一种压控电流源电路、半导体激光器及其偏置电源的制作方法

文档序号:10921072阅读:619来源:国知局
一种压控电流源电路、半导体激光器及其偏置电源的制作方法
【专利摘要】本实用新型公开了一种压控电流源电路、半导体激光器及其偏置电源。压控电流源电路包括电阻R1~R6、电压保持芯片U1、三极管Q1、运算放大器U2A与U2B。U1的控制脚经R1作为压控电流源电路的输入端,U1的输入脚经R2作为压控电流源电路的输入端。U1的输出脚经R3连接U2A的反相端。U2A的同相端经R5接地,其输出端连接U2B的同相端且还经R4连接其的反相端。U2B的反相端连接Q1的发射极,其输出端连接Q1的基极。Q1的发射极经R6连接下拉电源,其集电极为压控电流源电路的输出端。本实用新型还公开具有该电路的半导体激光器偏置电源、设置有该半导体激光器偏置电源的半导体激光器。
【专利说明】
一种压控电流源电路、半导体激光器及其偏置电源
技术领域
[0001] 本实用新型涉及一种电流源电路,尤其涉及一种压控电流源电路、具有该压控电 流源电路的半导体激光器偏置电源、设置有该半导体激光器偏置电源的半导体激光器。
【背景技术】
[0002] 现有的半导体激光器的偏置电路一般是用运算放大器和三极管级联的恒流源电 路,如需改变直流偏置负极的电流,则需要改变三极管发射极的取样电阻的大小,使用可调 电阻或更换电阻。这样的实现方式功能单一,调试不便,调节精度差,可调范围依赖于取样 电阻。 【实用新型内容】
[0003] 为了解决上述问题,本实用新型提出了一种压控电流源电路、具有该压控电流源 电路的半导体激光器偏置电源、设置有该半导体激光器偏置电源的半导体激光器,该压控 电流源电路能使半导体激光器偏置电源的电流具有精密可调、纹波小、稳定可靠的特点。
[0004] 本实用新型的解决方案是:一种压控电流源电路,其包括:
[0005] 电阻R1,其一端作为该压控电流源电路的输入端Load Bias;
[0006] 电阻R2,其一端作为该压控电流源电路的输入端Trig L;
[0007] 电压保持芯片U1,其具有控制脚;SHJ、输入脚Vin、输出脚Vout;控制脚Μ连接电 阻R1的另一端,输入脚Vin连接电阻R2的另一端;
[0008] 电阻R3,其一端连接输出脚Vout;
[0009] 运算放大器U2A,其反相端连接电阻R3的另一端;
[0010]电阻R4,其一端连接运算放大器U2A的反相端,其另一端连接运算放大器U2A的输 出立而;
[0011]电阻R5,其一端连接运算放大器U2A的同相端,其另一端接地;
[0012] 运算放大器U2B,其与运算放大器U2A形成两级运算放大器的主电路;运算放大器 U2B的同相端连接运算放大器U2A的输出端;
[0013] 三极管Q1,其基极连接运算放大器U2B的输出端,其发射极连接运算放大器U2B的 反相端,其集电极作为该压控电流源电路的输出端;
[0014] 电阻R6,其一端连接三极管Q1的发射极,其另一端连接下拉电源。
[0015] 作为上述方案的进一步改进,该下拉电源为-5V电源。
[0016] 作为上述方案的进一步改进,该压控电流源电路还包括磁珠 BP1、电容C1;电压保 持芯片U1的电源脚Vcc-方面经由磁珠 BP1连接+3.3V电源,另一方面经由电容C1接地。
[0017] 作为上述方案的进一步改进,该压控电流源电路还包括电容C2;运算放大器U2A的 其中一个电源端一方面连接+5V电源,另一方面经由电容C2接地。
[0018] 进一步地,该压控电流源电路还包括电容C3,运算放大器U2A的其中另一个电源端 一方面连接-5V电源,另一方面经由电容C3接地。
[0019] 再进一步地,运算放大器U2B的两个电源端的连接方式和运算放大器U2A的两个电 源端的连接方式相同。
[0020] 本实用新型还提供一种半导体激光器偏置电源,其用于调整半导体激光器的直流 偏置负极的电流;该半导体激光器偏置电源包括上述任意压控电流源电路,该压控电流源 电路的三极管Q1的集电极连接该直流偏置负极。
