一种滚动轴承外圈缺陷二维量化诊断方法与流程

文档序号:20082696发布日期:2020-03-13 05:50阅读:410来源:国知局
一种滚动轴承外圈缺陷二维量化诊断方法与流程

本发明属于故障诊断领域,具体涉及一种滚动轴承外圈缺陷量化诊断方法。



背景技术:

滚动轴承外圈缺陷的量化诊断主要包括两个方面:缺陷定形尺寸诊断和缺陷定位尺寸诊断。其中定形尺寸主要是指外圈缺陷的宽度,定位尺寸则是指外圈缺陷的周向角位置。定形尺寸诊断的理论意义和工程价值主要包括:在已经诊断出轴承存在局部缺陷故障的情况下,综合考虑经济效益和生产秩序,允许故障轴承保持工作运转,但是必须量化诊断出缺陷的定形尺寸信息以便实时掌握故障的严重程度,防止故障扩展到引起破坏性事故的发生。而定位尺寸诊断则具有以下工程应用价值:1、当缺陷尺寸很微小时,如果能预先诊断出缺陷的位置,将有助于拆机后更快速的排查出故障部位,进而提高工作效率和诊断成功率。2、轴承外圈缺陷出现位置的不同,可能对应于不同的故障原因;比如缺陷出现在承载中心位置,可能主要是疲劳损伤导致的,而如果缺陷出现在距离承载中心较远的位置,则故障原因更可能是材料缺陷、机加工缺陷或维护缺陷等。3、缺陷位置是轴承剩余寿命预测的主要影响因素之一;比如在其他因素相同的情况下,更靠近承载中心的缺陷,可能具有更快的扩展速度,从而使得轴承的剩余寿命也更短。

因此,实现滚动轴承外圈缺陷的量化诊断具有迫切的理论意义和现实需求。



技术实现要素:

本发明基于含缺陷轴承系统非线性动力学机理研究和振动加速度信号处理技术,提出了一种滚动轴承二维量化诊断方法,可准确地诊断外圈缺陷的宽度尺寸和定位尺寸。

为实现上述目的,本发明的技术方案如下:

一种滚动轴承外圈缺陷二维量化诊断方法,包括以下具体步骤:

步骤1建立参考坐标系,以滚动轴承的轴向对称面为坐标系平面,以面向轴的输出端为正面,以垂直向下为y轴正方向;以y轴正方向为参照,绕轴的运行方向旋转90o为x轴正方向;以x轴正方向为参考坐标系的角度基准,设定x轴正方向旋转到y轴正方向为参考坐标系的角度坐标正方向,即x轴正方向为0o,y轴正方向为90o;

步骤2测取振动加速度信号,

在轴承座外表面与x轴负方向线的交点处安装振动加速度传感器1,振动加速度传感器1测取的加速度信号命名为ax;在轴承座外表面与y轴负方向线的交点处安装振动加速度传感器2,振动加速度传感器2测取的加速度信号命名为ay;设定采样频率fs,采样点数n;由振动加速度传感器1和振动加速度传感器2同时测取10组振动加速度信号,分别记为ax,j和ay,j,j=1,2,3…10,j为振动加速度信号组的序号;根据滚动轴承型号和滚动轴承的内圈转速f,计算出滚动轴承外圈缺陷的故障特征频率fo;

步骤3判断信号时域波形中的故障冲击振荡类型,以时间t为横坐标,ax1为纵坐标绘制振动加速度信号的时域波形图;在时域波形图中找出以1/fo为周期的故障冲击振荡波形,标定故障冲击振荡波形的第一个零值阶跃点为ax,1,点ax,1之后的第一个峰值点为bx,1;当故障冲击振荡波形中不存在第二个零值阶跃点,则判定信号时域波形的故障冲击振荡类型为class1,且标记故障冲击振荡波形中的第一个搅动点为cx,1;当故障冲击振荡波形中存在第二个零值阶跃点,则将其标记为dx,1,且判定信号时域波形的故障冲击类型为class2,标定点dx,1之后的第一个峰值点为ex,1,故障冲击振荡波形的终止点标定为fx,1;对于class1型外圈缺陷,执行下述的步骤4到步骤6;对于class2型外圈缺陷,则执行下述的步骤7到步骤10;

