一种红外线回归反射膜的制作方法

文档序号:6511599阅读:609来源:国知局
一种红外线回归反射膜的制作方法
【专利摘要】本发明提供一种红外线回归反射膜及其制备方法。本发明的红外线回归反射膜包含可屏蔽可见光并透过红外线的膜层和回归反射层,所述可屏蔽可见光并透过红外线的膜层对850-940nm的红外线透过率不低于80%,对400-700nm的可见光透过率小于5%。本发明的红外线回归反射膜能减少反射膜对可见光的反射,维持对特定红外线的敏感度,提高红外光学系统对可见光的抗干扰能力,同时能降低回归反射系统的大角度衰减,提高光电系统的稳定性。
【专利说明】一种红外线回归反射膜

【技术领域】
[0001] 本发明属于光学触摸屏领域,具体涉及红外线回归反射膜。

【背景技术】
[0002] 现有的光学触摸屏如图1所示,用C⑶或CMOS结合红外发射LED以及3个边框的 回归反射材料进行光学定位计算,目前典型的反射材料是微棱镜型回归反射薄膜,或玻璃 微珠型反射薄膜。微棱镜型反射膜存在大角度(例如45度以上入射角)的反射性能衰减问 题,在此角度以上的反射光迅速减弱,C⑶或CMOS成像黑暗或模糊,发生误判。玻璃微珠型 反射膜因反射单元直接暴露于空气中,容易发生灰尘或溶剂等玷污,从而降低反射性能。更 进一步地,CXD或CMOS红外镜头虽然对红外线(850nm或940nm最敏感),但是也部分感受可 见光(700-780nm),如果反射基材反射此部分可见光,将对成像造成干扰。
[0003] 中国专利申请201010572370. 4涉及一种红外触摸屏及其滤光条的封装方法;中 国专利申请200920277524. X涉及一种回归反射条及光学触摸屏,采用槽式安装方法,将黑 色滤光条封装在反射条表面,以保护反射条表面不受玷污;W02009/091681采用黑色或彩 色的反射条,包含第一层黑色可透过红外线的膜层。以上文献着重于反射膜的保护方法,或 者反射膜的微棱镜制造方法,并未涉及对如何减少反射膜对可见光的反射,维持对特定红 外线的敏感度,从而提高红外光学系统对可见光的抗干扰能力,以及如何才能同时降低回 归反射系统的大角度哀减,从而提1?光电系统的稳定性。
[0004] 因此,本领域仍然需要能克服上述缺陷的红外线回归反射膜。