[0021] 作为上述方案的进一步改进,该半导体激光器偏置电源还包括FPGA电路、数模转 换电路;该FPGA电路的FPGA芯片作为主控芯片,将一个目标电压值发送给该数模转换电路 经过模数转换后,再传输至该压控电流源电路,该压控电流源电路将输出稳定且可调的电 流加至该直流偏置负极。
[0022]作为上述方案的进一步改进,该压控电流源电路的输入端Load Bias连接该FPGA 芯片的I/O端口,该压控电流源电路的输入端Trig L连接该数模转换电路的输出端。
[0023] 本实用新型还提供一种半导体激光器,其直流偏置负极设置有半导体激光器偏置 电源;该半导体激光器偏置电源为上述任意半导体激光器偏置电源,该半导体激光器偏置 电源的压控电流源电路的三极管Q1的集电极连接该直流偏置负极。
[0024] 本实用新型的压控电流源电路能使半导体激光器偏置电源的电流具有精密可调、 纹波小、稳定可靠的特点,还能使变换半导体激光器的应用时,无需更改电路,通过FPGA控 制数模转换芯片的输入电压即可实现。
【附图说明】
[0025] 图1是本实用新型半导体激光器发窄脉冲光的示意图。
[0026] 图2是本实用新型半导体激光器发连续光的示意图。
[0027] 图3是本实用新型半导体激光器的半导体激光器偏置电源的示意图。
[0028] 图4是图3中半导体激光器偏置电源的压控电流源电路的示意图。
【具体实施方式】
[0029] 为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施 例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释 本实用新型,并不用于限定本实用新型。
[0030] 随着激光技术的应用趋于成熟,小型的半导体激光器已广泛应用于信息通讯、医 疗卫生、军事技术等诸多领域。小型半导体激光器也称二极管激光器,具有体积小、质量轻、 效率高、性能稳定等优点。与低功率半导体激光器配套使用的偏置电源对半导体激光器产 生的光信号质量具有显著影响,针对不同的应用场合,偏置电源需要具有电流精密可调的 功能。
[0031] 本实用新型的半导体激光器具体可以是一种分布式反馈特定波长激光器,作为产 生弱相干光脉冲的光源,广泛应用于量子通信领域。
[0032] 偏置电源本质上是一种压控电流源,因为根据半导体激光器的发光原理,流过激 光二极管的电流对激光器发光有直接影响。在偏置电源提供接近0mA直流偏置电流作用下, 射频调制信号才能驱动半导体激光器产生理想的光脉冲信号;同时,当偏置电源单独作用 于半导体激光器时,激光器发出连续光,偏置电源的电流越大,连续光的光功率越大,且基 本呈线性关系。
[0033] 皮秒脉冲激光器可产生1GHz以上重复频率、超窄脉冲宽度(脉宽典型值为50ps)的 脉冲光,广泛应用于量子密钥分发(QKD)、单光子探测器测试和激光雷达等诸多场合。
[0034] 请一并参阅图1及图2,本实用新型的半导体激光器1的直流偏置负极设置有半导 体激光器偏置电源2。本实施例的半导体激光器具体可以是一种分布式反馈特定波长激光 器,该偏置电源可满足此种半导体激光器在不同应用场合的需求。
[0035] 请结合图3,半导体激光器偏置电源2包括FPGA电路21、数模转换电路22、压控电流 源电路23TPGA电路21的FPGA芯片作为主控芯片,将一个目标电压值发送给该数模转换电 路22经过模数转换后,再传输至该压控电流源电路23,该压控电流源电路23将输出稳定且 可调的电流加至该直流偏置负极,压控电流源电路23输出的电流精密可调,电流纹波小于 0.1mA。数模转换电路22可为12位的高精度DAC芯片。
[0036] 如图1所示,方波信号作为输入触发,经过调制信号电路3,输出窄脉冲至半导体激 光器1的射频负极,偏置电源电路即半导体激光器偏置电源2提供低至0.5mA的偏置电流至 直流偏置负极,以获得具有理想消光比的窄脉冲光。
[0037] 如图2所示,当没有方波信号触发,调制信号电路3没有输出,只有偏置电源作用于 半导体激光器1时,半导体激光器1发出稳定的连续光,且连续光的发光功率可通过FPGA电 路21设置的电压调节。FPGA电路21设置偏置电源的电压,具有掉电保存的功能。变换半导体 激光器1的应用时,无需更改电路,通过FPGA电路21控制数模转换电路22的输入电压即可实 现。
