出螺旋滚道筒的外壁上套装有若干内片启动挡圈,各个内片启动挡圈分别位于各内摩擦片靠近摩擦片支撑盘的一侧;

当输出螺旋滚道筒朝着远离摩擦片支撑盘方向轴向移动时,各个内片启动挡圈能够带动相邻内摩擦片朝着远离摩擦片支撑盘方向轴向移动,以使各外摩擦片和内摩擦片相互分离;当输出螺旋滚道筒朝着靠近摩擦片支撑盘方向轴向移动时,摩擦片压紧盘能够压紧各外摩擦片和内摩擦片。

采用以上结构,通过在内摩擦片安装筒上设置内片启动挡圈,能够主动地带动各内摩擦片与相邻的外摩擦片分离,相对于现有多片式摩擦离合器,不仅大幅提高了响应速度,缩短了相应时间,从而能够大幅增加摩擦片的数量,甚至无限增加摩擦片的数量,使多片式摩擦离合器能够应用于大扭矩场景,而且能够保证内摩擦片和外摩擦片的彻底分离,不会发生粘连的情况,长期使用,各内摩擦片和外摩擦片的磨损情况基本一致,大大降低了滑摩损耗,克服传统多片式摩擦离合器的缺陷,延长了摩擦离合器的使用寿命,从而大幅提高了多片式摩擦离合装置的耐磨性、稳定性和可靠性。

作为优选:在所述外片花键套的内壁上设置有若干外片限位挡圈,各外片限位挡圈分别位于各外摩擦片靠近摩擦片压紧盘的一侧。采用以上结构,对外摩擦片进行限位,避免外摩擦片与前一级内摩擦片发生粘接的情况,使内摩擦片与外摩擦片分离得更加彻底。

作为优选:所述多排式超越离合器包括第二外圈以及至少两个并排套装在同一内心轮凸轮套上的第二内心轮,所述动力输入机构能够通过副轴传动组件将动力传递给第二外圈,各个第二内心轮外周上设置的外齿一一正对,所述第二外圈与各个第二内心轮之间分别设置有第二滚动体,相邻第二内心轮周围的滚动体一一正对。采用以上结构,内心轮及相应滚动体的数量能够根据实际需要进行自由选择,甚至无限增加,成倍地提高了多排式超越离合器承受载荷的能力,突破了传统超越离合器的承载极限;由于内心轮和滚动体的长度较短,受力均匀,使用过程中可靠性高,难以发生滚动体断裂的的情况,同时,对生产加工的精度要求低,易于制造,装配简单,材料要求低,普通轴承钢即可,制造成本相对低廉,从而能够以较低的生产成本制造出可靠性极高、能够承受超大载荷的重载超越离合器。通过多排式超越离合器的改进,使自适应自动变速系统能够承受超大载荷,提高了可靠性,降低了制造成本。

作为优选:沿各内心轮外周分布的所述滚动体由交替设置的粗滚动体和细滚动体组成,在各个所述内心轮的外周面上均设置有两个相对的保持架,在每个保持架的内壁上均开设有一圈环形槽,各个细滚动体的两端分别均可滑动地插入对应的环形槽中。采用以上结构,粗滚动体起到啮合作用,细滚动体起到排序作用,使各个细滚动体能够实现随动,提高了超越离合器的可靠性,增加了使用寿命;同时,各个内心轮周围的粗滚动体和细滚动体相互独立,各自随动,互不干涉,各自自适应,进一步提高了整体的可靠性。

作为优选:所述副轴传动组件包括活套在内心轮凸轮套上的一级主动齿轮、与主轴平行的中间轴以及固套在中间轴上的一级从动齿轮和二级主动齿轮,所述一级主动齿轮能够在动力输入机构的带动下同步转动,并与一级从动齿轮啮合,在所述第二外圈上设置有与二级主动齿轮啮合的二级从动齿。采用以上结构,能够稳定可靠地进行动力的减速传递,传动效率高。

与现有技术相比,本发明的有益效果:

采用以上技术方案的能够承受超大载荷的双超越自适应自动变速系统,结构新颖,设计巧妙,主传动套能够通过差速器将动力传递给主轴和第二传动轴,主轴再通过中间传动套将动力传递给第一传动轴,第一传动轴和第二传动轴能够直接带动车辆左右前轮转动,从而不仅能够利用行驶阻力驱动凸轮,达到自动换挡和根据行驶阻力自适应匹配车速输出扭矩的目的,还能够实现前置前驱的传动方式,传动效率高。

