数字式金属管线路径跟踪鉴别装置的制作方法

文档序号:6103991阅读:377来源:国知局
专利名称:数字式金属管线路径跟踪鉴别装置的制作方法
技术领域
本实用新型属于测量领域,尤其涉及一种用于对金属管线或铠装电缆之敷设路径进行探测或检测的装置。
背景技术
由于各种原因,往往需要对已敷设的金属管线或电缆(电缆的金属护套层及导电芯线亦相当于金属管线)的具体敷设路径进行探测或查找。
由于敷设时的施工图纸与实际敷设路径往往有一定的差异;或者,因时间久远、人员变动等因素,导致当时的施工图纸已难以找到,此时就需要通过进行金属管线实际敷设路径的探测来解决问题。
公告日为1999年11月3日,公告号为CN 2346847Y的中国专利“地下管道踪迹带”中,公开了一种地下管道踪迹带,包括上下两层塑料膜,两层塑料膜之间夹有金属箔。使用时,其一面作好标记图案或文字,贴附于铺设的地下管道上。当用射线探测仪器探测时,金属箔的反射以及标记图案或文字会清楚地显现在仪器上,从而得以精确测定管道位置。但是其需要在管线施工时即将地下管道踪迹带与地下管道同时敷设,需要用射线探测仪器进行探测,对已敷设好的管线无法应用,且要使用射线探测仪器,对使用人员的安全、健康有一定的影响。
现在常用的金属管线探测技术,一般通过信号发生器向金属管线发送音频电流,金属管线则向外辐射同频磁场,由接收机的传感线圈感应磁场信号,放大后经耳机或表头输出,通过判断信号幅值的大小来判断管线的位置。
例如,公告日为2000年2月2日,公告号为CN 2362135Y的中国专利中,公开了一种“埋式线缆探测器”,其采用两个探头线圈,同时接收由信号发生器施加在线缆上的低频交流电流。这个信号电流形成的电磁场在两个探头线圈产生的大小不同感应电势转换为表头指示,从中零点表头的偏转方向指示电缆的方位。
但是由于邻近管线的地线回流和感应电流的存在,也会辐射出同频信号,在环境较复杂和管线密集区,很多时候只靠信号的幅值大小无法区分待测管线和邻近管线,造成跟踪管线错误。
此外,在管线的唯一性鉴别时,对电力电缆的鉴别,传统的方法是用感应线圈环绕电缆一周,根据待测电缆的信号在环绕过程中有强弱变化,而邻近管线没有这种现象来进行鉴别,其人为的因素太多,需要操作者有很强的实际操作经验。
现在有些新型的电缆和管线鉴别仪(或称识别仪),通过向电缆或金属管线注入大电流的脉冲直流信号,用接收卡钳卡住电缆或金属管线,根据所检测到信号的幅值和直流电流的方向来判断鉴别正误,其仪器的体积较大,而且也未能给出鉴别是否正确的信息,仍需操作者凭经验来判断和得出检测结果。

发明内容
本实用新型所要解决的技术问题是提供一种数字式金属管线路径跟踪鉴别装置,其通过注入倍频式电流信号所产生磁场的相位差来判断并由指示器明确指示出管线路径跟踪是正确还是错误,还可进行管线的唯一性鉴别,从而减少了管线探测的失误率,特别适用于各种环境较复杂或管线密集的区域,整个装置电路简洁,体积小,重量轻,便于携带,能提高检测工作的安全性,提高工作效率,减小工作强度,降低对管线探测装置使用者的经验要求。
本实用新型的技术方案是提供一种数字式金属管线路径跟踪鉴别装置,包括与金属管线连接的信号发射装置和可移动式信号接收装置,其特征是所述的信号发射装置为倍频式双音频信号发射机,其包括有低频信号产生单元、高频信号产生单元、信号合成单元、功率放大单元和输出单元,其所述高频信号产生单元和低频信号产生单元之输出信号的频率关系为倍频关系;其信号合成单元将低频信号和高频信号进行合成,经过功率放大单元进行功率放大,再经输出单元作最终的双音频信号输出;所述的可移动式信号接收装置包括有低、高频信号感应装置、低频信号放大单元、高频信号放大单元、相位差计算单元、中央处理单元和指示器,其低、高频信号感应装置分别感应接收金属管线上低频和高频电流所形成的磁场辐射,感应到的信号经低频信号放大单元和高频信号放大单元分别进行放大后,高频信号与低频信号共同进入相位差计算单元,得出低频信号和高频信号之间的相位差,中央处理单元对金属管线已知段的相位差进行记忆,对未知段的相位差进行比较,根据比较结果,控制指示器进行明确的提示。
