一种交直流混合配电网低碳效益评价指标体系构建方法与流程

文档序号:12864276阅读:200来源:国知局

本发明涉及电网低碳效益评价领域,具体涉及一种交直流混合配电网低碳效益评价指标体系构建方法。



背景技术:

随着可再生能源、电动汽车、微网和需求侧响应等大量新型可控单元(负荷)在电网大量涌现,现代电网正逐步向互动式电网发展,这就要求智能电网同时具备消纳大规模集中式发电和分布式发电的能力,能够实现电网与各种电源、储能装置以及终端用户等可控单元之间的良好互动,从而降低电力使用成本、有效提高能源利用效率,实现节能减排的目标。

交直流混合配电网是配电网的一个重要发展趋势,为实现分布式可再生能源大规模并网与高效利用提供了一种有效解决方案,对支撑低碳经济发展具有重要战略意义。目前,国内外的低碳效益评价指标多针对配电网中可再生电源的接入情况,尚未有计及柔性直流装置的交直流混合配电网的低碳效益评价指标体系。

因此,亟需建立全面、适合的评价指标体系,用以评价交直流混合配电网的低碳效益。交直流混合配电网是一种涵盖多属性多指标,受多种因素影响的大型复杂系统,需要考虑柔性直流装置、储能、可控负荷等可控资源对可再生能源消纳的促进作用,建立全面、科学、系统的评价指标体系,是进行总体性评价的基础。因此,亟需建立全面、适合的评价指标体系,用以评价交直流混合配电网的低碳效益。



技术实现要素:

本发明提供一种交直流混合配电网低碳效益评价指标体系构建方法,其目的是建立全面、适合的评价指标体系,用以评价交直流混合配电网的低碳效益,为配电网进一步科学的规划、建设和管理提供依据,从而不断提高其建设水平,促进低碳经济发展。

本发明的目的是采用下述技术方案实现的:

一种交直流混合配电网低碳效益评价指标体系构建方法,其改进之处在于,包括:

构建所述交直流混合配电网的发电侧低碳效益评价指标体系;

构建所述交直流混合配电网的电网侧低碳效益评价指标体系;

构建所述交直流混合配电网的用电侧低碳效益评价指标体系;

结合所述交直流混合配电网的发电侧低碳效益评价指标体系、电网侧低碳效益评价指标体系和用电侧低碳效益评价指标体系构建所述交直流混合配电网低碳效益评价指标体系。

优选的,所述交直流混合配电网的发电侧低碳效益评价指标体系包括:可再生能源渗透率指标、主网火电供电等值煤耗指标、可再生能源出力波动性指标、可再生能源分布率指标、可再生能源分散度指标和馈线注入功率波动性指标。

进一步的,所述可再生能源渗透率指标包括:可再生能源静态渗透率指标和可再生能源有效渗透率指标,其中,按下式确定所述可再生能源静态渗透率指标:

式(1)中,λjt为所述可再生能源静态渗透率指标的指标值,为配电网的可再生能源额定功率,为配电网最大负荷功率;

按下式确定所述可再生能源有效渗透率指标:

式(2)中,λyx为所述可再生能源有效渗透率指标的指标值,pres(t)为接入配电网的可再生能源的实际出力,pl(t)为配网的实际负荷值;

按下式确定所述可再生能源出力波动性指标:

式(3)中,rfres为所述可再生能源出力波动性指标的指标值,pres[(i+1)×δt]为可再生能源下一时刻的实际出力,pres(i×δt)为可再生能源上一时刻的实际出力,为配电网的可再生能源额定功率,i为当前时刻对应的基准时间间隔数,n为全天总间隔数,δt为基准时间间隔;

按下式确定所述可再生能源分布率指标:

式(4)中,δ为所述可再生能源分布率指标的指标值,nres为配网中接入可再生能源的节点数,nload为配网中的负荷节点数;

按下式确定所述可再生能源分散度指标:

式(5)中,为所述可再生能源分散度指标的指标值,为接入配电网的所有可再生能源的平均额定功率,为配电网的可再生能源额定功率;