步骤4诊断class1型外圈缺陷周向尺寸,

如果步骤3中的判定结果为class1,则量取点ax,1到点cx,1之间的时间间隔tc1,并由以下公式诊断出外圈缺陷的周向尺寸lc1:

其中,rr是滚珠半径,rp是节圆半径,f为内圈转频,α0是空载接触角;

步骤5判断class1型外圈缺陷中心方位,

根据步骤3中绘制的时域波形图,取得点ax,1和点bx,1的纵坐标值vax,1和vbx,1;当vax,1<vbx,1,则判定缺陷中心位于参考坐标系y轴的左侧;当vax,1>vbx,1,则判定缺陷中心位于参考坐标系y轴的右侧;

步骤6诊断class1型外圈缺陷中心位置尺寸,

利用步骤2中测取的振动加速度信号,由以下公式计算外圈缺陷中心位置尺寸θc1:

其中,分别表示第j组振动加速度信号ax,j和ay,j的平均值,σ0是振动加速度信号的故障基准标准差,n是数据点数,i是循环控制变量;至此完成class1型外圈缺陷的周向尺寸和位置尺寸的二维量化诊断。

步骤7诊断class2型外圈缺陷周向尺寸lc2,

如果步骤3中的判定结果为class2,则量取点ax,1到点dx,1之间的时间间隔tc2,并由以下公式诊断出外圈缺陷的周向尺寸:

步骤8判断class2型外圈缺陷左、右边缘方位,

根据步骤3中绘制的时域波形图,取得点ax,1、点bx,1、点dx,1和点ex,1的纵坐标值vax,1、vbx,1、vdx,1和vex,1;当vax,1<vbx,1,则判定缺陷左边缘位于参考坐标系y轴的左侧;当vax,1>vbx,1,则判定缺陷左边缘位于参考坐标系y轴的右侧;当vdx,1<vex,1,则判定缺陷右边缘位于参考坐标系y轴的左侧;当vdx,1>vex,1,则判定缺陷右边缘位于参考坐标系y轴的右侧;

步骤9计算class2型外圈缺陷左、右边缘的σvh值

按照步骤2中的规则标定振动加速度信号信号ax,j的故障冲击振荡波形中的点a、b、d、e和f,并分别记为ax,j、bx,j、dx,j、ex,j和fx,j;按照步骤3中的规则标定振动加速度信号信号ay,j的故障冲击振荡波形中的点a、b、d、e和f,并分别记为ay,j、by,j、dy,j、ey,j和fy,j;由以下公式计算class2型外圈缺陷左边缘的σvh值:

其中nax,j、ndx,j、nay,j和ndy,j分别表示点ax,j、dx,j、ay,j、dy,j所对应的数据点数;再由以下公式计算class2型外圈缺陷右边缘的σvh值:

其中nfx,j、nfy,j分别表示点fx,j、fy,j所对应的数据点数;

步骤10诊断class2型外圈缺陷中心位置尺寸,

对步骤9中求解出的σvh,l和σvh,r进行比较,当σvh,l<σvh,r,则由以下公式计算class2型外圈缺陷左边缘的位置尺寸θl:

再结合公式(3)计算出class2型外圈缺陷中心的位置尺寸θc2:

当σvh,l>σvh,r,则先对由以下公式计算class2型外圈缺陷右边缘的位置尺寸θr:

再结合公式(3)计算出class2型外圈缺陷中心的位置尺寸θc2:

至此完成class2型外圈缺陷的周向尺寸和位置尺寸的二维量化诊断。

本发明的有益效果是:提出了一种滚动轴承外圈缺陷二维量化诊断方法,基于故障冲击类型对缺陷周向尺寸进行分类,再根据不同类型缺陷的特点采用针对性的技术精确诊断出它们的周向尺寸和位置尺寸,有重要的实用性和工程价值。

