一种适配于光学显微镜上的显微镜拉伸仪的制作方法

文档序号:11724579阅读:287来源:国知局
一种适配于光学显微镜上的显微镜拉伸仪的制作方法与工艺

本实用新型涉及对弹性体材料在不同拉伸状态下进行表面形貌变化观察时使用的光学显微镜上的小型拉伸仪。



背景技术:

现有的普通拉伸仪器只能对样品进行宏观力学测试,而高分子弹性体材料的力学性能与其结构变化等密切相关,因此将材料力学性能变化过程与材料结构等结合起来进行研究,有利于对高分子材料进行更加深入的研究。虽然也有一些将材料力学性能与微观尺度结合起来进行研究的测试装置,例如下表中的文献:

但主要都是针对红外光谱测量仪、扫描电镜这种样品池空间极其有限的仪器,高分子弹性体材料在拉伸过程中形变量较大,受限于样品池的容积限制,上表中的装置并不能完整的观察到材料从拉伸至拉断的整个变化过程,而且使用扫描电镜观察样品前需要对样品表面进行喷金等处理,也会影响对材料真实形貌的观察。光学显微镜可以在开放式的环境中使用,由于其结构设计,对于样品的尺寸要求等并不十分严格,对样品的横向尺寸没有限制,而且随着技术发展,光学显微镜也能够达到很高的分辨率,特别是超景深光学显微镜和激光共聚焦扫描显微镜,不仅可以满足对材料微观形貌结构的观察要求,而且可以进行材料表面形貌的三维几何测量,为材料表面形貌观察研究提供了全新的视野。



技术实现要素:

本实用新型的目的在于解决材料在拉伸过程中用光学显微镜的观测分析问题,不改变现有的光学显微镜的任何结构,能够将拉伸试验仪架设在显微镜上,使拉伸过程中的试样处于显微镜的镜头下,且不影响显微镜使用过程中的操作。

本实用新型的技术方案如下:

一种用于光学显微镜拉伸仪上的样品固定夹具,其与所夹持试样接触的夹持面为V形、圆弧形或梯形。

进一步地,所述样品固定夹具包括上夹头和下夹头,所述上夹头和下夹头通过拧紧紧固螺丝来夹紧样品。当拧紧紧固螺丝时,紧固螺丝会带动上夹头沿着紧固螺丝的方向做靠近下夹头的轴向移动,起到夹紧样品的作用。所述上夹头的夹持面和下夹头的夹持面相适配,形成与所夹持试样接触的夹持面为V形、圆弧形或梯形的样品固定夹具。

进一步地,所述样品固定夹具的上夹头和下夹头的夹持面上分别设有牙纹。

本实用新型还提供一种适配于光学显微镜上的光学显微镜拉伸仪,其包括上述的样品固定夹具、固定架、拉力传感器、驱动机构和双向拉伸机构;

所述样品固定夹具由样品固定夹具Ⅰ和样品固定夹具Ⅱ组成;所述双向拉伸机构包括传动部、侧板Ⅰ侧板Ⅱ;所述驱动机构连接所述传动部,带动所述侧板Ⅰ和侧板Ⅱ做相反方向的位移移动;所述样品固定夹具Ⅰ与所述侧板Ⅰ固定连接,所述样品固定夹具Ⅱ与所述侧板Ⅱ固定连接,所述拉力传感器固定连接于样品固定夹具Ⅰ与侧板Ⅰ之间或样品固定夹具Ⅱ与侧板Ⅱ之间。优选地,所述拉力传感器固定连接于样品固定夹具Ⅱ与侧板Ⅱ之间,即所述拉力传感器的一端固定连接于样品固定夹具Ⅱ,另一端固定连接于侧板Ⅱ,测试样品的拉伸载荷。

进一步地,所述驱动机构包括闭环式步进电机、波纹管联轴器;

所述传动部包括螺母Ⅰ、螺母Ⅱ和左右旋螺杆,螺母Ⅰ和螺母Ⅱ与左右旋螺杆以螺纹连接的方式连接;所述闭环式步进电机和所述左右旋螺杆通过波纹管联轴器固定连接;所述样品固定夹具Ⅰ通过侧板Ⅰ固定连接螺母Ⅰ,所述样品固定夹具Ⅱ通过侧板Ⅱ固定连接螺母Ⅱ。优选地,样品固定夹具Ⅱ通过拉力传感器和侧板Ⅱ固定连接螺母Ⅱ。

进一步地,所述的光学显微镜拉伸仪,还包括支撑座、固定座、光杆、固定架和支架;所述光杆穿连所述支撑座、固定座,与侧板Ⅰ和侧板Ⅱ滑动连接;所述左右旋螺杆穿过所述支撑座和固定座与所述波纹管联轴器固定连接;所述支撑座、固定座和驱动机构固定设置在固定架上;所述支架为方形支架,所述固定架焊接固定在所述支架上。