按下式确定所述馈线注入功率波动性指标:

式(6)中,rffeeder为所述馈线注入功率波动性指标的指标值,δt为基准时间间隔,n为全天基准时间间隔数,i为当前时刻对应的基准时间间隔数,pfeeder(i×δt)为上一时刻馈线注入功率值,pfeeder[(i+1)×δt]为下一时刻馈线注入功率值,为全天馈线注入功率平均值。

进一步的,根据所述可再生能源渗透率指标的可再生能源静态渗透率指标的指标值对接入配电网的可再生能源装机容量进行评价,其中,所述可再生能源渗透率指标的可再生能源静态渗透率指标的指标值与接入配电网的可再生能源装机容量成正比;

根据所述可再生能源渗透率指标的可再生能源有效渗透率指标的指标值对接入配电网的可再生能源的实际出力进行评价,其中,所述可再生能源渗透率指标的可再生能源有效渗透率指标的指标值与接入配电网的可再生能源的实际出力成正比,当可再生能源的有效渗透率大于1时,则配网的负荷不消纳可再生能源的出力;

根据所述可再生能源出力波动性指标的指标值对分布式单元并网引起的不确定性进行评价,其中,所述可再生能源出力波动性指标的指标值与分布式单元并网引起的不确定性成正比;

根据所述可再生能源分布率指标的指标值对可再生能源的分布情况进行评价,其中,所述可再生能源分布率指标的指标值与可再生能源在配网的接入点数成正比;

根据所述可再生能源分散度指标的指标值对可再生能源装机总容量在各电源的额分配情况,其中,所述可再生能源分散度指标的指标值分别与可再生能源之间额定功率的相似度、可再生能源的装机容量分布的均匀度以及可再生能源的相对重要程度成反比。

优选的,所述交直流混合配电网的电网侧低碳效益评价指标体系包括:直流系统供蓄比率指标、柔性直流装置控制偏差率指标、交直流系统有效短路比指标、线损率指标、供电可靠率指标、电压合格率指标、电网故障自愈能力指标、配电自动化率指标和智能变电站比例指标。

进一步的,按下式确定所述直流系统供蓄比率指标:

式(7)中,rdc为所述直流系统供蓄比率指标的指标值,pres为配网中可再生能源的有功出力,p1为配网的有功负荷,为配网中直流系统可提供的最大功率;

按下式确定所述柔性直流装置控制偏差率指标:

式(8)中,ε为所述柔性直流装置控制偏差率指标的指标值,p*为柔性直流装置控制目标值,p(i)为控制周期内第i个采样点的实际控制值,n为控制周期的总采样点数;

确定所述交直流系统有效短路比指标包括:

式(9)中,rscr为所述交直流系统的定义短路比,rescr为所述交直流系统的有效短路比,sac为换流母线的短路容量,pdn为额定直流功率,qcn为换流站交流母线并联的无功补偿装置在额定运行时提供的无功功率,zpu为交流系统等值阻抗的标幺值。

进一步的,根据所述直流系统供蓄比率指标的指标值对可再生能源的消纳能力进行评价,其中,若所述直流系统供蓄比率指标的指标值大于1,则不能消纳可再生能源;

根据所述柔性直流装置控制偏差率指标的指标值对交直流混合配电网中柔性直流装置的控制水平进行评价,其中,所述柔性直流装置控制偏差率指标的指标值与柔性直流装置对于控制目标的执行力度、控制精度以及控制稳定性成反比;

根据所述交直流系统有效短路比指标的指标值对交流系统强度进行评价,其中,所述交直流系统有效短路比指标中定义短路比和有效短路比与交流系统强度成正比,所述交直流系统有效短路比指标中定义短路比和有效短路比与直流系统的投切或运行状态的改变对系统稳定性影响成反比。

优选的,所述交直流混合配电网的用电侧低碳效益评价指标体系包括:储能供蓄比率指标、储能控制偏差率指标、可控负荷供蓄比率指标、可控负荷控制偏差率指标、可再生能源消纳率指标、节省电量占比指标、电动汽车充电设施数指标、用电信息采集系统覆盖率指标和智能电表数指标。

