真空容器的压力控制方法及压力控制装置的制作方法

文档序号:6286155阅读:315来源:国知局
专利名称:真空容器的压力控制方法及压力控制装置的制作方法
技术领域
本发明涉及一种真空容器的压力控制方法及压力控制装置。
背景技术
在制造半导体元件等时,在真空容器内(即,在规定的真空度下)供给反应气体, 对半导体晶片表面进行蚀刻等处理,为了提高质量需要高精度地进行真空容器内的压力控 制。以往,在这样的半导体制造装置中,将质量流量计设置在用于向真空容器供给气 体的气体供给管上,并且将可变传导率阀设置在用于从真空容器排出气体的气体排出管 上。并且,控制上述阀,以使自设置在真空容器上的压力计的压力成为目标压力(例如,参 照日本特开昭62-47719号公报)
发明内容

但是,在上述现有的压力控制中,为了使压力偏差为零,进行反馈控制,至少需要 进行是比例积分动作即PI控制。尤其是需要I控制即积分动作,因此存在以下问题,S卩,在更改了设定压力时,需 要调整复位条件(例如根据偏差的大小、更改使控制发挥作用的时间等条件)等,并且该控 制结构也变得复杂。因此,本发明的目的是提供一种在控制真空容器的压力时,可使其控制结构简单 的真空容器的压力控制方法及压力控制装置。为了解决上述课题,本发明的第一方面是一种真空容器的压力控制方法,其控制 真空处理装置的上述真空容器的压力,上述真空处理装置包括连接气体的供给管路和排出 管路的真空容器、设置在上述排出管路并能开关该排出管路的真空阀、测量上述真空容器 内的压力的压力计以及检测真空阀的阀开度的开度检测器,上述压力控制方法的特征在 于,具有以下步骤第一步骤,根据由上述开度检测器检测的真空阀的阀开度求出推 测排出气体量,基于考虑到该推测排出气体量的气体量,计算求出计算模型上的虚拟真空 容器内的压力;第二步骤,基于上述第一步骤中求出的计算压力与由上述压力计测量的实际的真 空容器的测量压力间的压力差,求出推测流入气体量;和第三步骤,在上述第二步骤中求出的推测流入气体量上,加上基于作为目标的设 定压力与测量压力间的压力偏差而得到的校正气体量,求出设定排出气体量, 并且,在每个规定周期反复执行上述各步骤,控制上述真空阀的阀开度,以成为上述第三步骤中求出的设定排出气体量,且在上述第一步骤中,关于在求出虚拟真空容器中的计算压力时使用的气体量, 使用通过从第二步骤求出的推测流入气体量减去推测排出气体量而得到的气体流量差。
本发明的第二方面是一种真空容器的压力控制装置,其控制真空处理装置的上述 真空容器的压力,上述真空处理装置包括连接气体的供给管路和排出管路的真空容器、设 置在上述排出管路并能开关该排出管路的真空阀、测量上述真空容器内的压力的压力计以 及检测真空阀的阀开度的开度检测器,上述压力控制装置的特征在于,具有压力设定部、流入气体量推测部、气体量校正部、加法部以及阀开度计算部, 其中,压力设定部设定真空容器的作为目标的压力;
流入气体量推测部根据由上述开度检测器检测的阀开度求出推测排出气体量,基 于考虑到该推测排出气体量的气体量而求出计算模型上的虚拟真空容器内的压力,并且基 于该虚拟真空容器的计算压力与自上述压力计的实际的真空容器中的测量压力间的压力 差,求出推测流入气体量;气体量校正部具有压力减法部和比例控制部,压力减法部输入自上述压力设定部 的设定压力和自上述压力计的测量压力并求出压力偏差,比例控制部输入由该压力减法部 求出的压力偏差并乘以规定增益而求出校正气体量;加法部将由上述流入气体量推测部求出的推测流入气体量与由上述气体量校正 部求出的校正气体量相加,而求出设定排出气体量;阀开度计算部输入由该加法部得到的设定排出气体量和自上述压力设定部的设 定压力,而求出阀开度,并且,在上述流入气体量推测部中,在每个规定周期执行以下运算,S卩,基于气体 量求出计算模型上的虚拟真空容器内的压力,并且基于该虚拟真空容器的计算压力与自上 述压力计的实际的真空容器中的测量压力间的压力差而求出推测流入气体量,进而,在上述流入气体量推测部中,作为求出虚拟真空容器中的计算压力时使用 的气体量,使用通过从推测流入气体量减去推测排出气体量而得到的气体流量差。进而,本发明的第三方面的真空容器压力控制装置,在本发明的第二方面所述的 真空容器的压力控制装置中,流入气体量推测部还包括传导率获取部、乘法部、气体量减法 部、压力计算部、压力减法部以及放大部,其中,传导率获取部基于真空阀的阀开度-传导率的特性曲线,根据检测到的阀开度求 出真空阀的传导率;乘法部通过输入由该传导率获取部得到的传导率以及自压力计的测量 压力,并使该传导率乘以测量压力,而求出推测排出气体量;气体量减法部从推测流入气体 量减去由该乘法部求出的推测排出气体量,而求出气体流量差;压力计算部输入由该气体 量减法部求出的气体流量差,并通过计算求出虚拟真空容器内的压力;压力减法部输入由 该压力计算部求出的计算压力和自压力计的测量压力,而求出压力差;放大部将由该压力 减法部求出的压力差乘以规定增益,而求出推测流入气体量。