附图说明

图1为本发明的结构示意图;

图2为低速挡传动机构的结构示意图;

图3为高速挡传动机构的结构示意图;

图4位内片螺旋滚道套与多片式摩擦离合器的配合示意图;

图5为外片连接件的结构示意图;

图6为内片螺旋滚道套的结构示意图;

图7为图6中a-a处的剖视图;

图8为外摩擦片的结构示意图;

图9为内摩擦片的结构示意图;

图10为多排式超越离合器的结构示意图;

图11位多排式超越离合器的剖视图;

图12为保持架的结构示意图。

具体实施方式

以下结合实施例和附图对本发明作进一步说明。

如图1-图3所示,一种能够承受超大载荷的双超越自适应自动变速系统,包括轴系1、动力输入机构、高速挡传动机构和低速挡传动机构。

所述轴系1包括主轴1a、可转动地套装在主轴1a上的主传动套1b以及分别同轴地设置在主轴1a两端的第一传动轴1c和第二传动轴1d,所述主传动套1b的一端通过差速器1e将动力传递给主轴1a和第二传动轴1d,所述主轴1a靠近第一传动轴1c的一端通过中间传动套1f带动第一传动轴1c同步转动。具体地说,所述主传动套1b远离中间传动套1f的一端通过传动盘1g将动力传递给差速器1e,差速器1e带动主轴1a和第二传动轴1d,主轴1a通过中间传动套1f带动第一传动轴1c与其同步转动。从而通过第一传动轴1c和第二传动轴1d能够带动车辆左前轮和右前轮转动。

请参见图1和图3,所述动力输入机构包括同步转动的动力输入齿套8、输入传动套9和输入齿支撑法兰10,所述第一超越离合器4能够同步转动地设置在输入传动套9和输入齿支撑法兰10之间,所述输入齿支撑法兰10用于向副轴传动组件传递动力。

请参见图1和图3,所述高速挡传动机构包括多片式摩擦离合器2和用于对多片式摩擦离合器2施加预紧力的弹性元件组3,所述动力输入机构通过第一超越离合器4将动力传递给多片式摩擦离合器2,所述多片式摩擦离合器2通过内片螺旋滚道套5套装在主传动套1b上,所述内片螺旋滚道套5与主传动套1b之间形成螺旋传动副,以使内片螺旋滚道套5能够沿主传动套1b轴向滑动。

请参见图3、图4、图6和图7,所述输出螺旋滚道筒5a套装在主传动套1b上,并与主传动套1b之间形成螺旋传动副,使内片螺旋滚道套5能够沿主传动套1b轴向滑动,从而压缩弹性元件组3,以释放各外摩擦片2c和内摩擦片2d。具体地说,所述螺旋传动副包括沿周向分布在输出螺旋滚道筒5a内壁上的内螺旋滚道5a3以及沿周向分布在主传动套1b外壁上的外螺旋滚道,在每个外螺旋滚道中均嵌设有若干向外凸出的滚珠,各个滚珠分别能够在对应的内螺旋滚道5a3和外螺旋滚道1a中滚动。当内片螺旋滚道套5相对主传动套1b转动时,能够相对主传动套1b进行轴向移动,从而能够压紧或释放摩擦离合器2,使摩擦离合器2处于结合或分离状态。

所述摩擦片压紧盘5b自输出螺旋滚道筒5a远离摩擦片支撑件的一端沿径向向外延伸。所述摩擦片压紧盘5b靠近弹性元件组3的一侧表面上分布有若干同心的环形滚道5b1,在所述弹性元件组3和摩擦片压紧盘5b之间设置有端面轴承21,该端面轴承21包括轴承支撑盘21b以及若干支撑在轴承支撑盘21b和摩擦片压紧盘5b之间的轴承滚珠21a,各轴承滚珠21a分别能够沿对应的环形滚道5b1滚动。通过以上结构,摩擦片压紧盘5b能够作为一侧的轴承支撑盘,从而既节约了制造成本,又节约了装配空间。