本实用新型所述的光学显微镜拉伸仪,还包括步进电机控制器,可对步进电机驱动器按要求发出指令,控制步进电机的转速、旋转圈数,从而控制试样的拉伸速度和拉伸距离,所以拉伸速度、拉伸位移、初始拉伸长度等参数都可以根据试样的情况灵活调节。拉伸结束之后通过控制器的程序设定可实现拉伸装置的快速回位。数据采集卡可实时高精度高频率的采集S型拉力传感器的模拟信号,将其转变成数字信号,然后通过USB数据线导入到电脑上,在电脑上通过工程上常用的Labview等软件对试验数据进行采集处理与分析。

本实用新型所述的显微镜拉伸仪的使用原理以及方法如下:将拉伸试样的一端固定在样品固定夹具Ⅰ,另一端固定在样品固定夹具Ⅱ,驱动闭环式步进电机,步进电机发生转动,波纹管联轴器开始旋转,带动与其固定连接的左右旋螺杆转动,这又会带动与左右旋螺杆滑动连接的两个螺母分别向相对相反的方向等速等距移动,螺母带动两个侧板和两个样品固定夹具也向相对相反方向等速等距运动,从而将拉伸试样拉长,且试样中心位置保持不变。

本实用新型专门设计了针对于光学显微镜(包括超景深光学显微镜和激光共聚焦扫描显微镜)使用的便携式显微镜拉伸仪,克服了之前的一些测试仪器在测量材料的力学性能的同时进行材料微观组织形貌观察的弊端:

(1)特有的异形样品固定夹具,能保证高分子弹性体材料在拉伸过程中不会因为变薄而脱出,对变形率很高的高分子弹性体材料进行完整的拉伸实验;

(2)能够适配于实验室中的一系列光学显微镜,操作方便,无需对光学显微镜进行改动等,使用时,对好位置,水平向前将便携式显微镜拉伸仪推入光学显微镜的镜头下面,使试样处于光学显微镜镜头的观察视野中即可。

(3)步进电机可通过程序控制其转速和步数,从而间接控制样品固定夹具夹着试样进行特定拉伸速度、特定拉伸长度的拉伸试验,拉伸过程可通过应力传感器与电机运转步数换算得到材料的应力-应变曲线,并观察到试样在应力-应变曲线上某一点对应的表面形貌,这对于研究材料拉伸过程的组织形貌变化和分析材料断裂过程具有重要意义。

(4)由于步进电机控制器的可灵活编程,可将拉力传感器和步进电机整合在一起,通过编程可以进行有特殊要求的实验,例如让试样保持恒定应变量,观察试样的应力松弛现象,让试样两端加载的载荷保持恒定,观察试样在恒定载荷下的蠕变特性等。

(5)高分子弹性体材料在拉伸过程中形变量较大,在拉伸过程中试样易从夹具滑出,致使所测形变量与材料真实形变量不符,而且还会出现试样从夹具滑脱的现象,致使拉伸试验不能正常进行,本实用新型对夹具进行了优化,设计的V形夹具有效避免了高分子弹性体材料拉伸过程中从夹具滑出和滑脱的现象。

(6)光学显微镜对样品的尺寸限制并不严格,在水平空间上没有限制,有效拉伸长度较大,能够满足高分子弹性体材料拉伸的要求,且能够保持高分子弹性体在拉伸过程中其中心位置相对光学显微镜镜头保持不变,满足原位观察的需求。采用该设备进行原位动态观察,在进行试样拉伸试验的过程中,可以在显微镜上实时看到拉伸试样的表面形貌变化、发生的分子取向、拉伸过程中材料出现结晶等现象,获得高分子材料拉伸过程中每一瞬间发生的变化,并将该瞬间材料发生的变化与测量得到的应力-应变曲线上的某一点直接对应起来。

附图说明

图1为本实用新型的样品固定夹具示意图,其中A为V形样品固定夹具,B为圆弧形样品固定夹具,C为梯形样品固定夹具;

图2为本实用新型拉伸仪的结构示意图;

图3为本实用新型拉伸仪步进电机控制箱;

图4为本实用新型拉伸仪用于激光共聚焦显微镜时的示意图;

图5为本实用新型拉伸仪用于普通光学显微镜时的示意图;

1、支撑座;

2、左右旋螺杆;

3、光杆;

4、侧板Ⅰ;

5、夹具Ⅰ下夹头;

6、夹具Ⅰ上夹头;

7、夹具Ⅱ上夹头;

8、夹具Ⅱ下夹头;

9、拉力传感器;

10、侧板Ⅱ;

11、固定座;

12、波纹管联轴器;

13、闭环式步进电机;

14、步进电机编码线接口;

15、步进电机供电接口;

16、螺母Ⅰ;

17、拉力传感器数据线接口;

18、螺母Ⅱ;

19、固定架;

20、电机支架;

21、支架;

22、拉力传感器数据线接口;

23、步进电机编码线接口;

24、步进电机供电接口;

25、总电源开关;

26、显示控制区域;