[0038] 如图4所示,压控电流源电路23包括电阻R1、电阻R2、电压保持芯片U1、电阻R3、运 算放大器U2A、电阻R4、电阻R5、运算放大器U2B、三极管Q1、电阻R6、磁珠 BP1、电容C1、电容 C2、电容C3。运算放大器U2A与运算放大器U2B形成两级运算放大器的主电路,运算放大器 U2B的两个电源端的连接方式和运算放大器U2A的两个电源端的连接方式可相同。
[0039] 电压保持芯片U1,其具有控制脚胃、输入脚Vin、输出脚Vout。电阻R1的一端作为 该压控电流源电路的输入端Load Bias,电阻R1的另一端连接控制脚电阻R2的一端作 为该压控电流源电路的输入端Trig L,电阻R2的另一端连接输入脚Vin。电阻R3的一端连接 输出脚Vout,电阻R3的另一端连接运算放大器U2A的反相端。电阻R4的一端连接运算放大器 U2A的反相端,电阻R4的另一端连接运算放大器U2A的输出端。三极管Q1的基极连接运算放 大器U2B的输出端,其发射极连接运算放大器U2B的反相端,其集电极作为该压控电流源电 路的输出端。电阻R6的一端连接三极管Q1的发射极,电阻R6的另一端连接下拉电源,在本实 施例中,下拉电源为-5V电源。
[0040] 电压保持芯片U1的电源脚Vcc的连接方式并不局限于本实施例中的描述方式:电 压保持芯片U1的电源脚Vcc-方面可经由磁珠 BP1连接+3.3V电源,另一方面可经由电容C1 接地。运算放大器U2A的两个电源端的连接方式并不局限于本实施例的描述方式:运算放大 器U2A的其中一个电源端一方面连接+5V电源,另一方面经由电容C2接地;运算放大器U2A的 其中另一个电源端一方面连接-5V电源,另一方面经由电容C3接地。只要能满足电压保持芯 片U1、运算放大器U2A、运算放大器U2B在本实用新型中的功能,这些连接方式并没有特殊要 求。
[0041] 压控电流源电路的压控方法可稳定、可调整半导体激光器1的直流偏置负极的电 流。稳定半导体激光器1的直流偏置负极的电流:将控制脚瓦5J的电平拉高;调整半导体激 光器1的直流偏置负极的电流:将控制脚???的电平拉低,通过输入端Trig L设置电压保持 芯片U1的输出脚Vout的输出电压的数值。
[0042] 稳定半导体激光器1的直流偏置负极的电流:将控制脚胃的电平拉高,输出脚 Vout的输出电压处于保持状态,与输入脚Vin的当前输入电压无关,此时改变输入端Trig L 的输出电压对电压保持芯片U1的输出脚Vout的输出电压没有影响,电压保持芯片U1内部具 有EEPR0M,输出脚Vout的输出电压值掉电保存。
[0043] 调整半导体激光器1的直流偏置负极的电流:将控制脚瓦SJ的电平拉低,设电压保 持芯片U1的输出脚Vout的输出电压为VI,则经运算放大器U2A的反向放大输出的电压为V2, 由于运算放大器的输出电压不会超过其电源电压,则当
;当 S -5F时,V2的实际输出为-4.95V。经过运算放大器U2B的电压跟随作用,其反相端 R5 的输入电压为V3,且V3 = V2,则三极管Q1的发射极电流ΙΕ,
使三极管Q1工作于放 大区或饱和区,三极管Q1的集电极电流为IC
,即为流入半导体激光器直流 偏置负极的电流。
[0044] 综上所述,压控电流源电路23主要由电压保持芯片U1、两级运算放大器和三极管 Q1级联组成。DAC芯片即数模转换电路22输出的电压作为电压保持芯片U1的输入,电压保持 芯片U1输出经过两级运算放大器的反相放大与电压跟随后,电压传输至三极管Q1的发射 极,三极管Q1的集电极输出电流至半导体激光器的直流偏置负极。具体来说,DAC芯片输出 脚经过压控电流源电路23的输入端Trig L,即经过电阻R2接至电压保持芯片U1的输入脚 Vin,电压保持芯片U1的电源脚Vcc经过磁珠 BP1接入3.3V电源,并与地间通过电容C1进行连 接,电压保持芯片U1的GND脚接地,电压保持芯片U1的脚(即控制脚胃)为控制输入 脚,电阻R1的一端与ADJ脚连接,电阻R1的另一端(输入端Load Bias)连接到FPGA芯片的1/ 0端口。FPGA芯片通过相应管脚将ADJ脚电平拉低,则电压保持芯片U1的Vout脚(即输出脚 Vout)输出电压等于输入脚Vin的输入电压,即FPGA芯片输入至数模转换芯片即数模转换电 路22的电压值。