请参见图3-图9,所述多片式摩擦离合器2包括摩擦片支撑件以及若干交替排列在摩擦片支撑件和内片螺旋滚道套5之间的外摩擦片2c和内摩擦片2d,其中,所述摩擦片支撑件包括呈圆盘形结构的摩擦片支撑盘2a和呈圆筒形结构的外片花键套2b,所述动力输入机构能够将动力传递给摩擦片支撑盘2a,所述摩擦片支撑盘2a与摩擦片压紧盘5b平行,所述外片花键套2b同轴地套在输出螺旋滚道筒5a的外部,其一端与摩擦片支撑盘2a的外缘花键配合,另一端可转动地支承在摩擦片压紧盘5b的外缘上。各外摩擦片2c能够沿外片花键套2b的内壁轴向滑动,各内摩擦片2d能够沿输出螺旋滚道筒5a的外壁轴向滑动。相对于传统盘式摩擦离合器,本事实例中的多片式摩擦离合器2,长期使用,各内摩擦片2d和外摩擦片2c的磨损情况基本一致,降低了滑摩损耗,提高了多片式摩擦离合器2的耐磨性、稳定性和可靠性,延长多片式摩擦离合器2的使用寿命。

各所述内摩擦片2d的內缘上均设置有内片内花键2d1,在所述输出螺旋滚道筒5a的外壁上设置有与各内片内花键2d1相适应的内片外花键5a1,即所述输出螺旋滚道筒5a与各内摩擦片2d通过内片内花键2d1与内片外花键5a1实现花键配合,使各内摩擦片2d既能够与输出螺旋滚道筒5a同步转动,又能够沿输出螺旋滚道筒5a轴向移动,实现分离。

各所述外摩擦片2c的外缘上均设置有外片外花键2c1,所述外片花键套2b的内壁上设置有与各外片外花键2c1相适应的外片内花键2b1。即所述外片花键套2b与各外摩擦片2c通过外片外花键2c1与外片内花键2b1实现花键配合,使各外摩擦片2c既能够与外片花键套2b同步转动,又能够沿外片花键套2b轴向移动,实现分离。

所述摩擦片支撑盘2a的內缘具有朝着远离摩擦片压紧盘5b延伸的动力输入套2a1。所述动力输入套2a1与输出螺旋滚道筒5a同轴设置,即动力输入套2a1、输出螺旋滚道筒5a和主传动套1b三者的中心轴线重合。所述摩擦片支撑盘2a自动力输入套2a1靠近摩擦片压紧盘5b的一端沿径向向外延伸,并与摩擦片压紧盘5b相互正对,以使各外摩擦片2c和内摩擦片2d交替排列在摩擦片支撑盘2a和摩擦片压紧盘5b。并且,所述摩擦片支撑盘2a的外缘上设置有与外片内花键2b1花键配合的动力输出花键2a3。各外摩擦片2c与摩擦片支撑盘2a能够共用外片花键套2b内壁上的外片内花键2b1,降低了设计和加工难度以及生产成本。

所述外片花键套2b远离摩擦片支撑件的一端支承在摩擦片压紧盘5b的外缘上,并可相对摩擦片压紧盘5b自由转动,以保持结构的稳定可靠。

请参见图1和图3,所述动力输入机构能够通过第一超越离合器4将动力传递给摩擦片支撑件,具体地说,所述第一超越离合器4包括第一外圈4c、第一内心轮4a以及若干设置在第一外圈4c和第一内心轮4a之间的第一滚动体4b。所述第一外圈4c固定安装在输入传动套9和输入齿支撑法兰10,具体地说,第一外圈4c、输入传动套9和输入齿支撑法兰10之间通过若干螺栓固定。所述第一内心轮4a与摩擦片支撑件通过花键配合,具体地说,所述第一内心轮4a的内壁上具有与动力输入花键2a2花键配合的内心轮内花键。

所述第一滚动体4b包括沿周向交替设置在第一内心轮4a周围的粗滚子和细滚子,在第一内心轮4a的外周面上均设置有两个相对的第一保持架4d,在每个第一保持架4d的内壁上均开设有一圈细滚子滑槽,各个细滚子的两端分别均可滑动地插入对应的细滚子滑槽中。采用以上结构,使各个细滚子能够随动,提高了第一超越离合器4的稳定性和可靠性,增加了使用寿命。

