一种金属板材高速成形极限图的建立方法

文档序号:10510414阅读:659来源:国知局
一种金属板材高速成形极限图的建立方法
【专利摘要】本发明涉及一种金属板材高速成形极限图的建立方法,包括以下步骤:利用金属板材高速成形实验装置,首先使用较轻质的冲头,得到高应变速率、不同应变路径下的成形极限点;换装质量较重的冲头,得到中应变速率、不同应变路径下的成形极限点;普通成形试验机的基础上,调节到合适的采集系统的采集频率,调节冲头速度,得到准静态或低应变速率、不同应变路径下的成形极限点;采用拟合方法在Matlab软件中所有应变速率、应变路径下的高速成形极限点连接成曲面,定义为三维成形极限面。本发明所述的成形极限面的高低可以判断金属板材不同应变速率下的成形性能,成形极限面越高则金属板材在该应变速率下的成形性能越好。
【专利说明】
一种金属板材高速成形极限图的建立方法
技术领域
[0001] 本发明涉及金属板材高速成形加工领域,特别涉及一种金属板材高速成形极限图 的建立方法,主要用途在于判断金属板材高速成形中的破裂,评价金属板材的成形性能。
【背景技术】
[0002] 高速高能成形包括多种工艺方法,主要包括爆炸成形、电磁成形、电液成形,也就 是利用电气、化学、机械贮存的高能量在瞬间放出而进行加工。电磁成形和爆炸成形都能达 到15~300米/秒的加工速度,能极大的提高加工效率。同时,很多金属材料的高应变速率 下,其成形极限较室温低速过程有很大的提高。爆炸成形、电磁成形、电液成形国外早在上 个世纪中叶就开始了研究,现在已经进入实用阶段。
[0003] 常温低速成形过程中,板材的成形性评价有多种办法,其中成形极限图(FLD)是判 断和评定板材成形性能的最为简便和直观的方法,是解决板材冲压成形问题的一个非常有 效的工具。FLD是由板材在不同应变路径下的局部失稳极限真实应变 £1和£2构成的条带形区 域,全面反映了板材在单向拉应力、双向拉应力、平面应变及中间状态作用下的成形极限。 在板材成形中,板平面内的两主应变的任意组合,只要落在成形极限图中的成形极限曲线 上,板材变形时就会产生破裂,反之则是安全。
[0004] 然而,高速成形过程中涉及应变速率因素,而不同应变速率下材料的塑性变形规 律有很大差别,且不同材料的塑性随应变速率变化情况也大不相同。通常来说,板料在超高 应变速率下通常塑性较好,但在中速应变速率下塑性较差。而且,板料成形时板料不同位置 处的应变速率存在很大差别,这将显著影响板料失效点的预测。因此,高速高能成形的成形 极限不能单纯的建立主应变和次应变的关系,而应考虑应变速率效应,常规的成形极限测 试方法也不再适用。
[0005] 目前,测量材料的高应变速率下的应变值通常采用霍普金森拉杆或压杆来获得材 料的高速拉伸或压缩应力应变曲线;中应变速率则可使用高速拉伸机来进行实验。除普通 的高速拉伸机外,还有如专利CN102944474A中所述的一套利用电磁力驱动的超高速率单向 拉伸试验装置及方法。但无论采用霍普金森杆抑或高速拉伸机,都只能获得单向拉伸或单 向压缩的成形极限,这对于评价板材的成形极限来说是远远不够的。
[0006] 因此,尽管传统成形极限图能解决大部分金属板材成形工艺中成形性能的评价问 题,其在高速成形是存在很大局限性,目前现存的高速成形极限评价方法也远远不够,迫切 需要一种新的成形极限图来有效的评价板材在高速成形过程中的成形性能,为实际爆炸成 形、电磁成形、电液成形等生产过程提供指导依据。

【发明内容】

[0007] 本发明所要解决的问题是提供一种金属板材高速成形极限图的建立方法,不仅能 解决传统成形极限图能解决的成形性能评价问题,还能提供一种可准确、方便评价金属板 材高速成形过程中的破裂问题。
[0008] 本发明的技术方案是提供种金属板材高速成形极限图的建立方法,其特征在于:
[0009] 步骤1、利用金属板材高速成形实验装置,首先使用轻质复合材料的冲头,将印刷 好网格的各种尺寸的板料分别进行成形极限实验,由于冲头质量较轻,在相同的电磁能量 下,冲头获得的速度更高;通过调节电容组耐压值和电容量,得到高应变速率下,不同应变 路径的成形极限点;
[0010] 步骤2、利用金属板材高速成形实验装置,换装硬铝材料的冲头,将印刷好网格的 各种尺寸的板料分别进行成形极限实验,由于冲头质量较重,在相同的电磁能量下,冲头获 得的速度较低;通过调节电容组耐压值和电容量,得到中应变速率下、不同应变路径的成形 极限点;
[0011] 步骤3、在普通成形试验机的基础上,加装金属板材高速成形实验装置的数据采集 系统,根据冲压速度的不同,调节数据采集系统采集频率在〇. 5HZ-50HZ范围内变化,将各种 尺寸的板料分别进行成形极限实验,通过调节冲头速度,得到准静态或低应变速率、不同应 变路径下的成形极限点;
[0012] 步骤4、采用拟合方法在Mat 1 ab软件中将步骤1~步骤3中的不同应变速率、应变路 径下的高速成形极限点拟合成曲面,定义为三维成形极限面,得到曲面的表达式z = f(x, y),并在Matlab中绘制出来,其中,极限面以上区域定义为破裂区,极限面以下区域定义为 安全区。
[0013]本发明的有益效果在于:
[0014] 1)本发明所述的成形极限面的高低可以判断金属板材不同应变速率下的成形性 能,成形极限面越高则金属板材在该应变速率下的成形性能越好。
[0015] 2)本发明所述高速及中速成形极限点上所需的主次应变数值可直接通过金属板 材高速成形实验装置及其附带的数据采集系统测量获得,实验符合国标推荐,数据直接由 实验获得,可靠、方便、快捷。
[0016] 3)本发明所提及的金属板材高速成形实验装置中的模具可以进行更换,可在不同 的拉延筋高度下进行试验。探究拉延筋高度对成形极限的影响。
[0017] 4)本发明所提及的金属板材高速成形实验装置具有通过一次试验就可以完成寻 找破裂的优势,并且本发明的金属板材高速成形极限图的建立方法,其在传统的成形极限 图上增加了应变速率变量,可应用于数值仿真领域,通过云图可直观的判断成形是否成功, 以及材料的成形裕度,超过三维成形极限面的点将发生失效,在三维成形极限面以下,离三 维成形极限面越远,该点越安全。
【附图说明】
[0018] 图1为本发明的一种涉及高速成形极限实验装置的示意图和电路原理图;
[0019] 图2为凹模座2的截面图和俯视图;
[0020] 图3为凹模3的截面图和俯视图;
[0021] 图4为压边圈6的截面图和俯视图;
[0022] 图5为升降支架9的截面图和A-A剖面图;
[0023] 图6为橡胶缓冲块支座19的截面图和俯视图;
[0024] 图7为根据本发明提供的方法所建立的金属拟合高速成形极限图;
[0025] 图8为利用本发明判定盒形件高速成形失效模拟图。
[0026] 图9为图8(a)中失效的板料成形失效判定图;
[0027] 图10为增大圆角,但保持成形速度不变,板料成形失效判定图;
[0028] 图11为修改圆角与冲压速度等成形参数后板料高速成形失效判定图;
[0029] 图中:1-导轨支架,2-凹模座,3-凹模,4-试验板料,5-垫圈,6-压边圈,7-紧固螺 钉,8-充头,9-升降支架,10-电动导轨,11-平板线圈,12-驱动块,13-连接棒,14-可调缓冲 橡胶垫,15-限位槽,16-电磁铁,17-衔铁,18-冲头橡胶缓冲块,19-橡胶缓冲块支座,20-高 速照相机,21-高速照相机支座,22-激光测距仪,23-电路总开关,24-变压器,25-电容充电 开关,26-保护电容,27-高压整流桥,28-高压电容组,29-冲头发射开关,30-保护电阻,31-整流桥。