其中,所述高频电流信号的频率是低频电流信号频率的整倍数,优选为偶数倍的倍频关系。
其所述双音频信号发射机的低频信号产生单元和高频信号产生单元为正弦波振荡器电路或方波振荡器电路;所述的信号合成单元为加法器电路;所述的功率放大单元和输出单元包括功放电路、输出变压器和相应的保护电路。
其所述可移动式信号接收装置的低、高频信号感应装置为低频信号感应线圈和高频信号感应线圈,或者为信号拾取接收卡钳。
其所述可移动式信号接收装置的低频信号放大单元和高频信号放大单元为可调增益放大器电路和滤波器电路;所述的相位差计算单元由A/D转换器和微处理器构成,也可以为模拟鉴相器电路;所述的中央处理单元为微处理器电路;所述的指示器是带有相应外围附属电路的LCD液晶显示器、LED发光二极管、扬声器或耳机。
其所述低频信号感应线圈和高频信号感应线圈的轴线平行,两个线圈的轴线水平于管线的敷设平面,而与管线的路径垂直;两线圈之轴线所形成的平面与管线路径平行或垂直。
其所述的信号合成单元包括运算放大器U101和电阻1R101~1R103,其中,运算放大器U101的“-”输入端经电阻1R101构成其单元输入端A,经电阻1R102构成其单元输入端B,运算放大器U101的“+”输入端接地,电阻1R103并接在运算放大器U101的“-”输入端和其输出端之间,运算放大器U101的输出端构成其单元输出端C。
其所述的放大单元由运算放大器U101A、B、电容C101、C102、C103、电位器VR101、电阻R101、R102、R103和R104构成,其中,电容C101和传感线圈并联,组成并联谐振电路,谐振频率为发射机加在管线上的交流电流频率;运算放大器U101A的“-”输入端经电阻R101与传感线圈的一端连接,运算放大器U101A的“+”输入端接地,其输出端经电阻R102和C102与运算放大器U101B的“+”输入端连接,并经电阻R102和R103接地,同时经电阻R102和电容C103与运算放大器U101B的输出端连接,电位器VR101并接在运算放大器U101A的“-”输入端与输出端之间;运算放大器U101B的“-”输入端接地,电阻R104并接在运算放大器U101B的“+”输入端与输出端之间,其中心频率和谐振频率相同。
与现有技术比较,本实用新型的优点是1.采用注入倍频式双频电流信号、检测其相位差、根据其相位差是否变化和变化的量来进行判断的方法进行金属管线路径的探测,由指示器明确指示出管线路径跟踪正确还是错误,特别适用于电磁干扰强、环境较复杂的情况或各种金属管线密集的区域,抗外界干扰能力大大提高,减小了检测人员的工作强度,降低对管线探测装置使用者的经验要求,大大提高了探测工作的效率。
2.在进行金属管线或铠装电缆的唯一性鉴别时,能由指示器明确指示鉴别时正确还是错误,能迅速和明确地区分待测管线和邻近管线,从而减少了管线探测的盲目性和失误率,给迅速查找到目标管线带来了极大的便利。
3.采用检测倍频式双频电流之磁场信号相位差的方式进行工作,其电路结构简洁,整个装置体积小,重量轻,便于携带,无放射性和强电磁场污染,装置使用环境更加安全,对操作人员的人身安全无影响,进一步提高了探测工作的安全性和可靠性。
以下结合附图和实施例对本实用新型做进一步说明。