根据上述压力控制方法和压力控制装置,通过根据真空阀的阀开度得到的推测排 出气体量和推测流入气体量间的气体流量差求出真空容器的计算压力,基于该真空容器的 计算压力和自压力计的测量压力的压力差求出推测流入气体量,在该推测流入气体量上加 上利用测量压力相对设定压力的压力偏差求出的校正气体量而求出设定排出气体量,控制 阀开度以成为该设定排出气体量,因此,在进行相对于压力的反馈控制时只进行比例控制 即可,因此无需进行比例积分控制中那样的复位条件等的调整,所以控制结构也变得简单。
S卩,为了得到设定排出气体量而进行追踪设定压力的反馈控制时,通常需要PID 控制、至少需要PI控制,与此相对,由本发明的控制得到的推测流入气体量对应于对压力 偏差的积分动作(I控制),因此只进行比例控制即可。


图1是表示本发明的实施方式的真空容器和压力控制装置的概略结构的示意图。图2是设置于该真空容器的真空阀的主要部分的俯视图。图3是表示该真空阀的阀开度与压力之间的关系的图表。图4是表示该真空阀的阀开度与传导率之间的关系的图表。图5是表示该压力控制装置的概略结构的框图。
图6是表示该压力控制装置的流入气体量推测部的概略结构的框图。图7是表示该压力控制装置的校正气体量计算部的概略结构的框图。图8是表示该压力控制装置的阀开度计算部的概略结构的框图。图9是表示该压力控制装置的概略结构的控制框图。图10是表示该压力控制装置的主要部分结构的控制框图。
具体实施例方式以下,基于图1 图10、就本发明的实施方式的真空容器的压力控制方法和压力 控制装置进行说明。本实施方式的真空容器例如是在制造半导体元件等时使用,具体是用于在规定的 真空度下、以产生等离子体等的状态供给反应气体(气体的一例),对作为被处理物的半导 体晶体施行规定的表面处理。首先就本发明的真空容器的压力控制的基本思想进行说明。真空容器的压力取决于流入的气体量(以下称为流入气体量,也是供给气体量) 和流出的气体量(可称为流出气体量,但以下称为排出气体量)之差,因此,为了将压力保 持在一定值(也是规定值),将排出气体量控制为与流入气体量相等即可。S卩,测量流入气体量并排出与该测量出的流入气体量等量的气体即可,但在真空 容器内,如果流入到例如等离子体中的气体发生反应,则新生成气体,因此,即使使用测量 值,也是与实际的流入气体量相背离的值。因此,不使用测量值,而使用如下求出的作为推 测值的流入气体量,即,根据真空阀的阀开度(后述)推测排出气体量,使用基于该排出气 体量(换言之,考虑到该排出气体量)的气体量,通过计算求出计算模型上的真空容器(以 下称为虚拟真空容器)内的压力,并且根据该计算的压力(以下也称为计算压力)与实际 的真空容器(以下也称为实际真空容器)中的测量压力的差求出作为推测值的流入气体 量。首先基于图1和图2、就真空处理装置的概略整体结构进行说明。该真空处理装置包括真空容器1、气体供给管11、真空阀4、气体排出管12以及压 力控制装置9。可向真空容器1的内部供给例如半导体晶体等并进行规定的处理(例如蚀 刻),该真空容器1具有反应气体的供给口 2和气体排出口 3 ;气体供给管(气体的供给管 路的一例)11与上述供给口 2连接而用于供给反应气体;真空阀4包括与上述排出口 3连接并具有圆形的开口部5a(换言之具有阀座)的阀主体5、可开关该开口部5a的阀体6以及使该阀体6开关的驱动用电机(驱动部的一例,具体使用步进电机)7;气体排出管(气 体的排出管路的一例)12的一端部与上述真空阀4的排气口连接,并且另一端部与真空泵 8连接;压力控制装置9用于控制上述真空容器1内的压力。另外,就将真空阀4直接设置 在排出口 3上进行了说明,当然也可设置在气体排出管12的中间。该压力控制装置9包括测量真空容器1内的真空度即压力的压力计(根据需要 设置多个,但在此就一个进行说明)21 ;检测真空阀4的阀体6的开度(以下也称为阀开度) 的开度检测器(具体使用检测驱动用电机的旋转量的编码器)22 ;以及控制装置主体23,输 入由上述压力计21测量的测量压力和由开度检测器22检测的阀开度(以下称为实际阀开 度),使真空容器1内的压力成为目标值(以下称为设定压力)地控制真空阀4的驱动用电 机7。