【具体实施方式】
[0030] 下面结合附图1-11和实施例对本发明作详细说明。
[0031] 为了得到金属板材高速成形极限图,获得板料高速成形极限点,并采集可靠的实 验数据,本发明提供的一种金属板材高速成形实验装置,该装置包括:导轨支架1,凹模座2, 凹模3,试验板料4,垫圈5,压边圈6,紧固螺钉7,冲头8,升降支架9,电动导轨10,平板线圈 11,驱动块12,连接棒13,可调缓冲橡胶垫14,限位槽15,电磁铁16,衔铁17,冲头橡胶缓冲块 18,橡胶缓冲块支座19,高速照相机20,高速照相机支座21,激光测距仪22,电路总开关23, 变压器24,电容充电开关25,保护电容26,高压整流桥27,高压电容组28,冲头发射开关29, 保护电阻30,整流桥31。
[0032] 其中,装置采用的冲头8向下冲压板材4的模式,使得重力势能能为冲头8补充一部 分迫使板材4变形所消耗的能量。所用冲头8为国标推荐的直径为100mm的半圆形冲头,为减 轻冲头8质量,冲头8采用高强度复合材料制成,内部中空,分为半圆头和盖板两部分,两部 分的连接采用胶接。冲头8可有两种不同重量,用以提供不同速度等级的实验。
[0033]冲头8与复合材料连接棒13采用螺栓联接在一起,以保证一定的强度,连接棒13与 驱动块12之间采用螺纹连接,保证其外径没有变化,且强度得到保证。采用轻质材料的目的 是使一定的平板线圈11放电能量下,冲头8能获得更大的速度。凹模3安装在凹模座2上,凹 模3上有与压边圈6上对应的拉延筋。压边圈用周向布置的螺钉紧固在凹模上对应的螺孔 中,用以对板料施加压边力,更换板料时需拆卸螺钉,除此之外,也可以使用液压栗驱动的 液压缸来控制压边圈的压边力。
[0034]其中,电动导轨10布置在方形导轨支架1上端,用电动机带动升降支架9上下移动 和固定,升降支架9结构如图5所示,为一对面相通的正方体。升降支架9上用绝缘胶和电木 粘接有平板线圈11,平板线圈11由高压电容组28供电,产生强大的脉冲电磁力,可推动紧邻 其布置,活动的铜质驱动块12向下高速移动,从而带动与其采用螺纹连接的连接棒13,连接 棒13与充头8采用螺栓固定。冲头8上粘接衔铁17,实验前被吸附在电磁铁16上,电磁铁16的 支撑柱用螺栓固定于升降支架9上端,穿过支架9下端的开孔与衔铁17相对。升降支架9下端 中部设计有增厚型开孔限位槽15,连接棒13穿过其中。限位槽上端放置一块可更换的环形 缓冲橡胶块14。凹模座2独立于导轨支架1,放置于导轨支架1之间,其下方可垫有一块橡胶 垫,凹模座如图2所示,其上端是一个环形凹槽,环形凹模3放置于凹模座2上端的凹槽中。环 形凹模3外圈环形布置有螺纹孔,内圈有一圈拉延筋,如图3所不。压边圈6的外圈有环形布 置有与与凹模3上螺纹孔相对的钻孔,内圈布置有与凹模3上对应的拉延筋,如图4所示。压 边圈6用周向布置的螺钉7将板料5压住。凹模座下方安装有实验数据的采集系统,是两台呈 对称布置,相机轴线始终可以相交于一点的高速照相机20,和一台垂直布置,用于实时测量 冲头8与两台相机焦点所成直线的垂直距离的激光测距仪22。高速照相机20安装在相机支 座21上,激光测距仪安装在橡胶缓冲块支座19中央的圆孔中,如图6所示,橡胶缓冲块支座 19固定在冲头8正下方,其中央圆孔正对冲头9中央其上圆形凹槽放置有同样中央开孔的冲 头橡胶缓冲块18。
[0035] 进一步地,装置采用的冲头8向下冲压板材4的模式,使得重力势能能为冲头8补充 一部分迫使板材4变形所消耗的能量。所用冲头8为国标推荐的直径为100mm的半圆形冲头, 为减轻冲头8质量,冲头8采用高强度复合材料制成,内部中空,分为半圆头和盖板两部分, 两部分的连接采用胶接。采用轻质材料的目的是使一定的平板线圈11放电能量下,冲头8能 获得更大的速度。装置提供两种不同质量的冲头8,使得在同样的放电能量下,冲头能获得 两种不同等级的速度。