图1是使用本方法进行金属管线路径跟踪或检测时检测装置的连接示意图;图2是双音频信号发射机的原理方框图;图3是可移动式信号接收装置的原理方框图;图4是双音频信号发射机信号合成单元的实施例线路图;图5是可移动式信号接收装置低、高频信号放大单元的实施例线路图;图6是使用本方法进行电力电缆唯一性鉴别时检测装置的连接示意图。
图中1为双音频信号发射机,2为待测管线或电缆,3为邻近的管线或电缆,4为可移动式信号接收装置,5为低、高频信号感应线圈,6为信号拾取接收卡钳。
具体实施方式
图1中,使用本方法进行金属管线路径探测时(本图以电力电缆为例),电力电缆2和3在敷设和运行中要求其金属护套(或护层、铠装)在两端良好接大地,而金属护套本身与大地以及导电的芯线绝缘。
发射机1的一个输出端和电缆2的金属护套相联,另一个输出端接大地,电缆2的金属护套在发射机端的接地线必须解开,断开与大地的连接,而在另一端须保持与大地的连接。
发射机1向电缆2注入一定幅值的双音频电流信号,其高频电流信号的频率是低频电流信号频率的整倍数,优选为偶数倍的倍频关系,此电流流经电缆的金属护套,通过对端流入大地,流入大地的电流一部分通过大地本身流回发射机(图中以I0表示),另一部分通过大地流向邻近电缆对端的金属护套接地点,经邻近电缆的金属护套流回发射机端的大地,再经大地流回发射机(图中以I1表示)。
如果将从发射机端流向待测管线对端的电流方向规定为正方向,则待测管线上的电流是正向的,而邻近管线上的电流是反向的。
波形M是当低、高频信号感应线圈5位于待测电缆2上方时接收到的高低频信号的相位示意图,波形N是当低、高频信号感应线圈5位于邻近电缆3上方时接收到的高低频信号的相位示意图。
可移动式信号接收装置4之低、高频信号感应线圈5的轴线平行,其轴线水平于电缆的敷设平面(通常为地面),而与电缆的敷设路径垂直,两线圈隔开一段距离放置,两线圈轴线形成的平面可以与电缆路径平行,也可以垂直,还可以取其它角度。
低、高频信号感应线圈5分别感应电缆上的两种频率的信号电流辐射出的磁场,经信号接收装置4分别放大处理。正向和反向电流感应出的低频和高频信号相位均相反,但由于高频信号的频率是低频信号频率的两倍,造成正向电流的高低频信号相位差和反向电流的高低频信号相位差相差180°左右,从而可以判断出电流的正反流向,具体可参见图中的波形M和波形N。
信号接收装置先在待测电缆的已知段记忆低频信号和包络信号的相位差作为基准,在对未知段进行探测时,如果相位差没有变化或变化在预定的范围内,指示器显示跟踪正确的信息,或不作提示而默认跟踪正确,此种情况相当于图中当接收机4和低、高频信号感应线圈5位于待测电缆2上方时;当相位差的变化超出预定值时,指示器显示跟踪错误的提示信息,此种情况相当于图中当接收机4和低、高频信号感应线圈5位于邻近电缆3上方时。
信号发生器发出的高频电流的频率是低频电流频率的两倍,是本实用新型优选的频率选择方案,也可以采用其他的频率组合;只要高频电流的频率是低频电流频率的整倍数即可,当高频电流的频率是低频电流频率的偶数倍时,可得到正向电流的高低频信号相位差和反向电流的高低频信号相位差相差180°左右的结果;当高频电流的频率是低频电流频率的奇数倍时,得到的正向电流的高低频信号相位差和反向电流的高低频信号相位差小于180°,具体数值由频率的倍数决定,其将会使信号接收器的数据处理将变得繁琐。
本图为探测电力电缆的一种接线方法,还可以将电缆金属护套两端的接地点均解开,发射机接电缆的一根芯线,而在电缆对端将接发射机的芯线良好接地。
本图以电力电缆为例,其它金属管线的接线方法与之类似,均需在发射机端将管线与大地的连接断开(如果有接地点的话),而在对端需要将其良好接大地。金属管线一般均有绝缘的防腐层,即使防腐层有破损,破损点的对地电阻一般也远远大于管线对端良好接地点的电阻,故对检测数据的影响不大。