请参见图3,所述弹性元件组3能够对内片螺旋滚道套5施加预紧力,以压紧各外摩擦片2c和内摩擦片2d,使多片式摩擦离合器2保持结合状态。本实施例中,所述弹性元件组3优选采用碟簧,稳定可靠,成本低廉,能够对端面轴承21持续地施加一个轴向上的推力。

请参见图4,在输出螺旋滚道筒5a的内壁上设置有若干内片启动挡圈2e,各内片启动挡圈2e分别位于相邻内摩擦片2d靠近摩擦片支撑盘2a的一侧。通过在输出螺旋滚道筒5a上设置内片启动挡圈2e,能够对各内摩擦片2d进行分隔,从而保证在分离状态下,所有内摩擦片2d能够既快速、又均匀地散开,同时带动外摩擦片2c移动,实现各内摩擦片2d和外摩擦片2c的彻底分离。

进一步地,在所述输出螺旋滚道筒5a的外壁上套装有若干内片碟簧2g,各内片碟簧2g分别位于各内摩擦片2d靠近摩擦片压紧盘5b的一侧,各内片碟簧2g的两端分别弹性地支承在对应的内摩擦片2d和内片启动挡圈2e上。通过这样的设计,各内片碟簧2g与各内片启动挡圈2e相互配合,对内摩擦片2d施加双向作用力,促使内摩擦片2d与两侧的外摩擦片2c主动分离,保证了各内摩擦片2d与各外摩擦片2c的彻底分离。

进一步地,相邻所述内片启动挡圈2e的间距相等,且相邻内片启动挡圈2e的间距大于相邻内摩擦片2d的间距,具体地说,相邻内片启动挡圈2e的间距只是略大于相邻内摩擦片2d的间距,在摩擦离合器处于断开状态时,通过相邻内片启动挡圈2e能够保证各内摩擦片2d与相邻外摩擦片2c分离后均匀分布。当摩擦片压紧盘5b压紧各外摩擦片2c和内摩擦片2d时,各个所述内片启动挡圈2e与相邻内摩擦片2d的间距朝着靠近摩擦片压紧盘5b的方向呈等差数列关系逐渐减小。所述输出螺旋滚道筒5a的外壁上具有内片外花键5a1,在该内片外花键5a1上设置有若干与对应内片启动挡圈2e相适应的内挡圈安装环槽5a2,各内片启动挡圈2e分别嵌入对应的内挡圈安装环槽5a2中。

请参见图4,在所述外片花键套2b的内壁上设置有若干外片限位挡圈2f,各外片限位挡圈2f分别位于各外摩擦片2c靠近摩擦片压紧盘5b的一侧。相邻所述外片限位挡圈2f的间距相等,且相邻外片限位挡圈2f的间距大于相邻内片启动挡圈2e的间距。通过这样的设计,对外摩擦片2c进行限位,避免外摩擦片2c与前一级内摩擦片2d发生粘接的情况,使内摩擦片2d与外摩擦片2c分离得更加彻底。各相邻所述外片限位挡圈2f的间距相等,使各内摩擦片2d与对应外摩擦片2c能够更加有序、均匀地散开,缩短响应时间。

进一步地,在所述外片花键套2b的内壁上套装有若干外片碟簧2h,各外片碟簧2h分别位于各外摩擦片2c靠近摩擦片支撑盘2a的一侧,各外片碟簧2h的两端分别弹性地支承在对应的外片限位挡圈2f和外摩擦片2c上。通过这样的设计,各外片碟簧2h与各外片限位挡圈2f相互配合,对外摩擦片2c施加双向作用力,促使外摩擦片2c与两侧的内摩擦片2d主动分离,保证了各内摩擦片2d与各外摩擦片2c的彻底分离。

所述外片花键套2b的内壁上设置有外片内花键2b1,各所述外摩擦片2c的外缘上均设置有与外片内花键2b1花键配合的外片外花键2c1,摩擦片支撑盘2a的外缘上设置有动力输出花键2a3,所述外片花键套2b靠近摩擦片支撑盘2a的一端通过外片内花键2b1与动力输出花键2a3花键配合,在所述外片内花键2b1上设置有若干与对应外片限位挡圈2f相适应的外挡圈安装环槽,各外片限位挡圈2f分别嵌入对应的外挡圈安装环槽中。