[0036] 进一步地,连接棒13穿过升降支架9上的限位槽15中,使得冲头8只能上下移动。驱 动块12与限位槽15上可调缓冲橡胶块14的距离为冲头8的行程,这个距离略大于冲头8到下 方冲头橡胶缓冲块18的距离,保证板料在破裂前相机都能清晰的拍摄到板料的照片,冲头8 的动能主要由可调缓冲橡胶块14吸收,过大的残余动能将由冲头橡胶缓冲块18,同时其将 起到保护作用。
[0037]进一步地,橡胶块14环向设计开口,使得其不必拆卸驱动块12,连接棒13,冲头8的 连接,并取出连接棒13就可以更换橡胶块。
[0038] 进一步地,装置电路部分采用市电供电,通过变压器24和高压整流桥27为高压电 容器组充电,电容器组28的电压和电容容量可通过改变串并联电容数量调节,以改变放电 能量,调节冲头8速度。
[0039] 进一步地,发射按钮29同时控制电容器组28的放电和电磁铁16的断电,按下冲头 发射按钮29时,电容组28对平板线圈12放电,同时电磁铁16断电,将冲头8发射出去。电磁铁 16头部设计有撞块,当衔铁撞击撞块的时候,会自动弹起发射按钮29,电容组29通路断开, 电磁铁16通电,吸住冲头8,从而方便冲头8的实验前固定。
[0040] 进一步地,实验的数据采集系统也可以使用平面镜系统将相机安装在别处,但其 等效光路应满足前述要求。对冲头8运动范围的限制、橡胶缓冲块支座19和凹模座2的设计 可起到对昂贵的高速相机20多重保护作用,使其不会被失控的冲头8撞坏。
[0041] 此外,本发明还提供了利用上述实验设备进行测试的方法,具体包括以下步骤: [0042]步骤1、开始实验前,确认电容充电开关25处于断开状态,发射开关29处于发射档 位,待电容组28放电完成,以保障电路安全,平板线圈不会烧毁,电容组调整前电容处于不 带电状态。开启激光测距仪22,再将冲头8上两块衔铁17对准电磁铁吸头16且冲头8圆头顶 端对准激光光斑后,使衔铁17撞击电磁铁16头部的撞块,发射开关29弹到电磁吸合档位,闭 合电路总开关23。
[0043]步骤2、在试验板料4上印刷正方形网格。网格越小,实验越精确。
[0044]步骤3、升起升降支架9,升起压边圈6,将试验用板料4放置与凹模3上,放置时要使 板料4上一组网格线平行于两台高速相机20轴线所在平面,方便后续图片的数据处理,闭合 压边圈6,压紧板料4。此步可根据各个的实验需要,更换不同的压边圈拉延筋高度。
[0045] 步骤4、降下升降支架9,使冲头8贴近板料4,但需留出一段距离,其目的是为了使 冲头8有充足的加速距离完成瞬间加速,完成加速后,冲头依靠惯性高速冲击板料4,板料4 将在极短的时间内被涨破,同时由于重力的补偿作用,可以认为板料在被涨破的过程中,应 变速率变化不大。
[0046] 步骤4、调整两台高速照相机20角度,使成像中心都对准于板料4被激光光斑照射 的一个网格点,这可使得两个所拍摄的图像都不会由于板料表面拱起而被挡住一部分。记 录两台相机与竖直线所夹的锐角9^02。这两个夹角将用于后续的图像处理。
[0047] 步骤6、根据试验所需,调整电容器组28的耐压值和电容值,调整变压器电压值与 电容器组28耐压值对应。闭合电容器充电25开关,完成电容器组28的充电。
[0048]步骤7、完成充电后,确保断开电容器充电开关25。否则若直接按下发射开关29,平 板线圈11可能烧毁。可设置一个熔断保险。
[0049] 步骤8、打开高速照相机20,确认激光测距仪22打开,进行相机20初始对焦、图像长 度的对标,测算初始相机长度cU,d 2 (相机焦点到初始对焦点的距离)。