27、USB数据线接口。

具体实施方式

下述非限制性实施例可以使本领域的普通技术人员更全面地理解本实用新型,但不以任何方式限制本实用新型。

如图1和图2所示,本实用新型的适配于光学显微镜上的光学显微镜拉伸仪,其包括样品固定夹具、固定架、拉力传感器、驱动机构和双向拉伸机构;所述样品固定夹具由样品固定夹具Ⅰ和样品固定夹具Ⅱ组成;所述双向拉伸机构包括传动部、侧板Ⅰ侧板Ⅱ;所述驱动机构连接所述传动部,带动所述侧板Ⅰ和侧板Ⅱ做相反方向的位移移动;所述样品固定夹具Ⅰ与所述侧板Ⅰ固定连接,所述样品固定夹具Ⅱ与所述拉力传感器固定连接,所述拉力传感器与所述侧板Ⅱ固定连接。

所述样品固定夹具Ⅰ具有上夹头和下夹头,所述上夹头和下夹头通过拧紧紧固螺丝来夹紧样品。当拧紧紧固螺丝时,紧固螺丝会带动上夹头沿着紧固螺丝的方向做靠近下夹头的轴向移动,起到夹紧样品的作用。所述上夹头的夹持面和下夹头的夹持面相适配,形成与所夹持试样接触的夹持面为V形、圆弧形或梯形的样品固定夹具。上夹头和下夹头的夹持面上分别设有牙纹,提高拉伸样品的固定效果。

所述驱动机构包括闭环式步进电机、波纹管联轴器;所述传动部包括螺母Ⅰ、螺母Ⅱ和左右旋螺杆,螺母Ⅰ和螺母Ⅱ与左右旋螺杆采用螺纹连接的方式连接;所述闭环式步进电机的输出端与波纹管联轴器固定连接,波纹管联轴器与电机联动,所述波纹管联轴器与所述左右旋螺杆固定连接,可带动左右旋螺杆旋转;所述样品固定夹具Ⅰ的下夹头和螺母Ⅰ固定连接在侧板Ⅰ的立面上,所述样品固定夹具Ⅱ通过拉力传感器固定在所述侧板Ⅱ的立面上,即所述拉力传感器的一端固定连接于样品固定夹具Ⅱ,另一端固定连接于侧板Ⅱ,测试样品的拉伸强度。同样所述拉力传感器可固定连接在样品固定夹具Ⅰ与侧板Ⅰ之间。

如图2所示,所述的光学显微镜拉伸仪,还包括支撑座、固定座、光杆、固定架和支架;所述光杆穿连所述支撑座、固定座,与侧板Ⅰ和侧板Ⅱ滑动连接;所述左右旋螺杆穿过所述支撑座和固定座与所述波纹管联轴器固定连接;所述支撑座、固定座和驱动机构固定设置在固定架上;所述支架为方形支架,所述固定架设置在所述支架上。

本实用新型所述光学显微镜拉伸仪能够适配于实验室中的一系列光学显微镜,操作方便,无需对光学显微镜进行改动等,使用时,对好位置,水平向前将便携式显微镜拉伸仪推入光学显微镜的镜头下面,使试样处于光学显微镜镜头的观察视野中即可。

利用本实用新型所述光学显微镜拉伸仪进行检测时:将拉伸试样的一端固定在样品固定夹具Ⅰ,另一端固定在样品固定夹具Ⅱ,驱动闭环式步进电机,步进电机发生转动,波纹管联轴器开始旋转,带动与其固定连接的左右旋螺杆转动,这又会带动与左右旋螺杆螺纹连接的两个螺母分别向相对相反的方向等速等距移动,螺母带动两个侧板和两个样品固定夹具也向相对相反方向等速等距运动,从而将拉伸试样拉长,且试样中心位置保持不变。

如图3所示,本实用新型所述的光学显微镜拉伸仪,还包括步进电机控制箱,可控制步进电机的转速、旋转圈数,从而控制试样的拉伸速度和拉伸距离,所以拉伸速度、拉伸位移、初始拉伸长度等参数都可以根据试样的情况灵活调节。拉伸试验结束之后通过控制器的程序设定可实现拉伸装置的快速回位。控制箱中内置的数据采集卡可实时高精度高频率的采集S型拉力传感器的模拟信号,将其转变成数字信号,然后通过USB数据线导入到电脑上,在电脑上通过工程上常用的Labview等软件对试验数据进行采集处理与分析。图3中所标示的拉力传感器数据线接口与图2中的拉力传感器数据线接口相连,步进电机编码线接口与图2中的步进电机编码线接口相连,步进电机供电接口与图2中的步进电机供电接口相连,显示控制区域为步进电机控制器的操作面板,图中的USB数据线接口可以连在电脑上用于输出数据采集卡采集到的拉力传感器的数据。

图4为本实用新型拉伸仪用于激光共聚焦显微镜时的示意图,图5为本实用新型拉伸仪用于普通光学显微镜时的示意图。如图4和图5,在使用便携式显微镜拉伸仪时,只需将其推入到显微镜镜头下方并做调整,使试样中心正好置于显微镜的镜头下方即可。适用于其他显微镜时可参照图4和图5中的操作方法。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1