【发明内容】

[0005] 本发明提供一种表面黑色的可回归反射红外线的薄膜,应用于光学触摸屏,能减 少反射膜对可见光的反射,维持对特定红外线的敏感度,提高红外光学系统对可见光的抗 干扰能力,同时能降低回归反射系统的大角度衰减,提高光电系统的稳定性,同时提高了反 射膜材的表面耐溶剂耐玷污等性能。
[0006] 本发明的红外线回归反射膜至少包含可屏蔽可见光并透过红外线的膜层,和回归 反射层,其中,所述可屏蔽可见光并透过红外线的膜层对850-940nm的红外线透过率不低 于80%,对400-700nm的可见光透过率小于5%。
[0007] 在一具体实施例中,可屏蔽可见光并透过红外线的膜层采用选自PVC、PC、PET、 PETG、PMMA和SAN的聚合物材料制成。
[0008] 在一具体实施例中,可屏蔽可见光并透过红外线的膜层厚度为10微米至3000微 米。
[0009] 在一具体实施例中,可屏蔽可见光并透过红外线的膜层厚度为25微米至1000微 米。在其它实施例中,该厚度通常在30微米到500微米之间,例如,50微米到300微米,尤 其以50微米-200微米内为宜。
[0010] 在一具体实施例中,由基于微米级角锥、沟槽或棱镜反射体将光线按入射方向原 路反射回的回归反射材料形成回归反射膜。
[0011] 在一具体实施例中,回归反射层选自微棱镜型反射膜和玻璃微珠型反射膜。
[0012] 在一具体实施例中,红外线回归反射膜还包括存在于可屏蔽可见光并透过红外线 的膜层与回归反射层之间的粘合剂,其中,所述粘合剂全波段的光学透过率大于90%。
[0013] 在一具体实施例中,可屏蔽可见光并透过红外线的膜层还含有选自促进红外线透 过率和降低可见光透过率的添加剂。
[0014] 在一具体实施例中,添加剂选自有机金属络合物、酞菁类颜料以及它们的复配体 系。
[0015] 本发明还提供一种制造红外线回归反射膜的方法,其特征在于,所述方法包括:
[0016] (1)共挤出所述可屏蔽可见光并透过红外线的膜层和回归反射层;或
[0017] (2)使用粘合剂将所述可屏蔽可见光并透过红外线的膜层和回归反射层粘合在一 起。
[0018] 在一具体实施例中,可屏蔽可见光并透过红外线的膜层对850-940nm的红外线透 过率不低于80%,对400-700nm的可见光透过率小于5%。
[0019] 在一具体实施例中,可屏蔽可见光并透过红外线的膜层采用选自PVC、PC、PET、 PETG、PMMA和SAN的聚合物材料制成。
[0020] 在一具体实施例中,可屏蔽可见光并透过红外线的膜层厚度为25微米至1000微 米。
[0021] 在一具体实施例中,回归反射层选自微棱镜型反射膜和玻璃微珠型反射膜。
[0022] 在一具体实施例中,粘合剂全波段的光学透过率大于90%。
[0023] 在一具体实施例中,可屏蔽可见光并透过红外线的膜层还含有选自促进红外线透 过率和降低可见光透过率的添加剂。
[0024] 在一具体实施例中,添加剂选自有机金属络合物、酞菁类颜料以及它们的复配体 系。
[0025] 本发明还提供采用本发明所述的方法制备得到的红外线回归反射膜。
[0026] 本发明还提供一种光学触摸屏,其特征在于,所述光学触摸屏含有本发明所述的 红外线回归反射膜。
[0027] 本发明中,采用黑色可透过红外的膜能减少反射膜对可见光的反射,维持对特定 红外线的敏感度,从而提高红外光学系统对可见光的抗干扰能力。此外,本发明人还发 现,随着逐步将反射膜屏蔽的可见光波段后移,即起始红外反射波段从550nm,一直后移到 780nm时,产生了额外的技术效果:回归反射系统的大角度衰减得到明显改善,意味着在触 摸屏所有区域,回归反射的红外线强度较为均匀一致,尤其是对角线区域(此处LED到反射 条的入射角接近45度),与其它较小反射角度区域的反射强度的差异被缩小。因此,可以适 当调高CMOS的曝光时间或感光度等参数,将整体反射信号提高,而不至于出现以前在小角 度处过亮(过曝),大角度处亮度仍然不足甚至发暗的情况。光学触摸屏是按反射信号被遮 挡(出现暗斑)来判断触摸动作,如果大角度处亮度不足,就可能出现误判(以为有触摸)。因 此,改善反射条的大角度反射衰减现象,可以显著触摸屏红外感光系统反射信号的均匀一 致性,感光系统参数的操作和调节空间更大,整个光学触摸屏的可靠性能得到提升。

【专利附图】

【附图说明】
[0028] 图1显示光学触摸屏示意图。
[0029] 图2显示本发明的红外反射膜结构示意图,其中,"1"表示第1层可透过红外线并 屏蔽可见光的膜层," 2 "表示第2层回归反射层," 1. 5 "表示可选的光学透明胶。
[0030] 图3显示第1层红外透过薄膜层的红外透过曲线。