在此就上述真空阀4的阀体6的动作进行说明。作为该真空阀4,使用具有压力控制和真空密封两种功能的阀(但不局限于具有 压力控制和真空密封两种功能的阀)。即,通过该真空阀4的阀体6通过在圆形的开口部 5a滑动,可控制该开口部5a中的气体的通过流量。在阀体6关闭了该开口部5a后(这里 的意思是并非密封状态而是用阀体覆盖了整个开口部的状态),通过进一步向开口部5a周 围(就是所谓的阀座侧)即垂直方向移动,从而完全封闭(密封状态)。图3表示了该真空 阀4的阀开度和由该真空阀4控制的被控制空间侧的压力之间的一般关系。由该图表可知,阀体6向关闭动作(閉動)位置(在此为20% )移动之后垂直地 移动(就是所谓的升降动作),从而成为完全密封的状态。即,在移动到关闭动作位置时,压 力上升一定的程度,通过之后的升降动作,压力急速上升(当然,在适用于真空容器的压力 控制时,压力急速降低)。S卩,该真空阀4的阀开度与压力之间的关系呈非线形。但是,在本发明中,在求推测流入气体量时,使用虚拟真空容器中的计算压力,但 如上所述,为了求出该计算压力,使用基于推测排出气体量的气体量。确切地说,作为气体 量使用推测排出气体量和推测流入气体量的差即气体流量差,其中推测排出气体量即根据 阀开度求出的推测值,推测流入气体量基于虚拟真空容器中的计算压力与实际真空容器中 的测量压力的压力差求出。另外,在求推测排出气体量时,使用真空阀的特性曲线。为了补 偿阀开度和压力之间的非线形关系而使用该特性曲线。如图4所示,该阀特性曲线表示了阀开度和传导率之间的关系,具体作为数据表 保存在存储部等中。该传导率表示气体的易流动性,是气体流量除以压力的值(气体流量 /压力)。接着,基于图5就压力控制装置9的结构进行说明。该压力控制装置9大致包括压力设定部31、流入气体量推测部32、校正气体量计 算部33、加法器(加法部)34以及阀开度计算部35构成。其中,压力设定部31设定作为 真空容器1目标的设定压力(也称为目标压力);流入气体量推测部32根据由上述开度检 测器22检测的实际阀开度和由压力计21测量的测量压力求出推测排出气体量,基于上述 推测排出气体量和后述推测流入气体量的差即气体流量差,而计算求出虚拟真空容器内的 压力,并且基于作为由该计算求出的计算压力和测量压力之差的压力差求出推测流入气体 量;校正气体量计算部33输入自上述压力设定部31的设定压力和自压力计21的测量压力,而求出压力偏差,并且基于该压力偏差计算校正气体量;加法器(加法部)34在由上述 流入气体量推测部32求出的推测流入气体量上加上由上述校正气体量计算部求出的校正 气体量,而得到修正气体量,并且将该修正气体量作为设定排出气体量输出;阀开度计算部 35基于从该加法器34输出的设定排出气体量和自压力设定部31的设定压力,计算真空阀 4的作为目标的阀开度(以下称为设定阀开度)。如图6所示,上述流入气体量推测部32具有传导率获取部41、乘法器(乘法 部)42、压力计算部43、压力减法器(减法部)44以及放大器(放大部)45。其中,传导率获 取部41基于真空阀4的特性曲线、根据实际阀开度求出真空阀4的传导率;乘法器(乘法 部)42输入由该传导率获取部41得到的传导率以及自压力计21的测量压力,在该传导率 上乘以测量压力,从而求出排出的气体流量的推测值;压力计算部[具体是使用积分器;计 算模型上的传递函数为1/(βη8),βη是容器的压力增益(额定值)]43输入由该乘法器42 求出的推测排出气体量和推测流入气体流量(具体如后所述)的差即气体流量差,计算求 出虚拟真空容器内的压力;压力减法器(减法部)44输入由该压力计算部43求出的计算压 力和自压力计21的测量压力,求出作为其差的压力差;放大器(放大部)45在由该压力减 法器44求出的压力差上乘以规定增益(K。bs),从而求出推测流入气体量。上述流入气体量 推测部32还具备气体量减法器(减法部)46,其设置在上述乘法器42和压力计算部43之 间,从由上述放大器45求出的推测流入气体量减去上述推测排出气体量,而求出气体流量 差。