[0050] 步骤8、高速照相机20,确认激光测距仪22二者进行时间对标,按下发射开关29。冲 头8被发射,印刷了网格的板料4被高速胀形,胀形过程将被高速照相机20记录下来,直到冲 头8达到最大行程,剩余动能被可调缓冲橡胶块14和缓冲器18吸收。关闭高速照相机20,试 验后断开总电源,确认电容充电开关处于断开状态。依据照相机拍摄的照片找到破裂点,确 认破裂时应变速率,求得破裂应变。
[0051] 基于本发明的实验装置,本发明还提供了一种金属板材高速成形极限图的建立方 法,包括以下步骤:
[0052]步骤1、利用金属板材高速成形实验装置,首先使用轻质复合材料的冲头8,将印刷 好网格的各种尺寸的板料4分别进行成形极限实验,由于冲头质量较轻,在相同的电磁能量 下,冲头8获得的速度更高。轻质复合材料可选择碳纤维。
[0053] 由于冲头8将以极高的速度将板料涨破,认为板料4在变形过程中的速度变化不 大。通过调节电容组28耐压值和电容量,得到高应变速率下,不同应变路径的成形极限点。 为了保证与国家标准一致,所用板料尺寸与传统FLC测试板料尺寸一致。每组相同实验参数 和板料尺寸进行二次重复性实验。
[0054] 步骤2、利用金属板材高速成形实验装置,换装硬铝材料的冲头8,将印刷好网格的 各种尺寸的板料4分别进行成形极限实验,由于冲头质量较重,在相同的电磁能量下,冲头8 获得的速度较低,但速度稳定性更好,在以中速将板料4涨破的过程中,冲头8的重力势能将 补偿强迫板料4变形消耗的动能,认为板料4在被胀形的过程中速度变化不大。通过调节电 容组28耐压值和电容量,得到中应变速率下、不同应变路径的成形极限点。为了保证与国家 标准一致,所用板料尺寸与传统FLC测试板料尺寸一致。每组相同实验参数和板料尺寸进行 二次重复性实验。
[0055]步骤3、在普通成形试验机,如BCS-50B通用板材成形性试验机的基础上,加装金属 板材高速成形实验装置的数据采集系统,根据所选冲压速度的不同,调节数据采集系统采 集频率在0.5HZ-50HZ范围内变化,将各种尺寸的板料分别进行成形极限实验,通过调节冲 头速度,得到准静态或低应变速率、不同应变路径下的成形极限点。每组相同实验参数和板 料尺寸进行三次重复性实验。
[0056] 步骤4、采用拟合方法在Mat lab软件中将步骤1~3中所有应变速率、应变路径下的 高速成形极限点拟合成曲面,定义为三维成形极限面,得到曲面的表达式z = f(x,y),并在 Matlab中绘制出来,如图8所示,图中*点为原始数据点,灰色曲面为拟合面。其中(a)为小圆 角、较低速率成形,板料破裂严重,(b)为大圆角、较低速率成形,仅有圆角处仍有破裂,(c) 为大圆角,高速率成形,板料安全。
[0057] 步骤4中所述成形极限图存在成形极限面,极限面以上区域定义为破裂区,极限面 以下区域定义为安全区。材料在一定应变速率下的应变在图中对应的点,位于极限面以上 判定为材料失稳,位于极限面以下判定为安全。
[0058]步骤4中所述成形极限图存在三个坐标轴,X坐标轴为次应变,Y坐标轴为应变速 率,Z坐标轴为主应变。其中,应变速率为Mises等效应变速率,对于胀形的平面应力状态,三 个方向的应变满足下列关系:
[0059] ει+ε2+ε3 = 0 (1)
[0060] 其中,为主次应变,ε3为厚向应变。
[0061] 实验中可测得平面应变中的主次应变81>£2,根据公式(1)和如下公式可计算Mises 等效应变:
[0063]应变速度使用材料破裂前的瞬时等效应变速率,计算公式为:
[0065] 其中,△ ^为材料的破裂前极短时间内发生的等效应变,△ t为材料发生△ ^应变 所用的时间。
[0066] 步骤4中曲面的表达式z = f (X,y)使用如下五次多项式拟合:
[0068] 其中,poo,pio,p〇l,P20,pil,P〇2,P30,P21,pi2,P〇3,P40,P31,P22,pi3,P〇4,P50,P41,P32,P23 , P14 , P〇5为多项式的待定系数,部分系数可能为零。