图2中,信号发射装置包括有低频信号产生单元、高频信号产生单元、信号合成单元、功率放大单元和输出单元,其信号合成单元将低频信号和高频信号进行合成,经过功率放大单元进行功率放大,再经输出单元作最终的双音频信号输出。
图中低频信号产生单元和高频信号产生单元可以是由分立器件或运算放大器组成的正弦波振荡器或方波振荡器,也可以通过软件控制单片机的定时器,产生响应频率的方波脉冲,方波脉冲可以直接使用,也可以再由滤波器将其整形成正弦波。
其功率放大单元选用合适的常规功放器件或电路即可实现,输出单元包括常规的输出变压器和保护电路等。
其双音频信号发射机信号合成单元的实施例线路参见图4。
图3中,可移动式信号接收装置包括有低、高频信号感应装置、低频信号放大单元、高频信号放大单元、相位差计算单元、中央处理单元和指示器,其低、高频信号感应装置分别感应接收金属管线上低频和高频电流所形成的磁场辐射,感应到的信号经低频信号放大单元和高频信号放大单元分别进行放大处理,处理后的高频信号与低频信号共同进入相位差计算单元,得出低频信号和高频信号之间的相位差,中央处理单元对金属管线已知段的相位差进行记忆,对未知段的相位差进行比较,根据比较结果,控制指示器进行明确的提示。
其中,低、高频信号感应装置为低频信号感应线圈和高频信号感应线圈,其通过并联电容谐振于对应的低频和高频频率,感应接收金属管线上低频和高频电流所形成的磁场辐射。其低频信号放大单元和高频信号放大单元可以采用可调增益放大器电路和滤波器电路。
其相位差计算单元用模拟鉴相器电路实现其功能,也可以用A/D转换器和微处理器在程序控制下实现其功能,若采用后一种方式,则相位差计算单元可以并入中央处理单元中。
其中央处理单元为常规的微处理器电路。
其指示器可以采用带有相应外围附属电路的LCD液晶显示器或LED发光二极管,进行视觉提示,也可以通过扬声器或耳机进行声音提示,其他类型的指示器件只要能进行明确的提示均可。
其低频信号放大单元和高频信号放大单元的具体实施线路参见图5。
上述图2、图3中各单元的具体实现方式在电子技术领域已是常规和公知的技术,具体可以参见《模拟电子技术基础》(王济浩编著,山东科学技术出版社,2002年3月出版)一书中的波形的产生与变换电路(P219)、信号的运算与处理电路(P177)、比例电路(P177)(只要将其中的反馈电阻由固定电阻换为电位器,即可实现可调增益放大)以及有源带通滤波器(P204)等相关章节的内容,其具体电路可以采用分立器件实现,也可以采用各种集成电路来实现,在此不再叙述。
图4中,A点是低频信号的输入端,B点是高频信号的输入端,C点是合成后的信号的输出端。
双音频信号发射机的信号合成单元包括运算放大器U101和电阻1R101~1R103,其中,运算放大器U101的“-”输入端经电阻1R101构成其单元输入端A,经电阻1R102构成其单元输入端B,运算放大器U101的“+”输入端接地,电阻1R103并接在运算放大器U101的“-”输入端和其输出端之间,运算放大器U101的输出端构成其单元输出端C。
低频信号和高频信号分别进入由U101、R101、R102、R103构成的加法器的两个输入端,C端即输出合成后的信号。
图5中,可移动式信号接收装置中低频信号和高频信号的放大单元由运算放大器U101A、B、电容C101、C102、C103、电位器VR101、电阻R101、R102、R103和R104构成,其中,电容C101和传感线圈并联,组成并联谐振电路,谐振频率为发射机加在管线上的交流电流频率;运算放大器U101A的“-”输入端经电阻R101与传感线圈的一端连接,运算放大器U101A的“+”输入端接地,其输出端经电阻R102和C102与运算放大器U101B的“+”输入端连接,并经电阻R102和R103接地,同时经电阻R102和电容C103与运算放大器U101B的输出端连接,电位器VR101并接在运算放大器U101A的“-”输入端与输出端之间;运算放大器U101B的“-”输入端接地,电阻R104并接在运算放大器U101B的“+”输入端与输出端之间,其中心频率和谐振频率相同。