请参见图1和图2,所述低速挡传动机构包括多排式超越离合器6以及在动力输入机构和多排式超越离合器6之间减速传动的副轴传动组件,所述多排式超越离合器6通过内心轮凸轮套7套装在主传动套1b上,所述内心轮凸轮套7与内片螺旋滚道套5的对应端面通过端面凸轮副传动配合,以将动力传递到主传动套1b上。

所述内心轮凸轮套7包括同轴设置的动力输出子套7a和离合安装子套7b组成,所述动力输出子套7a可转动地套装在主传动套1b上,且动力输出子套7a远离离合安装子套7b的一端端面与内片螺旋滚道套5的对应端面通过端面凸轮副传动配合,所述多排式超越离合器6套装在离合安装子套7b上,所述离合安装子套7b的一端与动力输出子套7a固定连接,另一端通过内心轮安装套30可转动地套装在主传动套1b上。

所述内心轮安装套30与传动套1m之间设置有第一滚针轴承31,所述主传动套1b与内心轮安装套30之间设置有第一端面轴承32,所述动力输出子套7a与主传动套1b之间设置有第二滚针轴承33,所述动力输出子套7a靠近离合安装子套7b的一端设置有第二端面轴承34,在所述主传动套1b上设置有用于定位第二端面轴承34的端面轴承安装组件35,所述第二端面轴承34和端面轴承安装组件35位于离合安装子套7b和主传动套1b之间的间隙中。

请参见图2、图10-图12,所述多排式超越离合器6包括第二外圈6a以及至少两个并排设置在内心轮凸轮套7和第二外圈6a之间的第二内心轮6c,该第二外圈6a与各个第二内心轮6c之间分别设置有第二滚动体,需要指出的是,各第二内心轮6c外周的外齿6c1一一正对,相邻第二内心轮6c周围的滚动体一一正对,从而保证各第二内心轮6c的同步性。

所述内心轮凸轮套7采用高强度抗扭材料制成,所述内心轮6c采用抗压耐磨材料制成,具体地说,所述内心轮凸轮套7的材质为合金钢,所述内心轮6c的材质为轴承钢或合金钢或硬质合金。本实施例中,所述内心轮凸轮套7的材质优选采用20crmnti,抗扭能力强,成本较低,性价比高,所述内心轮6c的材质优选采用gcr15,耐磨抗压性能好,成本较低,性价比高。内心轮凸轮套7抗扭抗压能力高,能够保证传动的可靠性和稳定性,内心轮6c耐磨抗压能力强,从而通过将内心轮凸轮套7和内心轮6c采用两种不同的材料进行制造,不但有效节约了生产成本,而且大幅延长了多排浮动组合式重载超越离合器的使用寿命。

请参见图10-图12,沿各第二内心轮6c外周分布的所述滚动体由交替设置的粗滚动体6d和细滚动体6e组成,在各个所述第二内心轮6c的外周面上均设置有两个相对的第二保持架6f,在每个第二保持架6f的内壁上均开设有一圈环形槽6f1,各个细滚动体6e的两端分别均可滑动地插入对应的环形槽6f1中。采用以上结构,使各个细滚动体6e能够随动,提高了整体的稳定性和可靠性,增加了使用寿命。

请参见图2和图10,所述第二外圈6a的外壁上具有沿周向设置的输入从动齿6b。所述内心轮凸轮套7的外壁与各个第二内心轮6c的内壁花键配合。通过上述结构,能够可靠地进行动力传递。

请参见图11,所述第二内心轮6c的内花键齿数为外齿6c1齿数的两倍。便于安装和调试,以解决各个内圈不同步的问题。

所述外齿6c1包括顶弧段6c12以及分别位于顶弧段6c12两侧的短边段6c11和长边段6c13,所述短边段6c11为向内凹陷的弧形结构,所述长边段6c13为向外凸出的弧形结构,所述短边段6c11的曲率小于长边段6c13的曲率。采用以上结构,能够保证单向传动功能的稳定性和可靠性。