若对在该流入气体量推测部32的功能进行说明,则为从由该流入气体量推测部 32得到的推测流入气体量中减去根据实际阀开度推测的推测排出气体量而得到气体流量 差,根据对该气体流量差进行积分而求出的计算模型上的虚拟真空容器中的计算压力(通 过积累气体流量差求出容器内压力)与实际的测量压力之间的压力差,求出推测流入气体 量。换言之,在计算压力偏离测量压力时,根据其压力差进行校正,即,使计算压力接近测量 压力地求出气体流量差[使计算压力追踪测量压力地组成计算循环(由气体量减法器46、 压力计算部43、压力减法器44以及放大器45构成的运算处理循环)]。因此,由某个计算 循环(某个周期)求出的推测流入气体量被用于求下一个计算循环(下一个周期)所使用 的气体流量差。以规定的周期(运算周期或控制周期,例如10msec)反复进行上述计算循 环(也包括获取实际阀开度)。以上说明了对从推测流入气体量减去后得到的气体流量差进行积分,从而求出由 上述流入气体量推测部32得到的虚拟真空容器的计算压力。但若更具体地说明,在本次计 算循环中求的计算压力,是通过将本次求出的气体流量差作为压力与上次计算循环中求出 的计算压力相加而求出的。另外,在计算循环开始时,由于不存在上次的计算循环,因此将 该开始时测量的实际真空容器内的压力值作为初始值使用。即,如图6所示,在上述计算循环中,在每个规定的运算周期进行以下步骤用气 体量减法器46求出气体流量差的步骤;通过将该气体流量差输入压力计算部43进行积 分,而求出虚拟真空容器中的计算压力的步骤;用压力减法器44求出作为虚拟真空容器的 计算压力和实际真空容器内的测量压力之差的压力差的步骤;以及将该压力差输入放大器 45而求出推测流入气体量,并且将该推测流入气体量输入上述气体量减法器46的步骤。输 入在某个运算周期中求出的推测流入气体量以用于求出下一个运算周期的在气体量减法器46中的气体流量差。即,作为用于求出虚拟真空容器中的计算压力的气体量,使用通过 从在上次运算周期中求出的推测流入气体量中减去为了本次运算周期而求出的推测排出 气体量而得到的气体流量差。如图7所示,上述校正气体量计算部33包括减法器(减法部)51和比例控制器 (比例控制部,乘以比例增益KP)52。其中,减法器51输入自压力设定部31的设定压力和 自压力计21的测量压力,求出压力偏差;比例控制器52输入由该减法器51求出的压力偏 差,求出与该压力偏差成比例的气体量,并且将该气体量作为校正气体量输出。另外,如图8所示,上述阀开度计算部35包括传导率计算部61和阀开度获取部 62。其中,传导率计算部61输入从加法器34输出的设定排出气体量和自压力设定部31的 设定压力,求出传导率;阀开度获取部62输入由该传导率计算部61求出的传导率,根据阀 的特性曲线(与传导率获取部41的特性曲线相反的曲线)获取阀开度。上述压力控制装置9由计算机装置构成,通过软件实现上述计算部等各结构部件 的功能。例如,在计算机装置上作为与真空容器具有相同功能的计算模型,组装了流入气体 量推测部32。接着,就真空容器的压力控制方法进行说明。真空容器1内的压力状态在某个值下稳定,由压力设定部31设定了新的设定压 力。在该状态下,如果从开度检测器22向流入气体量推测部32输入实际阀开度,则由 传导率获取部41得到传导率,并且由乘法器42在该传导率上乘以测量压力,而求出推测排 出气体量。然后由气体量减法器46从在上次运算周期中求出的推测流入气体量中减去本 次求出的推测排出气体量,而求出气体流量差,并将该气体流量差输入压力计算部43,求出 计算模型中的虚拟真空容器内的压力即计算压力。然后求出作为该计算压力和自压力计21的测量压力之差的压力差,在放大器45 中乘以规定增益,而新求出推测流入气体量。该新的推测流入气体量用于求下一个计算循 环即下次运算周期中的气体流量差,以使计算压力接近测量压力。另一方面,向校正气体量计算部33输入由压力设定部31设定的设定压力,在减法 器51中求出该设定压力与压力计21的测量压力之差即压力偏差,并且将该压力偏差输入 比例控制器52,在压力偏差上乘以比例增益,而求出校正气体量。然后,将该校正气体量和由流入气体量推测部32新求出的推测流入气体量输入 加法器34,而求出设定排出气体量。接着,将该设定排出气体量和自压力设定部31的设定压力输入到阀开度计算部 35,求出成为该设定排出气体量的设定阀开度。具体是将设定排出气体量和设定压力输入 到传导率计算部61而求出传导率,并将该传导率输入到阀开度获取部62,根据阀的特性曲 线求出阀开度。向驱动用电机7输入该阀开度指令,驱动阀体6以成为规定的阀开度。然后反复上述动作,在计算压力与测量压力相等或计算压力以某偏差追踪测量压 力时,可视为由流入气体量推测部32求出的推测流入气体量与实际的流入气体量相等。在此,就数值的具体例进行说明。