一种基于光敏树脂的复杂结构表面裂纹检测方法与流程

文档序号:11197106阅读:993来源:国知局
一种基于光敏树脂的复杂结构表面裂纹检测方法与流程

本发明属于裂纹检测技术领域,具体涉及一种基于光敏树脂的复杂结构表面裂纹检测方法及再现方法。



背景技术:

统计表明,由疲劳、断裂导致的结构失效,约占当前结构失效的80%左右。在航空发动机等装备中,疲劳、断裂失效还可能导致机毁人亡的重大事故。开展服役中结构的裂纹检测,可以及时发现结构中的危险裂纹、确定裂纹长度,从而进行维修或更换。但当前采用的超声检测、荧光检测等手段,检测精度有限、而且难以检测裂纹三维尺寸,尤其对于表面结构复杂的结构而言,如航空发动机叶片、压力容器、汽车外壳等。



技术实现要素:

本发明技术解决问题:针对当前复杂结构表面裂纹难以精确检测的问题,提供了一种基于光敏树脂的复杂结构表面裂纹检测方法,操作简单,可以精确、快速检测燃气涡轮发动机叶片、压力容器、汽车外壳、建筑物等复杂结构表面的裂纹,解决生产、工作现场不易检测或无法检测的难题。

本发明采用的技术方案为:一种基于光敏树脂的复杂结构表面裂纹检测方法,其特点在于:采用光敏树脂、遮光型注射器和手持式紫外光源,对复杂结构的表面裂纹进行检测;遮光型注射器内部装有光敏树脂,利用遮光型注射器将光敏树脂喷涂到表面肉眼可见微小裂纹或疑似裂纹位置,同时采用手持式紫外光源对光敏树脂进行照射,光敏树发生固化,同时复制了表面裂纹的微观形貌;之后,将固化后的光敏树脂从结构表面剥离、置于光学显微镜或扫描电镜下,可精确观测表面裂纹状态,测量表面裂纹长度、宽度、深度尺寸;

所述光敏树脂贮存状态下为液态,但在0.25~0.3微米波长的紫外光照射下,发生聚合反应并迅速固化为固态;所述手持式紫外光源3为0.25~0.3微米波长的紫外光;

所述遮光型注射器基体材料采用聚四氟乙烯,基体材料外壁首先喷涂紫外线屏蔽剂,所述紫外线屏蔽剂为炭黑或氧化锌,然后利用热缩膜包裹,能够屏蔽波长在0.01~0.4微米的紫外光。

所述光敏树脂的液态粘度小于300cps,尽量降低液态光敏树脂与注射器内壁之间的粘连力;光敏树脂发生固化后强度大于30mpa,确保光敏树脂固化后取下时不发生变形;光敏树脂1固化后表面复制分辨率最高达0.5微米,能精确复制裂纹长度、宽度和高度信息;光敏树脂固化时间小于10分钟,避免待检测对象的长时间停机。

一种对复杂结构表面再现方法,所述的光敏树脂固化后,还可以利用上述的方法,针对固化的光敏树脂表面进行二次复制,从而实现复杂结构表面的还原再现。

本发明的原理在于:液态的光敏树脂被喷涂到复杂结构表面时,会沿着机械加工形成的表面微观结构流动,包括表面裂纹。当利用一定波长的紫外光照射液态光敏树脂时,树脂发生聚合变为固态,固化之后的光敏树脂复制了结构表面的微观结构,包括裂纹的形貌。之后,将固化后的光敏树脂取下,利用光学显微镜或扫描电镜等观测手段,可以观察复杂结构表面裂纹的形貌、并精确测量裂纹尺寸。

本发明与现有的超声检测、荧光检测等裂纹检测手段相比,具有精度高、易操作等特点,具体表现在以下几个方面:

(1)本发明可以精确复制表面裂纹形貌,利用光学显微镜或扫描电镜观察固化后的树脂,可以精确测量表面裂纹的长度、宽度和深度,尺寸精度可以达到0.5微米。

(2)本发明可以方便地测量内腔、拐角等不易测量的位置,而且操作简单,树脂固化后可以带回实验室观测,不影响设备或机构工作。

附图说明

图1为本发明方法的系统示意图;

图2为遮光型注射器示意图;

图3为利用本发明测量结构内腔表面裂纹长度示意图;

图4为本发明中光敏树脂一次复制、二次复制效果示意图,其中a为一次复制,b为二次复制。

附图标号说明:1为光敏树脂;2为遮光型注射器;3为手持式紫外光源;4为复杂结构表面;5为聚四氟乙烯注射器基体;6为炭黑涂层;7为热缩膜;8为含复杂内腔的结构;9为含表面裂纹的结构;10为一次复制光敏树脂;11为二次复制光敏树脂。

具体实施方式

下面结合附图和实施方式对本发明进一步说明。

本发明的组成系统如图1所示,包括光敏树脂1、遮光型注射器2和手持式紫外光源3,其中遮光型注射器2内部贮存液态的光敏树脂1。

本发明采用的遮光型注射器如图2所示,首先利用聚四氟乙烯材料制作聚四氟乙烯注射器基体5;然后在聚四氟乙烯注射器基体5表面喷涂炭黑涂层6,用于遮挡紫外光;最后,在注射器外侧用热缩膜7封装,保护炭黑涂层6,避免脱落。

本发明的实施过程如图1、图3所示,针对含有表面裂纹的复杂结构表面4、含复杂内腔的结构8,利用遮光型注射器2,将液态的光敏树脂1喷涂于表面裂纹位置;在喷涂的同时,利用紫外光源3对光敏树脂1进行照射,液态的光敏树脂1逐渐固化为固体,同时将复杂结构表面4、含复杂内腔的结构8的表面裂纹长度、形貌等复制下来。之后,将固化后的光敏树脂1从结构表面剥离并置于光学显微镜或扫描电镜下,精确测量裂纹长度、观测裂纹形貌,从而评估结构安全状态。

本发明可通过二次复制实现裂纹形貌的再现,如图4所示,针对含有表面裂纹的附加含表面裂纹的结构9,通过第一次复制得到光敏树脂10,可以体现含表面裂纹的结构9的裂纹形貌,包括裂纹尺寸等;为了再现结构表面裂纹的真实状态,可以对固化后的一次复制光敏树脂10进行第二次复制,得到二次复制光敏树脂11,二次复制光敏树脂11与结构表面9的微观结构完全一致。

本发明未详细公开的部分属于本领域的公知技术。

尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。



技术特征:

技术总结
本发明提供一种基于光敏树脂的复杂结构表面裂纹检测方法。该方法针对含有表面裂纹的复杂结构,利用遮光型注射器,将液态的光敏树脂喷涂于表面裂纹位置;在喷涂的同时,利用手持式紫外光源对光敏树脂进行照射,液态的光敏树脂逐渐固化为固体,同时将复杂结构的表面裂纹长度、形貌等复制下来。之后,将固化后的光敏树脂从结构表面剥离、置于光学显微镜或扫描电镜下,精确测量裂纹长度、观测裂纹形貌,从而评估结构安全状态。所述的表面裂纹检测方法操作简单,可以精确、快速检测燃气涡轮发动机叶片、压力容器、汽车外壳、建筑物等复杂结构表面的裂纹,解决生产、工作现场不易检测或无法检测的难题。

技术研发人员:黄大伟;闫晓军;秦晓宇;于圣杰;张小勇;漆明净
受保护的技术使用者:北京航空航天大学
技术研发日:2017.07.17
技术公布日:2017.09.29
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1