本实用新型所采用的集成电路中,运算放大器可以选用LM324或与之功能相同或相近的集成电路,A/D转换器可以选用TLC0832或与之功能相同或相近的集成电路,带A/D功能的单片机的型号可以选用C8051F020或与之功能相同或相近的集成电路,其他元件无特殊要求。
本实用新型的具体实施线路不仅仅局限于图4、图5所示的线路,其他能完成同样功能的线路均可实现本实用新型的技术方案,在此不再一一列举。
图6中,若接收机用于管线的唯一性鉴别,则只是将图1中的低频信号感应线圈和高频信号感应线圈5换为接收卡钳6,由卡钳卡住管线拾取信号,接收机的其他部分相同,指示器提示的内容改为鉴别正确或鉴别错误即可。
使用本方法进行电力电缆唯一性鉴别时,其接线方式、电流走向和信号的分析同图1的说明,不同之处在于使用接收卡钳6卡住待测电缆2,可以得到更加明确的信号,充分屏蔽了外界的干扰,得到更加明确的结果。
指示器显示的提示信息为鉴别正确,如图当鉴别卡钳6卡住待测电缆2时;或鉴别错误,如图中当鉴别卡钳6卡住邻近电缆3时。
对于其它类型金属管线的唯一性鉴别,其原理和用法也与之类似,具体可参见图1的说明。
由于本实用新型采用注入成倍频关系的双频信号、检测其相位差、根据其相位差是否变化和变化的量来进行判断的方法进行金属管线的探测,特别适用于电磁干扰强、环境较复杂的情况或各种金属管线密集的区域,其抗外界干扰能力强,检测人员的工作强度低,对管线探测装置使用者无特殊要求,大大提高了探测工作的效率。在进行金属管线或铠装电缆的唯一性鉴别时,能迅速和明确地区分待测管线和邻近管线,从而减少了管线探测的盲目性和失误率,给迅速查找到目标管线带来了极大的便利,整个装置电路简洁,体积小,重量轻,便于携带,装置使用环境更加安全,对操作人员的人身安全无影响,进一步提高了探测工作的安全性和可靠性。
对于在不挖开覆土的情况下需精确测定地下金属管线和电缆的位置和走向等分布状况的行业和部门,如建筑、市政建设、公用事业、电力、地质、勘察、石油、铁道、通信等,它都是必不可少的有力工具,可广泛应用于市政建设、公用事业、地质勘探、规划设计等部门的地下管网普查;或用于石油、然气、自来水等单位的金属管线探测;或用于电力及通讯部门的电力电缆的检测;或用于工程施工部门在施工前探测地下管线、电缆等设施的分布。
本实用新型可广泛用于地下管网的普查、金属管线的路径跟踪或电力电缆的唯一性识别等探测领域。
权利要求1.一种数字式金属管线路径跟踪鉴别装置,包括与金属管线连接的信号发射装置和可移动式信号接收装置,其特征是所述的信号发射装置为倍频式双音频信号发射机,其包括有低频信号产生单元、高频信号产生单元、信号合成单元、功率放大单元和输出单元,其所述高频信号产生单元和低频信号产生单元之输出信号的频率关系为倍频关系;其信号合成单元将低频信号和高频信号进行合成,经过功率放大单元进行功率放大,再经输出单元作最终的双音频信号输出;所述的可移动式信号接收装置包括有低、高频信号感应装置、低频信号放大单元、高频信号放大单元、相位差计算单元、中央处理单元和指示器,其低、高频信号感应装置分别感应接收金属管线上低频和高频电流所形成的磁场辐射,感应到的信号经低频信号放大单元和高频信号放大单元分别进行放大后,共同进入相位差计算单元,得出低频信号和高频信号之间的相位差,中央处理单元对金属管线已知段的相位差进行记忆,对未知段的相位差进行比较,根据比较结果,控制指示器进行明确的提示。
2.按照权利要求1所述的数字式金属管线路径跟踪鉴别装置,其特征是所述高频电流信号的频率是低频电流信号频率的整倍数,优选为偶数倍的倍频关系。