在真空容器1中的设定压力值以及在实际的真空容器1中的压力值都是90mT、流入气体量在lOOsccm下稳定的状态下,使设定压力从90mT更改到IOOmT时,推测流入气体量仍然为lOOsccm,在设定压力值从90mT变化到IOOmT的瞬间,测量压力值为90mT,校正气 体量为-10sccm[ = -1(比例增益)X (100-90)mT]0因此,设定排出气体量为90sCCm,传导 率从1.0变为0.9 (90/100),阀体6向关闭方向移动,压力上升。如果压力达到IOOmT,则校 正气体量为零,设定排出气体量为lOOsccm,传导率成为1.0,压力稳定。这样,在真空容器中,在排出与流入气体量相等的排出气体量并进行压力控制时, 关于流入气体量,使用如下的新的推测流入气体量根据实际阀开度求出推测排出气体量, 并且从由流入气体量推测部求出的推测流入气体量中减去该推测排出气体量而得到气体 流量差,输入该气体流量差并进行积分,从而求出计算模型中的虚拟真空容器内的计算压 力,上述新的推测流入气体量对应于作为该计算压力与实际真空容器中的测量压力之差的 压力差。S卩,基于从上次求出的推测流入气体量中减去根据真空阀的阀开度得到的推测排 出气体量而得到气体流量差,求出虚拟真空容器中的计算压力,根据该计算压力和实际真 空容器中的测量压力之间的压力差,求出新的推测流入气体量,在该推测流入气体量上加 上利用测量压力相对于设定压力的压力偏差而求出的校正气体量,而求出设定排出气体 量,控制阀开度以成为该设定排出气体量,因此,进行比例控制就可完成对压力的反馈控 制,因此无需进行比例积分控制中那样的复位条件等的调整,控制结构也变得简单。
换言之,为了得到设定排出气体量而进行追随设定压力的反馈控制时,本来需要 进行PID控制、至少需要进行PI控制,与此相对,由于由流入气体量推测部得到的推测流入 气体量与相对压力偏差的积分动作(I控制)对应,因此在反馈控制系统中只进行比例控制 即可。例如,在设置了 PI控制,尤其是积分动作时,需要加入复位条件(根据偏差的大小 更改使控制起作用的时间等的条件),需要通过试误法决定该复位条件。如果要在逻辑上实 际安装这样的复位条件,则将伴随非常繁琐的作业(处理),但是,由流入气体量推测部求 出的推测流入气体量发挥与由该积分动作得到的积分值相同的作用,不需要繁琐的积分动 作。当然,进行真空容器的压力控制也不需要测量流入气体量。以下,以步骤的形式说明上述的压力控制方法的主要部分。该压力控制方法,控制真空处理装置的上述真空容器的压力,上述真空处理装置 包括连接气体的供给管路和排出管路的真空容器、设置在上述排出管路并能开关该排出 管路的真空阀、测量上述真空容器内的压力的压力计以及检测真空阀的阀开度的开度检测 器,其中,具有以下步骤第一步骤,根据由上述开度检测器检测的真空阀的阀开度求出推 测排出气体量,基于考虑到该推测排出气体量的气体量,计算求出计算模型上的虚拟真空 容器内的压力;第二步骤,基于上述第一步骤中求出的计算压力与由上述压力计测量的实际的真 空容器的测量压力间的压力差,求出推测流入气体量;和第三步骤,在上述第二步骤中求出的推测流入气体量上,加上基于作为目标的设 定压力与测量压力间的压力偏差而得到的校正气体量,求出设定排出气体量,并且,在每个规定周期反复执行上述各步骤,控制上述真空阀的阀开度,以成为上述第三步骤中求出的设定排出气体量,
且在上述第一步骤中,关于在求出虚拟真空容器中的计算压力时使用的气体量, 使用通过从上次周期中的第二步骤中求出的推测流入气体量减去推测排出气体量而得到 的气体流量差。另外,就上述压力控制装置的主要部分进行以下说明。S卩,该压力控制装置,控制真空处理装置的上述真空容器的压力,上述真空处理装 置包括连接气体的供给管路和排出管路的真空容器、设置在上述排出管路并能开关该排出 管路的真空阀、测量上述真空容器内的压力的压力计以及检测真空阀的阀开度的开度检测 器,上述压力控制装置的特征在于,具有压力设定部、流入气体量推测部、气体量校正部、加法部以及阀开度计算部, 其中,压力设定部设定真空容器的作为目标的压力;
流入气体量推测部根据由上述开度检测器检测的真空阀的阀开度求出推测排出 气体量,基于考虑到该推测排出气体量的气体量而求出计算模型上的虚拟真空容器内的压 力,并且基于该虚拟真空容器的计算压力与自上述压力计的实际的真空容器中的测量压力 间的压力差,求出推测流入气体量;气体量校正部具有压力减法部和比例控制部,压力减法部输入自上述压力设定部 的设定压力和自上述压力计的测量压力并求出压力偏差,比例控制部输入由该压力减法部 求出的压力偏差并乘以规定增益而求出校正气体量;加法部将由上述流入气体量推测部求出的推测流入气体量与由上述气体量校正 部求出的校正气体量相加,而求出设定排出气体量;阀开度计算部输入由该加法部得到的设定排出气体量和自上述压力设定部的设 定压力,而求出阀开度,并且,在上述流入气体量推测部中,在每个规定周期执行以下运算,S卩,基于气体 量求出计算模型上的虚拟真空容器内的压力,并且基于该虚拟真空容器的计算压力与自上 述压力计的实际的真空容器中的测量压力间的压力差而求出推测流入气体量,进而,在上述流入气体量推测部中,作为求出虚拟真空容器中的计算压力时使用 的气体量,使用通过从在上次的运算周期中求出的推测流入气体量减去推测排出气体量而 得到的气体流量差。