[0069] 拟合需要控制曲面拟合精度,有多种控制方法,一种较为简便的控制方法为使用 相对误差S确定精度:
[0071] 其中,Zi是第i个样本点处的实验主应变值,Ζ?是第i个样本点的拟合近似值。采用5 次多项式拟合,可使相对误差S控制在3%以内。
[0072] 得到成形极限曲面的拟合表达式后,还需要得到成形极限曲面的次应变取值范 围,次应变取值范围因为单向拉伸极限状态的次应变到双等拉状态的极限次应变。普通的 成形极限图,这两个点都是由实验得到,但在应变速率连续变化的成形极限曲面中,通过实 验得到精确的边界表达式是不可能的。本发明采用有限个边界点,利用拉格朗日线性插值 的方法确定边界。
[0073] 此外,本发明还提供仿真成形失效的判定方法,将数值分析软件的后处理结果中 的主次应变以及应变速率导出,导入Matlab中,利用拟合的成形极限面公式z = f (x,y)可判 定节点处是否失效,若z>f(x,y),则节点应变状态在曲面上方,节点失效,反之,则节点安 全。将这些节点的应力状态在高速成形极限面图中画出,失效节点用圆圈符号标出,安全节 点用星号标出。
[0074] 图9~图11可以直观的看到成形件的失效状态,由图9可以,小圆角,较低速度成形 件的许多节点的应变状态已经超过了成形极限面,判定为严重失效,因此需要修改成形参 数,修改方式如图8所示。增大成形件圆角后,从图10中看出,大部分节点安全,但仍有少量 节点超过成形极限面。同时,如图10所示,成形过程中很多节点应变状态位于成形极限面的 低谷处,因此,通过提高成形速度,可使得盒形件所有节点均处于成形极限面以下,如图11 所示。
[0075] 以上所述的【具体实施方式】,对本发明进行了进一步的详细说明,以上所述仅为本 发明的【具体实施方式】而已,并不用于限制本发明。
【主权项】
1. 一种金属板材高速成形极限图的建立方法,其特征在于: 步骤1、利用金属板材高速成形实验装置,首先使用轻质复合材料的冲头(8),将印刷好 网格的各种尺寸的板料(4)分别进行成形极限实验,由于冲头质量较轻,在相同的电磁能量 下,冲头(8)获得的速度更高;通过调节电容组(28)耐压值和电容量,得到高应变速率下,不 同应变路径的成形极限点; 步骤2、利用金属板材高速成形实验装置,换装硬铝材料的冲头(8),将印刷好网格的各 种尺寸的板料(4)分别进行成形极限实验,由于冲头质量较重,在相同的电磁能量下,冲头 (8)获得的速度较低;通过调节电容组(28)耐压值和电容量,得到中应变速率下、不同应变 路径的成形极限点; 步骤3、在普通成形试验机的基础上,加装金属板材高速成形实验装置的数据采集系 统,根据冲压速度的不同,调节数据采集系统采集频率在〇. 5HZ-50HZ范围内变化,将各种尺 寸的板料分别进行成形极限实验,通过调节冲头速度,得到准静态或低应变速率、不同应变 路径下的成形极限点; 步骤4、采用拟合方法在Mat lab软件中将步骤1~步骤3中的不同应变速率、应变路径下 的高速成形极限点拟合成曲面,定义为三维成形极限面,得到曲面的表达式z = f(x,y),并 在Matlab中绘制出来,其中,极限面以上区域定义为破裂区,极限面以下区域定义为安全 区。2. 根据权利要求1所述的金属板材高速成形极限图的建立方法,其特征在于:轻质复合 材料可选择碳纤维。
【文档编号】G01N33/20GK105866122SQ201610204073
【公开日】2016年8月17日
【申请日】2016年6月21日
【发明人】崔俊佳, 李光耀, 孙光永, 邓桦坤, 胡明
【申请人】湖南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1