[0045] FPGA芯片通过相应管脚将&DJ脚电平拉高,输出脚Vout输出电压处于保持状态, 与Vin脚当前输入电压无关,此时改变DAC芯片的输出电压对电压保持芯片U1的Vout脚输出 电压没有影响。电压保持芯片U1内部具有EEPR0M,V 〇ut脚的输出电压值可以掉电保存。电压 保持芯片U1的Vout脚输出电压范围是0~3V,通过电阻R3连接至运算放大器U2A的2脚,电阻 R4的一端与运算放大器U2A的2脚连接,另一端与运算放大器U2A的1脚连接。运算放大器U2A 和U2B为轨到轨运算放大器芯片的两路,其中运算放大器U2A的作用是反相放大,运算放大 器U2B作为电压跟随器使用。轨到轨运算放大器芯片的8脚和4脚为电源脚,轨到轨运算放大 器芯片的8脚供+5V电压,且通过电容C2与地连接,轨到轨运算放大器芯片的4脚供-5V电压, 通过电容C3与地连接。轨到轨运算放大器芯片的3脚通过电阻R5连接至地。轨到轨运算放大 器芯片的5脚与轨到轨运算放大器芯片的1脚直连,6脚连接至NPN型三极管Q1的发射极,电 阻R6-端接-5V电源,另一端接三极管Q1的发射极,轨到轨运算放大器芯片的7脚接三极管 Q1的基极,三极管Q1的集电极接至半导体激光器U3的2脚直流偏置负极DC-,U3的1脚LD+接 地。设电压保持芯片U1的Vout脚输出电压VI,则经反向放大从运算放大器U2A的1脚输出的 电压为V2,由于运算放大器的输出电压不会超过其电源电压,则当
时,
)",V2的实际输出为-4.95V。经过运算放大器U2B的电压跟随 作用,U2B的6脚输入电压为V3,且V3 = V2,则三极管Q1的发射极电流ΙΕ
使三极 管Q1工作于放大区或饱和区,三极管Q1的集电极电流为Ic
!卩为流出半导 体激光器直流偏置负极的电流。
[0046] 接下去,具体举个详细例子。本实用新型应用于皮秒脉冲激光器的偏置电源电路, 使得皮秒脉冲激光器在具备发高速窄脉冲光功能的同时,还具备发功率可调的连续光的功 能。
[0047] (1)当需要皮秒脉冲激光器发高速窄脉冲光,应用于量子密钥分发(QKD)、单光子 探测器测试等场合时,先通过FPGA将ADJ脚电平拉低至〇V,并设置电压数值VI,先经过DA转 换再经过电压保持芯片输出的电压即VI,使-
如前所述,则运算放大器U2B的6 脚输入电压V3,即三极管Q1的发射极电压为-4.95V;再通过FPGA将ADJ脚电平拉高至3V,使 三极管Q1的发射极电压保持在-4.95V。此时三极管Q1工作于放大区,若R6为100欧姆,则发 射极电流Ie,
,流出激光器直流偏置负极的电流即三极管Q1的集电 极电流Ic为Ic~Ie = 0.5mA。此时,在激光器的射频负极输入高速脉冲驱动信号,则激光器可 产生高速窄脉冲光(脉宽为50ps左右)。
[0048] (2)当需要皮秒脉冲激光器作为连续光的光源时,激光器射频负极不加驱动信号, 通过FPGA将ADJ脚电平拉低至〇V,并设置电压数值VI,先经过DA转换再经过电压保持芯片 R4 输出的电压即VI,使-,如前所述,流出半导体激光器直流偏置负极的电流等于 Hi 三极管Q1的集电极电流IC,使三极管Q1工作于放大区或饱和区,则
若R6为100欧姆,要使三极管Q1工作于放大区或饱和区,且满足IC~IE的关系,则V3S-1V,得 至丨」
,从而Ic的可调范围是0.5mA~40mA。Ic的值越大,半导体 激光器输出的连续光的光功率P越大,且当Ic > 14mA时,Ic与光功率P(单位:mW)呈线性关系。 因而,可以通过FPGA设置VI的数值调节半导体激光器输出连续光的光功率的大小,最大输 出光功率可达到3mW。
[0049] 本实用新型具有以下几方面的优点。
[0050] 1.采用高精度模数转换芯片,提高压控电流源输入精度;运算放大器与三极管构 成负反馈,保证压控电流源的输出电流稳定,精度高,减小电流纹波。