上述真空容器的压力控制装置,在上述流入气体量推测部还包括传导率获取部、 乘法部、气体量减法部、压力计算部、压力减法部以及放大部,其中,传导率获取部基于真空阀的阀开度-传导率的特性曲线,根据检测到的阀开度求 出真空阀的传导率;乘法部通过输入由该传导率获取部得到的传导率以及自压力计的测量 压力,并使该传导率乘以测量压力,而求出推测排出气体量;气体量减法部从推测流入气体 量减去由该乘法部求出的推测排出气体量,而求出气体流量差;压力计算部输入由该气体 量减法部求出的气体流量差,并通过计算求出虚拟真空容器内的压力;压力减法部输入由 该压力计算部求出的计算压力和自压力计的测量压力,而求出压力差;放大部将由该压力 减法部求出的压力差乘以规定增益,而求出推测流入气体量。图9表示上述压力控制系统的控制框图(使用了传递函数)。在图9中,(A)是表示真空容器的部分。另外,虽然在上述实施方式中未进行说明,但如图9所示,在设定压力和测量压力的向校正气体量计算部输出的途中设置有设定压力 用过滤器和噪声除去用滤波器。在此,基于图10就上述压力控制系统中、尤其是流入气体量推测部与反馈控制系 统的比例控制器间的压力响应(根据传递函数)进行说明。图10是表示流入气体量推测 部32和校正气体量计算部33的控制框图。实际的控制系统通过设定排出气体量和设定压力求出传导率,然后根据特性曲线 求出阀开度,并且以成为该阀开度的方式进行操作而排出气体。在此,用G(表示排出气体 量的设定值和实际流量之间的关系的非线形函数)表示该部分的设定排出气体量和排出 气体量的之间传递函数。另外,将表示事先测量的阀开度与传导率之间的关系的特性曲线 例如作为表进行存储,通过现在的阀开度推测现在的传导率,将其与压力相乘,从而推测并 使用排出气体量。另外,用H表示实际排出气体量与推测排出气体量之间的传递函数。以下的公式(1)表示从比例控制器的输出u到压力P的开循环的传递函数。[数学式1]<formula>formula see original document page 12</formula>
在数学式(1)中,若G = H= l、p/ (Kobs) ¥0 (即,若增大K。bs的值),则成为
以下的数学式(2)。[数学式2]<formula>formula see original document page 12</formula>在数学式(2)中,T= β n/ (Kobs)。由此可知,相对于设定排出气体量和实际排出气体量的压力变化可忽略实际的压 力时间常数β的影响,由额定值βη决定。换言之,表示是否连接有虚拟真空容器之类的 举动。在上述数学式(2)中包含的传递函数(Ι/α+Ts))的截止频率以下的区域中,设定 压力(Pref)和气体流量(Fin)与压力P之间的传递函数如以下的数学式(3)所示。[数学式3]
<formula>formula see original document page 12</formula>基于上述数学式(3),如果求时间响应(根据拉普拉斯逆变换)则形成如下。a ;使设定压力值阶梯式变化后(Pref = 1/s, Fin = 0)[数学式4]
<formula>formula see original document page 13</formula>
根据数学式(4)可明确,本发明的控制方式相对于设定压力值的阶梯式变化,稳 态偏差(t—⑴)为零,且不产生过冲。另外,如果将β n调整为与实际真空容器的压力增 益大致相等,则通过更改KP,就可调整该压力响应特性。b ;使气体流量值阶梯式变化后(Fin = 1/s, Pref = 0)将Fin = 1/s、Pref = 0代入上述数学式(3)整理后,得到以下数学式(5)。[数学式5]<formula>formula see original document page 13</formula>