请参见图10,所述内心轮凸轮套7的其中一端端面呈凸轮型面结构,从而能够与相邻部件实现凸轮副配合,从而实现动力的传递。

请参见图1-图3,在所述内心轮凸轮套7和内片螺旋滚道套5之间设置有双凸轮传动套15,该双凸轮传动套15的两端端面分别加工有与内心轮凸轮套7和内片螺旋滚道套5端面上凸轮型面结构相适应的凸轮型面结构,从而使双凸轮传动套15分别与内心轮凸轮套7和内片螺旋滚道套5的对应端面通过端面凸轮副传动配合。通过增设双凸轮传动套15,更利于脱开、换挡。

请参见图1和图2,所述副轴传动组件包括活套在内心轮凸轮套7上的一级主动齿轮11、与主轴1a平行的中间轴12以及固套在中间轴12上的一级从动齿轮13和二级主动齿轮14,所述一级主动齿轮11能够在动力输入机构的带动下同步转动,并与一级从动齿轮13啮合,在所述多排式超越离合器6的第二外圈6a上设置有与二级主动齿轮14啮合的二级从动齿6b。其中,需要指出的是一级主动齿轮11与输入齿支撑法兰10通过焊接固定连接。

本实施例中,弹性元件组3通过各端面轴承21施加压力,压紧多片式摩擦离合器2的各外摩擦片2c和内摩擦片2d,此时多片式摩擦离合器2在弹性元件组3的压力下处于结合状态,动力处于高速挡动力传递路线:

动力→动力输入齿套8→输入传动套9→第一超越离合器4→多片式摩擦离合器2→内片螺旋滚道套5→主传动套1b→差速器1e→主轴1a、第一传动轴1c和第二传动轴1d,由第一传动轴1c和第二传动轴1d输出动力。

此时,第一超越离合器4未超越,多排式超越离合器6超越,弹性元件组3未被压缩。当前,阻力传递路线:主传动套1b→内心轮凸轮套7→双凸轮传动套15→内片螺旋滚道套5→端面轴承21→弹性元件组3;当主传动套1b传递给多片式摩擦离合器2的阻力矩大于等于多片式摩擦离合器2的预设载荷极限时,双凸轮传动套15和螺旋传动副共同推动内片螺旋滚道套5,压缩弹性元件组3,多片式摩擦离合器2的各外摩擦片2c和内摩擦片2d之间出现间隙,即分离,动力改为通过下述路线传递,即低速挡动力传递路线:

动力→动力输入齿套8→输入传动套9→输入齿支撑法兰10→一级主动齿轮11→一级从动齿轮13→中间轴12→二级主动齿轮14→多排式超越离合器6→内心轮凸轮套7→双凸轮传动套15→内片螺旋滚道套5→主传动套1b→差速器1e→主轴1a、第一传动轴1c和第二传动轴1d,由第一传动轴1c和第二传动轴1d输出动力。

此时,第一超越离合器4超越,多排式超越离合器6未超越,弹性元件组3被压缩。从上述传递路线可以看出,本发明在运行时,形成一个保持一定压力的自动变速机构。

本实施例以电动汽车为例,整车在启动时阻力大于驱动力,阻力迫使主传动套1b相对内片螺旋滚道套5转动一定角度,在螺旋传动副的作用下,内片螺旋滚道套5通过端面轴承21压缩弹性元件组3,外摩擦片2c和内摩擦片2d分离,即多片式摩擦离合器2处于断开状态,同时,动力输入机构依次经副轴传动组件、多排式超越离合器6、内心轮凸轮套7和内片螺旋滚道套5,将动力传递到主传动套1b上,以低速挡速度转动;因此,自动实现了低速挡起动,缩短了起动时间。与此同时,弹性元件组3吸收运动阻力矩能量,为恢复高速挡挡位传递动力储备势能。

启动成功后,行驶阻力减少,当分力减少到小于弹性元件组3所产生的压力时,因被运动阻力压缩而产生弹性元件组3压力迅速释放的推动下,多片式摩擦离合器2的各外摩擦片2c和内摩擦片2d恢复紧密贴合状态,多排式超越离合器6处于超越状态,动力输入机构依次经第一超越离合器4、多片式摩擦离合器2和内片螺旋滚道套5,将动力传递到主传动套1b上,以高速挡速度转动。

行驶过程中,随着运动阻力的变化自动换挡原理同上,在不需要切断动力的情况下实现变挡,使整车运行平稳,安全低耗,而且传递路线简单化,提高传动效率。

最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1