附图说明

图1本发明的工作流程图。

图2滚动轴承系统参考坐标系和测点布置示意图。

图3待诊断故障轴承系统的振动加速度信号时域波形图。

图4待诊断信号的故障冲击振荡波形图。

具体实施方式

下面具体结合附图与实施例对本发明的诊断方法进行详细说明,但是本发明的保护范围不局限于所述实施例。

步骤1建立参考坐标系,

以滚动轴承的轴向对称面为坐标系平面,以面向轴的输出端为正面,以垂直向下为y轴正方向;以y轴正方向为参照,绕轴的运行方向旋转90o为x轴正方向;以x轴正方向为参考坐标系的角度基准,设定x轴正方向旋转到y轴正方向为参考坐标系的角度坐标正方向,即x轴正方向为0o,y轴正方向为90o,建立完成的参考坐标系如图2所示;

步骤2测取振动加速度信号,

如图2所示,在轴承座外表面与x轴负方向线的交点处安装振动加速度传感器1,该传感器测取的加速度信号命名为ax;在轴承座外表面与y轴负方向线的交点处安装振动加速度传感器2,该传感器测取的加速度信号命名为ay;设定采样频率fs=131072hz,采样点数n=131072;由传感器1和传感器2同时测取10组振动加速度信号,分别记为ax,j和ay,j,j=1,2,3…10;本实施例中选用的滚动轴承型号为6308,滚动轴承的内圈转速为f=7hz,则可计算出滚动轴承外圈缺陷的故障特征频率fo=21.5hz;

步骤3判断信号时域波形中的故障冲击振荡类型,

以时间t为横坐标,ax1为纵坐标绘制本实施例的振动加速度信号时域波形图,如图3所示;在图3中找出以1/fo=0.0465为周期的故障冲击振荡波形,标定故障冲击振荡波形的第一个零值阶跃点为ax,1,点ax,1之后的第一个峰值点标定为bx,1;将图3进行局部放大后可看出故障冲击振荡波形中存在第二个零值阶跃点,将其标记为dx,1,并由此判定本实施例中的故障冲击振荡类型为class2,标定点dx,1之后的第一个峰值点为ex,1,以及故障冲击振荡波形的终止点为fx,1,标记完成后的波形如图4所示。

步骤4诊断class2型外圈缺陷周向尺寸,

由图4量取点ax,1到点dx,1之间的时间间隔tc2=0.0051,并由以下公式诊断出外圈缺陷的周向尺寸lc2:

根据公式(1)可计算出本实施例中的外圈缺陷周向尺寸为lc2=0.0034;

步骤5判断class2型外圈缺陷左、右边缘方位,

由图4取得点ax,1、点bx,1、点dx,1和点ex,1的纵坐标值分别为vax,1=-0.00073,vbx,1=0.2649,vdx,1=-0.012,vex,1=0.3733;因此可得出vax,1<vbx,1和vdx,1<vex,1,则可判定缺陷左边缘位于参考坐标系y轴的左侧,右边缘位于参考坐标系y轴的左侧;

步骤6计算class2型外圈缺陷左、右边缘的σvh值,

按照步骤3中的规则标定信号ax,j的故障冲击振荡波形中的点a、b、d、e和f,并分别记为ax,j、bx,j、dx,j、ex,j和fx,j;按照步骤3中的规则标定信号ay,j的故障冲击振荡波形中的点a、b、d、e和f,并分别记为ay,j、by,j、dy,j、ey,j和fy,j;本实施例的振动加速度信号的故障基准标准差为σ0=0.29,由以下公式计算class2型外圈缺陷左边缘的σvh值:

其中nax,j、ndx,j、nay,j和ndy,j分别表示点ax,j、dx,j、ay,j、dy,j所对应的数据点数;再由以下公式计算class2型外圈缺陷右边缘的σvh值:

其中nfx,j、nfy,j分别表示点fx,j、fy,j所对应的数据点数;

步骤7诊断class2型外圈缺陷中心位置尺寸,

对步骤6中求解出的σvh,l和σvh,r进行比较,可得出σvh,l>σvh,r,又由步骤5可知vdx,1<vex,1,则由以下公式计算class2型外圈缺陷右边缘的位置尺寸θr:

θr=180°+arccot(σhv,r)=180°+89.84°=269.84°(4)

再结合公式(1)计算出class2型外圈缺陷中心的位置尺寸θc2:

至此完成本实施例的外圈缺陷周向尺寸和位置尺寸的二维量化诊断。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1