在数学式(5)中,如果忽略高次(二次)项,则得到以下的数学式(6)。[数学式6]<formula>formula see original document page 13</formula>如果将数学式(6)转换为时间函数,则得到以下的数学式(7)。[数学式7]<formula>formula see original document page 13</formula>根据数学式(7)可明确,本发明的控制方式相对于气体流量值的阶梯式变化,稳 态偏差(t—⑴)为零。另外,如果将β n调整为与实际真空容器的压力增益大致相等,则 Kp由调整压力响应特性的调整来决定,因此通过更改K。bs就可调整干扰抑制特性。在该压力控制系统中,也包括真空室内的等离子体进行的气体反应部分,对于流 入真空室的气体量的变化,由流入气体量推测部作为推测流入气体量捕捉其变化,并且指 令排出流入的气体流量,据此,可抑制相对于气体流量变化的压力变化(干扰抑制性)。另 一方面,对于压力设定值的更改,通过压力设定值与压力值的偏差的比例控制,发出对于推 测流入气体量的校正气体量的指令,据此使压力追踪压力设定值。即,可单独调整相对于压 力设定值的压力响应特性和相对于气体流量变化的抑制特性即干扰抑制特性。简单地说,虽然只利用PI控制(或者PID控制)不能同时优化相对于压力设定值 的压力追踪特性和相对于气体流量变化的抑制特性是众所周知的,但可以解决该问题。在上述实施方式中,就计算循环的步骤进行了说明,即,用气体减法器求出气体流 量差后,在压力计算部中在通过上次的计算循环求出的计算压力上加上与气体流量差对应 的压力,从而求出虚拟真空容器内的计算压力,然后用压力减法器从计算压力减去实际真 空容器中的测量压力而求出压力差后,利用放大器根据压力差求出推测流入气体量(即, 将“用气体减法器求出气体流量差”作为计算循环的开始)。但实际上是从“用压力减法器 从计算压力减去实际真空容器中的测量压力而求出压力差”开始。以下是逐条表示上述两个步骤。
(1)实施方式中说明的步骤第一次虚拟真空容器内的压力初始值一P0实际真空容器内的测量压力值一Pkla.气体量减法器一初次无运算b.压力计算部一PJG1X (1/β n) X At = P1G1 气体流量差(G1 = 0 无基于气体流量差的压力的相加)At:控制周期c.压力减法器一P1-Pkl = AP1d.放大器一AP1乘以增益、求出推测流入气体流量Fp第二次进入第二次计算循环时的虚拟真空容器内的压力值是Pp实际真空容器内的测量压力值一Pk2a.气体量减法器一推测流入气体流量F1-推测排出气体流量H2 = G2b.压力计算部一P^G2X (1/β n) X At = P2c.压力减法器一P2-Pk2 = Δ P2d.放大器一Δ P2乘以增益、求出推测流入气体流量F2。第三次(第四次以后也一样)进入第三次计算循环时的虚拟真空容器内的压力值是P2。实际真空容器内的测量压力值一Pk3a.气体量减法器一推测流入气体流量F2-推测排出气体流量H3 = G3b.压力计算部一P2+G3X (1/βη) X At = P3c.压力减法器一P3-Pk3 = AP3d.放大器一Δ P3乘以增益、求出推测流入气体流量F3。(2)实际的步骤第一次虚拟真空容器内的压力初始值一P1实际真空容器内的测量压力值一Pkla.压力减法器一P1-Pkl = AP1b.放大器一AP1乘以增益、求出推测流入气体流量F1c.气体量减法器一推测流入气体流量F1-推测排出气体流量H1 = G1d.压力计算部一P^G1X (1/β n) X At = P2将该Ρ2存储在存储器中,用于第二次计算。第二次进入第二次计算循环时的虚拟真空容器内的压力值是Ρ2。实际真空容器内的测量压力值一Pk2a.压力减法器一P2-Pk2 = Δ P2b.放大器一Δ P2乘以增益、求出推测流入气体流量F2。c.气体量减法器一推测流入气体流量F2-推测排出气体流量H2 =G2
d.压力计算部一P2+G2X (1/βη) X At = P3
第三次(第四次以后也一样)进入第三次计算循环时的虚拟真空容器内的压力值是P3。实际真空容器内的测量压力值一Pk3a.压力减法器一P3-Pk3 = AP3b.放大器一Δ P3乘以增益、求出推测流入气体流量F3。c.气体量减法器一推测流入气体流量F3-推测排出气体流量H3 = G3d.压力计算部一P3+G3X (1/βη) X At = P4S卩,为了更容易理解地说明本发明,按照(1)的步骤进行了说明,但实际上如(2) 中所说明的,从压力减法的步骤开始。权利要求的范围也是按照(1)的步骤进行记载,但由于进行计算循环,当然也包 括⑵的步骤。
权利要求