【具体实施方式】
[0031] 本发明第一方面提供一种红外线回归反射膜,所述红外线回归反射膜至少包含可 屏蔽可见光并透过红外线的膜层,和回归反射层,其中,所述可屏蔽可见光并透过红外线的 膜层对850-940nm的红外线透过率不低于80%,对400-700nm的可见光透过率小于5%。
[0032] 本发明的红外线回归发射膜总厚度可在例如0. 1毫米到5毫米之间,通常在0. 1 毫米到3毫米之间。本发明的红外线回归发射膜可用于光学触摸屏。
[0033] 本发明可屏蔽可见光并透过红外线的膜层(本发明也称为"红外透过膜")通常包 含作为基质的聚合物材料和促进红外线透过率和降低可见光透过率的添加剂。
[0034] 适合用作本发明可屏蔽可见光并透过红外线的膜层的基质的聚合物材料通常包 括但不限于聚氯乙烯(PVC)、聚碳酸酯(PC)、聚对苯二甲酸乙二酯(PET)、聚对苯二甲酸乙 二醇酯-1,4-环己烷二甲醇酯(PETG)、聚甲基丙烯酸甲酯(PMMA)和苯乙烯-丙烯睛共聚物 (SAN)。这些聚合物材料可从市场上购得,也可采用已知的方法自行制备。
[0035] 适用于本发明的添加剂包括但不限于有机金属络合物和酞青类颜料以及它们的 复配体系。更具体地,有机金属络合物包括偶氮类金属铬盐,例如美国艾波林公司的6931 偶氮铬盐,吸收400_520nm可见光,对550nm以后的近红外光透明。酞青类包括酞青铜类颜 料(分子式C 32H16CuN8),如巴斯夫公司的L7090酞青类颜料(CAS147-14-8),以及多氯代铜酞 菁颜料(分子式C 32H3Cl15CuN8)如巴斯夫公司的L8730以及L9361酞青类颜料。
[0036] 本发明可屏蔽可见光并透过红外线的膜层中聚合物材料和添加剂的重量比例通 常为0· 05%至L 5%之间,例如,0· 1%到L 2%、0· 3%到L 0%、0· 5%到0· 8%不等。更优 选地,在分散工艺优化的情况下,该重量比例在0. 5%左右。
[0037] 可采用本领域常规的方法制备该红外透过膜。例如,将聚合物材料与添加剂预混 均匀,通过薄膜挤出机在适当温度(例如270-300摄氏度)熔融挤出薄膜,可获得本发明的红 外透过膜。
[0038] 可根据实际需要控制膜层的厚度。例如,通常将红外透过膜的厚度控制在10-3000 微米的范围内。
[0039] 制得的红外透过膜光学特性主要取决于添加剂配方,本领域的熟练技术人员能 根据现有技术确定添加剂配方,实现薄膜对可见光的吸收屏蔽,而透过近红外线。这些添加 剂配方在实施例1中展示。
[0040] 膜的厚度在10微米至3000微米范围内时,光学性能变化不大。理论上这一范围 内的膜厚都是适用的,但是考虑薄膜加工,以及与反射膜基材复合的加工性,红外透过膜的 厚度适宜在20微米至1000微米之间,更通常在30微米到500微米之间,例如,50微米到 300微米,尤其以50微米-200微米内为宜。
[0041] 在某些优选实施例中,可屏蔽可见光并透过红外线的膜层对850-940nm的红外线 透过率不低于80%、不低于85%、不低于90%等;对400-700nm的可见光透过率小于5%、小于 4%、小于3%、小于2%、或小于1%,甚至完全不透光400-700nm的可见光。
[0042] 适用于本发明的回归反射膜可由各种基于微米级角锥、沟槽或棱镜反射体将光线 按入射方向原路反射回的回归反射材料形成。这类回归反射膜包括但不限于微棱镜型反射 膜和玻璃微珠型反射膜。玻璃微珠型反射膜在提高反射膜材的表面耐溶剂耐玷污等性能方 面是有益的。可采用各种市售获得的回归反射膜,例如艾利公司的星光级反射膜和3M公司 的钻石级反射膜。回归反射膜的厚度并无特别限制,为本领域常用的厚度,例如〇. 1毫米到 2毫米,如0. 5毫米左右。
[0043] 可采用简单的复合工艺将红外透过膜和回归发射膜复合在一起。例如,可用光学 透明胶作为粘合剂,把两层膜粘合在一起。
[0044] 所采用的光学透明胶可以是压敏性光学透明胶,其对全波段的光学透过率大于 90%,并不影响整个复合结构的光学特性。采用其它固化型透明胶水进行粘合也是适用的, 例如双组分的聚酯胶水或水溶性或溶剂型的丙烯酸胶水,涂覆在反射膜或红外的表面,将 两层膜敷压,烘干固化胶水。
[0045] 另一种无需胶水的复合工艺是在挤出红外膜的同时,将热融流动的薄膜直接挤出 到反射基材表面,在120-180°C辊压贴合并逐步冷却。红外膜与反射膜表面发生局部熔融贴 合,冷却后贴合在一起。反射膜表面电晕处理(电晕值40达因以上),有助于更好的贴合效 果。
[0046] 应理解,本发明所使用的术语"包含"、"含有"、"包括"等也包括了"由……组成"、 "由......构成"、"由......形成"之意。
[0047] 以下将以具体实施例的方式描述本发明。应理解,这些实施例仅仅是阐述性的,本 发明并不限于这些实施例。实施例中所用的材料、方法和测试条件等,除非另有说明,否则 均为本领域常规的材料、方法和测试条件。
[0048] 实施例1 :制造第一层红外透过膜层
[0049] 将PC即聚碳酸酯与不同配方(见以下配方表)的材料预混均匀,通过薄膜挤出机在 270-300摄氏度熔融挤出薄膜,获得10-3000微米厚度范围内的薄膜或片材。用分光光度计 测试可见光屏蔽和红外透过率。配方与光学性能见下表:
[0050]