[0051 ] 2.电压保持芯片能保持输入电压稳定,抑制DAC温漂带来的输出电流的变化,避免 DAC的一次性操作对激光器输入电流造成影响。电压保持芯片内部具有EEPR0M,无需用外置 EEPR0M中存取电压值,实现掉电保存所设置的电压。
[0052] 3.无需调整电路,通过FPGA控制输入到DAC芯片的电压,改变直流偏置负极的电流 大小,可实现半导体激光器的不同应用。
[0053] 4.采用基于FPGA的硬件实现方案,节省资源,简化外部电路,提高系统执行的效 率。
[0054]以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本 实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型 的保护范围之内。
【主权项】
1. 一种压控电流源电路,其特征在于:其包括: 电阻R1,其一端作为该压控电流源电路的输入端Load Bias; 电阻R2,其一端作为该压控电流源电路的输入端Trig L 电压保持忍片Ul,其具有控制脚亢??、输入脚Vin、输出脚Vout;控制脚瓦巧连接电阻R1 的另一端,输入脚Vin连接电阻R2的另一端; 电阻R3,其一端连接输出脚Vout; 运算放大器U2A,其反相端连接电阻R3的另一端; 电阻R4,其一端连接运算放大器U2A的反相端,其另一端连接运算放大器U2A的输出端; 电阻R5,其一端连接运算放大器U2A的同相端,其另一端接地; 运算放大器U2B,其与运算放大器U2A形成两级运算放大器的主电路;运算放大器雌B的 同相端连接运算放大器U2A的输出端; Ξ极管Q1,其基极连接运算放大器U2B的输出端,其发射极连接运算放大器U2B的反相 端,其集电极作为该压控电流源电路的输出端; 电阻R6,其一端连接Ξ极管Q1的发射极,其另一端连接下拉电源。2. 如权利要求1所述的压控电流源电路,其特征在于:该下拉电源为-5V电源。3. 如权利要求1所述的压控电流源电路,其特征在于:该压控电流源电路还包括磁珠 BP1、电容C1;电压保持忍片U1的电源脚Vcc-方面经由磁珠 BP1连接+3.3V电源,另一方面经 由电容C1接地。4. 如权利要求1所述的压控电流源电路,其特征在于:该压控电流源电路还包括电容 C2;运算放大器U2A的其中一个电源端一方面连接巧V电源,另一方面经由电容C2接地。5. 如权利要求4所述的压控电流源电路,其特征在于:该压控电流源电路还包括电容 C3;运算放大器U2A的其中另一个电源端一方面连接-5V电源,另一方面经由电容C3接地。6. 如权利要求1至5中任意一项所述的压控电流源电路,其特征在于:运算放大器U2B的 两个电源端的连接方式和运算放大器U2A的两个电源端的连接方式相同。7. -种半导体激光器偏置电源,其用于调整半导体激光器的直流偏置负极的电流;其 特征在于:该半导体激光器偏置电源包括如权利要求1至6中任意一项所述的压控电流源电 路,该压控电流源电路的Ξ极管Q1的集电极连接该直流偏置负极。8. 如权利要求7所述的半导体激光器偏置电源,其特征在于:该半导体激光器偏置电源 还包括FPGA电路、数模转换电路;该FPGA电路的FPGA忍片作为主控忍片,将一个目标电压值 发送给该数模转换电路经过模数转换后,再传输至该压控电流源电路,该压控电流源电路 将输出稳定且可调的电流加至该直流偏置负极。9. 如权利要求8所述的半导体激光器偏置电源,其特征在于:该压控电流源电路的输入 端Load Bias连接该FPGA忍片的I/O端口,该压控电流源电路的输入端化ig L连接该数模转 换电路的输出端。10. -种半导体激光器,其直流偏置负极设置有半导体激光器偏置电源;其特征在于: 该半导体激光器偏置电源为如权利要求7至9中任意一项所述的半导体激光器偏置电源,该 半导体激光器偏置电源的压控电流源电路的Ξ极管Q1的集电极连接该直流偏置负极。
【文档编号】H01S5/042GK205608577SQ201620417160
【公开日】2016年9月28日
【申请日】2016年5月6日
【发明人】刘建宏, 姚海涛, 代云启, 王凯迪
【申请人】科大国盾量子技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1