一种真空容器的压力控制方法,用于控制真空处理装置的上述真空容器的压力,上述真空处理装置包括连接气体的供给管路和排出管路的真空容器、设置在上述排出管路并能开关该排出管路的真空阀、测量上述真空容器内的压力的压力计以及检测真空阀的阀开度的开度检测器,上述压力控制方法的特征在于,具有以下步骤第一步骤,根据由上述开度检测器检测的真空阀的阀开度求出推测排出气体量,基于考虑到该推测排出气体量的气体量,计算求出计算模型上的虚拟真空容器内的压力;第二步骤,基于在上述第一步骤中求出的计算压力与由上述压力计测量的实际的真空容器的测量压力间的压力差,求出推测流入气体量;和第三步骤,在上述第二步骤中求出的推测流入气体量上,加上基于作为目标的设定压力与测量压力间的压力偏差而得到的校正气体量,求出设定排出气体量,并且,在每个规定周期反复执行上述各步骤,控制上述真空阀的阀开度,以成为上述第三步骤中求出的设定排出气体量,且在上述第一步骤中,关于在求出虚拟真空容器中的计算压力时使用的气体量,使用通过从第二步骤求出的推测流入气体量减去推测排出气体量而得到的气体流量差。
2.一种真空容器的压力控制装置,用于控制真空处理装置的上述真空容器的压力,上 述真空处理装置包括连接气体的供给管路和排出管路的真空容器、设置在上述排出管路并 能开关该排出管路的真空阀、测量上述真空容器内的压力的压力计以及检测真空阀的阀开 度的开度检测器,上述压力控制装置的特征在于,具有压力设定部、流入气体量推测部、气体量校正部、加法部以及阀开度计算部,其中, 压力设定部设定真空容器的作为目标的压力;流入气体量推测部根据由上述开度检测器检测的阀开度求出推测排出气体量,基于考 虑到该推测排出气体量的气体量而求出计算模型上的虚拟真空容器内的压力,并且基于该 虚拟真空容器的计算压力与自上述压力计的实际的真空容器中的测量压力间的压力差,求 出推测流入气体量;气体量校正部具有压力减法部和比例控制部,压力减法部输入自上述压力设定部的设 定压力和自上述压力计的测量压力并求出压力偏差,比例控制部输入由该压力减法部求出 的压力偏差并乘以规定增益而求出校正气体量;加法部将由上述流入气体量推测部求出的推测流入气体量与由上述气体量校正部求 出的校正气体量相加,而求出设定排出气体量;阀开度计算部输入由该加法部得到的设定排出气体量和自上述压力设定部的设定压 力,而求出阀开度,并且,在上述流入气体量推测部中,在每个规定周期执行以下运算,即,基于气体量求 出计算模型上的虚拟真空容器内的压力,并且基于该虚拟真空容器的计算压力与自上述压 力计的实际的真空容器中的测量压力间的压力差而求出推测流入气体量,进而,在上述流入气体量推测部中,作为求出虚拟真空容器中的计算压力时使用的气 体量,使用通过从推测流入气体量减去推测排出气体量而得到的气体流量差。
3.如权利要求2所述的真空容器的压力控制装置,其特征在于,流入气体量推测部还包括传导率获取部、乘法部、气体量减法部、压力计算部、压力减法部以及放大部,其中, 传导率获取部基于真空阀的阀开度-传导率的特性曲线,根据检测到的阀开度求出真 空阀的传导率;乘法部通过输入由该传导率获取部得到的传导率以及自压力计的测量压 力,并使该传导率乘以测量压力,而求出推测排出气体量;气体量减法部从推测流入气体量 减去由该乘法部求出的推测排出气体量,而求出气体流量差;压力计算部输入由该气体量 减法部求出的气体流量差,并通过计算求出虚拟真空容器内的压力;压力减法部输入由该 压力计算部求出的计算压力和自压力计的测量压力,而求出压力差;放大部将由该压力减 法部求出的压力差乘以规定增益,而求出推测流入气体量。
全文摘要
本发明提供一种真空处理装置的真空容器的压力控制方法,真空处理装置具有设置在真空容器的气体排出管的真空阀、测量真空容器内压力的压力计以及检测真空阀的阀开度的开度检测器,其中,基于根据真空阀的实际阀开度求出的推测排出气体量和在上次运算周期求出的推测流入气体量间的气体流量差,通过计算求出虚拟真空容器中的压力,基于该求出的计算压力与压力计测量的实际的真空容器的测量压力之差求出当前的推测流入气体量,在该推测流入气体量上加上基于作为目标的设定压力与测量压力间的压力偏差得到的校正气体量,求出设定排出气体量,并控制真空阀的阀开度以成为该设定排出气体量。
文档编号G05D16/20GK101836173SQ20088011262
公开日2010年9月15日 申请日期2008年11月19日 优先权日2007年12月5日
发明者佐伯敏朗, 斋藤英树 申请人:日立造船株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1