【权利要求】
1. 一种红外线回归反射膜,其特征在于,所述红外线回归反射膜至少包含可屏蔽可见 光并透过红外线的膜层,和回归反射层,其中,所述可屏蔽可见光并透过红外线的膜层对 850-940nm的红外线透过率不低于80%,对400-700nm的可见光透过率小于5%。
2. 如权利要求1所述的红外线回归反射膜,其特征在于,所述可屏蔽可见光并透过红 外线的膜层采用选自PVC、PC、PET、PETG、PMMA和SAN的聚合物材料制成。
3. 如权利要求1所述的红外线回归反射膜,其特征在于,所述可屏蔽可见光并透过红 外线的膜层厚度为25微米至1000微米。
4. 如权利要求1所述的红外线回归反射膜,其特征在于,所述回归反射层由基于微米 级角锥、沟槽或棱镜反射体将光线按入射方向原路反射回的回归反射材料形成。
5. 如权利要求1所述的红外线回归反射膜,其特征在于,所述红外线回归反射膜还包 括存在于所述可屏蔽可见光并透过红外线的膜层与所述回归反射层之间的粘合剂,其中, 所述粘合剂全波段的光学透过率大于90%。
6. 如权利要求2所述的红外线回归反射膜,其特征在于,所述可屏蔽可见光并透过红 外线的膜层还含有选自促进红外线透过率和降低可见光透过率的添加剂。
7. 如权利要求6所述的红外线回归反射膜,其特征在于,所述添加剂选自有机金属络 合物、駄菁类颜料W及它们的复配体系。
8. -种制造权利要求1的红外线回归反射膜的方法,其特征在于,所述方法包括: (1)共挤出所述可屏蔽可见光并透过红外线的膜层和回归反射层;或 (2 )使用粘合剂将所述可屏蔽可见光并透过红外线的膜层和回归反射层粘合在一起。
9. 采用权利要求8所述的方法制备得到的红外线回归反射膜。
10. -种光学触摸屏,其特征在于,所述光学触摸屏含有权利要求1 - 7和9中任一项 所述的红外线回归反射膜。
【文档编号】G06F3/042GK104461169SQ201310419717
【公开日】2015年3月25日 申请日期:2013年9月13日 优先权日:2013年9月13日
【发明者】黄浩进 申请人:上海锐视塑料有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1