3.按照权利要求1所述的数字式金属管线路径跟踪鉴别装置,其特征是所述双音频信号发射机的低频信号产生单元和高频信号产生单元为正弦波振荡器电路或方波振荡器电路;所述的信号合成单元为加法器电路;所述的功率放大单元和输出单元包括功放电路、输出变压器和相应的保护电路。
4.按照权利要求1所述的数字式金属管线路径跟踪鉴别装置,其特征是所述可移动式信号接收装置的低、高频信号感应装置为低频信号感应线圈和高频信号感应线圈,或者为信号拾取接收卡钳。
5.按照权利要求1所述的数字式金属管线路径跟踪鉴别装置,其特征是所述可移动式信号接收装置的低频信号放大单元和高频信号放大单元为可调增益放大器电路和滤波器电路;所述的相位差计算单元由A/D转换器和微处理器构成,也可以为模拟鉴相器电路;所述的中央处理单元为微处理器电路;所述的指示器是带有相应外围附属电路的LCD液晶显示器、LED发光二极管、扬声器或耳机。
6.按照权利要求4所述的数字式金属管线路径跟踪鉴别装置,其特征是所述低频信号感应线圈和高频信号感应线圈的轴线平行,两个线圈的轴线水平于管线的敷设平面,而与管线的路径垂直;两线圈之轴线所形成的平面与管线路径平行或垂直。
7.按照权利要求1或3所述的数字式金属管线路径跟踪鉴别装置,其特征是所述的信号合成单元包括运算放大器U101和电阻1R101~1R103,其中,运算放大器U101的“-”输入端经电阻1R101构成其单元输入端A,经电阻1R102构成其单元输入端B,运算放大器U101的“+”输入端接地,电阻1R103并接在运算放大器U101的“-”输入端和其输出端之间,运算放大器U101的输出端构成其单元输出端C。
8.按照权利要求1所述的数字式金属管线路径跟踪鉴别装置,其特征是所述的低、高频信号放大单元由运算放大器U101A、B、电容C101、C102、C103、电位器VR101、电阻R101、R102、R103和R104构成,其中,电容C101和传感线圈并联,组成并联谐振电路,谐振频率为发射机加在管线上的交流电流频率;运算放大器U101A的“-”输入端经电阻R101与传感线圈的一端连接,运算放大器U101A的“+”输入端接地,其输出端经电阻R102和C102与运算放大器U101B的“+”输入端连接,并经电阻R102和R103接地,同时经电阻R102和电容C103与运算放大器U101B的输出端连接,电位器VR101并接在运算放大器U101A的“-”输入端与输出端之间;运算放大器U101B的“-”输入端接地,电阻R104并接在运算放大器U101B的“+”输入端与输出端之间,其中心频率和谐振频率相同。
专利摘要一种数字式金属管线路径跟踪鉴别装置,属测量领域。包括信号发射和接收装置,其特征是信号发射装置为倍频式双音频信号发射机,由低频信号产生单元、高频信号产生单元、信号合成单元、功率放大单元和输出单元构成,高频和低频信号产生单元之输出信号的频率关系为倍频关系;其信号接收装置由低、高频信号感应装置、低频/高频信号放大单元、相位差计算单元、中央处理单元和指示器构成。本实用新型特别适用于电磁干扰强、环境较复杂的情况或各种金属管线密集的区域,其电路结构简洁,体积小,抗外界干扰能力强,能减少管线探测的盲目性,探测工作的效率高,检测人员工作强度小,可广泛用于各种金属管线或电力电缆的路径跟踪及唯一性识别等领域。
文档编号G01V3/00GK2842449SQ200520024149
公开日2006年11月29日 申请日期2005年5月25日 优先权日2005年5月25日
发明者陈宗军, 李桂义 申请人:淄博威特电气有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1