进一步的,按下式确定所述储能供蓄比率指标:

式(10)中,ress为所述储能供蓄比率指标的指标值,pres为配网中可再生能源的有功出力,p1为配网的有功负荷,为配网中储能的最大放电功率;

按下式确定所述可控负荷供蓄比率指标:

式(12)中,rcl为所述可控负荷供蓄比率指标的指标值,为配网中可控负载的最大蓄电功率,pres为配网中可再生能源的有功出力,p1为配网的有功负荷。

进一步的,根据所述储能供蓄比率指标的指标值对储能对于分布式电源的消纳能力进行评价,其中,若所述储能供蓄比率指标的指标值大于1,则分布式电源不能被消纳;

根据所述可控负荷供蓄比率指标的指标值对储能对于分布式电源的消纳能力进行评价,其中,若所述可控负荷供蓄比率指标的指标值大于1,则分布式电源不能被消纳。

本发明的有益效果:

本发明提供的一种交直流混合配电网低碳效益评价指标体系构建方法,充分考虑了柔性直流装置、储能、可控负荷等可控资源对可再生能源消纳的促进作用,从发电侧、电网侧、用电侧三个维度,建立了全面反映交直流混合配电网低碳效益的评价指标体系,给出了直流系统供蓄比率、交直流系统有效短路比、储能供蓄比率、可控负荷供蓄比率等关键指标的计算公式,可以对交直流混合配电网的低碳效益进行全面评价,对交直流混合配电网经济与社会效益评价等都有着重要的现实指导意义。

附图说明

图1是本发明一种交直流混合配电网低碳效益评价指标体系构建方法的流程图。

具体实施方式

下面结合附图对本发明的具体实施方式作详细说明。

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

本发明提供的一种交直流混合配电网低碳效益评价指标体系构建方法,充分考虑了柔性直流装置、储能、可控负荷等可控资源对可再生能源消纳的促进作用,从发电侧、电网侧、用电侧三个维度,构建交直流混合配电网低碳效益指标体系,实现对交直流混合配电网低碳效益的全面评价,如图1所示,包括:

101.构建所述交直流混合配电网的发电侧低碳效益评价指标体系;

102.构建所述交直流混合配电网的电网侧低碳效益评价指标体系;

103.构建所述交直流混合配电网的用电侧低碳效益评价指标体系;

104.结合所述交直流混合配电网的发电侧低碳效益评价指标体系、电网侧低碳效益评价指标体系和用电侧低碳效益评价指标体系构建所述交直流混合配电网低碳效益评价指标体系。

具体的,步骤101中,所述交直流混合配电网的发电侧低碳效益评价指标体系包括:可再生能源渗透率指标、主网火电供电等值煤耗指标、可再生能源出力波动性指标、可再生能源分布率指标、可再生能源分散度指标和馈线注入功率波动性指标。

其中,所述可再生能源渗透率指标包括:可再生能源静态渗透率指标和可再生能源有效渗透率指标,其中,按下式确定所述可再生能源静态渗透率指标:

式(1)中,λjt为所述可再生能源静态渗透率指标的指标值,为配电网的可再生能源额定功率,为配电网最大负荷功率;

按下式确定所述可再生能源有效渗透率指标:

式(2)中,λyx为所述可再生能源有效渗透率指标的指标值,pres(t)为接入配电网的可再生能源的实际出力,pl(t)为配网的实际负荷值;

可再生能源静态渗透率指标越高,表明接入配电网的可再生能源装机容量越大。可再生能源的有效渗透率越高表明可再生能源的实际出力比重越大,当可再生能源的有效渗透率大于1时则说明可再生能源的出力已经不能被当地配网的负荷所消纳,这里配网的范围可以是单馈线的简单结构,也可以是多馈线互联的复杂结构。

按下式确定所述可再生能源出力波动性指标:

式(3)中,rfres为所述可再生能源出力波动性指标的指标值,pres[(i+1)×δt]为可再生能源下一时刻的实际出力,pres(i×δt)为可再生能源上一时刻的实际出力,为配电网的可再生能源额定功率,i为当前时刻对应的基准时间间隔数,n为全天总间隔数,δt为基准时间间隔;

可再生能源出力波动性指标越大说明可再生能源输出功率的波动性越大,分布式单元并网引起的不确定性越大。

按下式确定所述可再生能源分布率指标:

式(4)中,δ为所述可再生能源分布率指标的指标值,nres为配网中接入可再生能源的节点数,nload为配网中的负荷节点数;

可再生能源分布率越大表示可再生能源在配网的接入点数越多,分布越广泛。

按下式确定所述可再生能源分散度指标:

式(5)中,为所述可再生能源分散度指标的指标值,为接入配电网的所有可再生能源的平均额定功率,为配电网的可再生能源额定功率;

可再生能源分散度指标用以反映可再生能源装机总容量在各个电源的额分配情况,其值越小表示各个可再生能源的额定功率越相近,各可再生能源的装机容量分布越均匀,各可再生能源的相对重要程度越小。

按下式确定所述馈线注入功率波动性指标:

式(6)中,rffeeder为所述馈线注入功率波动性指标的指标值,δt为基准时间间隔,n为全天基准时间间隔数,i为当前时刻对应的基准时间间隔数,pfeeder(i×δt)为上一时刻馈线注入功率值,pfeeder[(i+1)×δt]为下一时刻馈线注入功率值,为全天馈线注入功率平均值。

进一步的,根据所述可再生能源渗透率指标的可再生能源静态渗透率指标的指标值对接入配电网的可再生能源装机容量进行评价,其中,所述可再生能源渗透率指标的可再生能源静态渗透率指标的指标值与接入配电网的可再生能源装机容量成正比;

根据所述可再生能源渗透率指标的可再生能源有效渗透率指标的指标值对接入配电网的可再生能源的实际出力进行评价,其中,所述可再生能源渗透率指标的可再生能源有效渗透率指标的指标值与接入配电网的可再生能源的实际出力成正比,当可再生能源的有效渗透率大于1时,则配网的负荷不消纳可再生能源的出力;

根据所述可再生能源出力波动性指标的指标值对分布式单元并网引起的不确定性进行评价,其中,所述可再生能源出力波动性指标的指标值与分布式单元并网引起的不确定性成正比;

根据所述可再生能源分布率指标的指标值对可再生能源的分布情况进行评价,其中,所述可再生能源分布率指标的指标值与可再生能源在配网的接入点数成正比;

根据所述可再生能源分散度指标的指标值对可再生能源装机总容量在各电源的额分配情况,其中,所述可再生能源分散度指标的指标值分别与可再生能源之间额定功率的相似度、可再生能源的装机容量分布的均匀度以及可再生能源的相对重要程度成反比。

步骤102中,,所述交直流混合配电网的电网侧低碳效益评价指标体系包括:直流系统供蓄比率指标、柔性直流装置控制偏差率指标、交直流系统有效短路比指标、线损率指标、供电可靠率指标、电压合格率指标、电网故障自愈能力指标、配电自动化率指标和智能变电站比例指标。

其中,按下式确定所述直流系统供蓄比率指标:

式(7)中,rdc为所述直流系统供蓄比率指标的指标值,pres为配网中可再生能源的有功出力,p1为配网的有功负荷,为配网中直流系统可提供的最大功率;

直流系统供蓄比率指标实时反映直流系统对于可再生能源的消纳能力,可以为可再生能源的消纳模式选择提供依据。若rdc大于1,则表明此时可再生能源不能被完全消纳,需要通过其他控制手段(储能、可控负荷)来消纳。

柔性直流装置控制偏差率指标是指交直流混合配电网的控制单元对于控制目标的累计平均控制偏差,按下式确定所述柔性直流装置控制偏差率指标:

式(8)中,ε为所述柔性直流装置控制偏差率指标的指标值,p*为柔性直流装置控制目标值,p(i)为控制周期内第i个采样点的实际控制值,n为控制周期的总采样点数;

该指标可用于描述交直流混合配电网中柔性直流装置的控制水平,反映柔性直流装置对于控制目标的执行力度,控制偏差率指标越低,表示柔性直流装置对于控制目标的执行力越强,控制精度越高,控制稳定性越好。

确定所述交直流系统有效短路比指标包括:

式(9)中,rscr为所述交直流系统的定义短路比,rescr为所述交直流系统的有效短路比,sac为换流母线的短路容量,pdn为额定直流功率,qcn为换流站交流母线并联的无功补偿装置在额定运行时提供的无功功率,zpu为交流系统等值阻抗的标幺值。

rscr和rescr是相对比值,其值越大,意味着交流系统越强,直流系统的投切或运行状态的改变对系统稳定性影响越小;利用短路比指标评估交流系统相对强弱的划分为:rscr>3,为强系统;2≤rscr≤3,为中等强系统;rscr<2,为弱系统。针对单条直流系统而言,没有计及其他换流站的交互影响,不能很好的表征多落点系统的特性。

进一步的,根据所述直流系统供蓄比率指标的指标值对可再生能源的消纳能力进行评价,其中,若所述直流系统供蓄比率指标的指标值大于1,则不能消纳可再生能源;

根据所述柔性直流装置控制偏差率指标的指标值对交直流混合配电网中柔性直流装置的控制水平进行评价,其中,所述柔性直流装置控制偏差率指标的指标值与柔性直流装置对于控制目标的执行力度、控制精度以及控制稳定性成反比;

根据所述交直流系统有效短路比指标的指标值对交流系统强度进行评价,其中,所述交直流系统有效短路比指标中定义短路比和有效短路比与交流系统强度成正比,所述交直流系统有效短路比指标中定义短路比和有效短路比与直流系统的投切或运行状态的改变对系统稳定性影响成反比。

步骤103中,,所述交直流混合配电网的用电侧低碳效益评价指标体系包括:储能供蓄比率指标、储能控制偏差率指标、可控负荷供蓄比率指标、可控负荷控制偏差率指标、可再生能源消纳率指标、节省电量占比指标、电动汽车充电设施数指标、用电信息采集系统覆盖率指标和智能电表数指标。

其中,按下式确定所述储能供蓄比率指标:

式(10)中,ress为所述储能供蓄比率指标的指标值,pres为配网中可再生能源的有功出力,p1为配网的有功负荷,为配网中储能的最大放电功率;

储能供蓄比率指标实时反映储能对于分布式电源的消纳能力,可以为分布式电源的消纳模式选择提供依据。若ress大于1,则表明此时分布式电源不能被完全消纳,需要通过其他控制手段(可控负荷、柔性直流装置)来消纳。

按下式确定所述可控负荷供蓄比率指标:

式(12)中,rcl为所述可控负荷供蓄比率指标的指标值,为配网中可控负载的最大蓄电功率,pres为配网中可再生能源的有功出力,p1为配网的有功负荷。

可控负荷供蓄比率指标实时反映可控负荷对于分布式电源的消纳能力,可以为分布式电源的消纳模式选择提供依据。若rcl大于1,则表明此时分布式电源不能被完全消纳,需要通过其他控制手段(柔性直流装置、储能)来消纳。

进一步的,根据所述储能供蓄比率指标的指标值对储能对于分布式电源的消纳能力进行评价,其中,若所述储能供蓄比率指标的指标值大于1,则分布式电源不能被消纳;

根据所述可控负荷供蓄比率指标的指标值对储能对于分布式电源的消纳能力进行评价,其中,若所述可控负荷供蓄比率指标的指标值大于1,则分布式电源不能被消纳。

所述步骤104中,结合所述交直流混合配电网的发电侧低碳效益评价指标体系、电网侧低碳效益评价指标体系和用电侧低碳效益评价指标体系构建所述交直流混合配电网低碳效益评价指标体系,如表1所示:

表1交直流混合配电网低碳效益指标体系

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1