压力信号处理的制作方法

文档序号:22582877发布日期:2020-10-20 17:10阅读:210来源:国知局
压力信号处理的制作方法

本发明涉及一种用于电容和压力组合感测的触摸面板。



背景技术:

电阻触摸面板和电容触摸面板可被用作计算机和移动设备的输入设备。一种类型的电容触摸面板,即投射电容触摸面板,经常被用于移动设备,因为其外层可以由玻璃制成,从而提供了耐刮擦的坚硬表面。在专利文献us2010/0079384a1中描述了一种投射电容触摸面板的示例。

投射电容触摸面板通过检测由导电物体的接近而引起的电场变化来进行操作。通常使用电容传感器的阵列或网格来确定投射电容触摸面板的触摸位置。尽管投射电容触摸面板通常可以区分单点触摸事件和多点触摸事件,但是它们具有无法感应压力的缺点。因此,投射电容触摸面板常常无法区分相对轻敲和相对重压。而能够感测压力的触摸面板可以通过提供附加信息来简单地对触摸进行定位,来使得用户能够以新的方式与设备进行交互。

专利文献wo2016/102975a2和wo2017/109455a1描述了能够将投射电容触摸感测与压电压力感测结合在单个触摸面板中的触摸面板。

压电传感器可以生成瞬态信号,并且已经尝试开发将瞬态压电信号转换成表示静态作用力的信号的方法。例如,专利文献wo2017/122466a1、jp2015/097068a和ep2902886a1描述了对来自压电传感器的信号进行有条件的积分的方法。



技术实现要素:

根据本发明的第一方面,提供了一种方法,包括:从该触摸面板接收来自多个压电传感器的压力信号和来自多个电容触摸传感器的电容信号。该方法还包括:基于所述电容信号,确定用户交互时段,在该用户交互时段期间发生了与所述触摸面板的用户交互。该方法还包括:根据接收到的压力信号生成经处理压力信号。该方法还包括:通过根据与所述用户交互对应的状态寄存器对相应的经处理压力信号进行有条件地积分,来测量所述用户交互时段期间通过所述用户交互被施加到所述多个压电传感器中的每个压电传感器上的力。所述状态寄存器取两个或多个值之一。每个用户交互被初始化为第一状态值。所述用户交互根据当前所述状态寄存器的值和一个或多个压力信号特性,在所述状态寄存器的值之间转换。

压力信号特性可以包括以下至少之一:信号的值、信号梯度、信号方差、信号标准差、信号变程、信号最小值、信号最大值、自所述用户交互时段开始起经过的时间、从所述状态寄存器的值被改变起所经过的时间,以及从检测到所述压力信号中的峰值起所经过的时间等等。压力信号特性可以包括将信号的值、信号梯度、信号方差或标准偏差、信号变程、信号最小值或信号最大值,与一个或多个相应的预定阈值或预定变程进行比较。

压电传感器可以与电容传感器共面或被设置在与电容传感器相同的层内。压电传感器和电容传感器可共同地包括一个或多个电极。压电传感器和电容传感器可以由单个或共同的结构所提供。压电传感器和电容传感器可以为分离的。压电传感器和电容传感器可以被设置在分离的层中。

生成经处理压力信号可以包括:对于每个压电传感器,从所述接收到的压力信号中减去直流dc偏移值。每个直流dc偏移值在接通所述触摸面板之后,经过预热时段之后被初始化。每个初始dc偏移值基于在没有用户交互的情况下接收到的压力信号。每个初始dc偏移值可以基于在没有用户交互的情况下接收到的压力信号的平均值、中值、模值或幅值。

该方法还可以包括:对于每个压电传感器,响应于确定出不存在用户交互,维持具有接收到的压力信号的值的回归缓冲器,确定被存储在回归缓冲器中的值的梯度和方差,以及响应于所述梯度和方差小于预定阈值,基于被存储在所述回归缓冲器中的值来更新所述直流dc偏移值。

生成经处理压力信号包括:对所述接收到的压力信号进行滤波。

该方法还可以包括:对于每个压电传感器,响应于检测到所述用户交互的开始,将残余dc偏移值设置为零。该方法还可以包括:在所述用户交互时段期间,维持具有所述经处理压力信号的值的样本缓冲器,确定被存储在样本缓冲器中的值的梯度和方差,确定所述残余dc偏移值与所述被存储在所述样本缓冲器中的值的平均值之间的差值。该方法还可以包括:响应于所述梯度和所述方差小于对应的平坦时段阈值,并且所述差值小于偏移-转移阈值,将所述残余dc偏移值更新为所述被存储在所述样本缓冲器中的值的平均值。该方法还可以包括:从积分之前的所述经处理压力信号中减去所述残余dc偏移值。

该方法还可以包括:响应于基于所述电容信号确定出所述用户交互的位置正在移动,将移动标志设置为真值。该方法还可以包括:响应于所述移动标志不具有所述真值,将所述平坦时段阈值设置为第一预定平坦时段阈值。该方法还可以包括:响应于所述移动标志具有所述真值,将所述平坦时段阈值设置为第二预定平坦时段阈值。

该方法还可以包括:对于每个压电传感器:定位并确定所述经处理压力信号在所述用户交互时段期间的初始峰值。

该方法还可以包括:响应于定位初始峰值,若自所述用户交互时段的开始起经过的时间超过预定阈值,将用户交互类型寄存器设置为对应于软触摸值。该方法还可以包括:若自所述用户交互时段的开始起经过的时间未超过所述预定阈值,将所述用户交互类型寄存器设置为对应于硬触摸值。

该方法还可以包括:响应于所述残余dc偏移值被更新,以及所述用户交互类型寄存器对应于所述软触摸值,将所述用户交互类型寄存器设置为所述硬触摸值。

该方法还可以包括:响应于所述经处理压力信号超过所述初始峰值的预定分数,所述被存储在所述样本缓冲器中的值的梯度超过软转换阈值,以及所述用户交互类型寄存器对应于所述硬触摸值,将所述用户交互类型寄存器设置为所述软触摸值。

该方法还可以包括:响应于所述用户交互类型寄存器对应于所述软触摸值,将所述平坦时段阈值设置为第三预定平坦时段阈值。

该方法还可以包括:响应于所述状态寄存器对应于所述第一状态值,自所述用户交互开始起经过的时间超过最小持续时间,以及所述经处理压力信号具有对应于增大的力的符号,将所述状态寄存器设置为第二状态值。

该方法还可以包括:响应于所述状态寄存器对应于所述第二状态值,以及所述经处理压力信号具有对应于减小的力的符号,将所述状态寄存器设置为第三状态值。

该方法还可以包括:响应于所述状态寄存器对应于所述第二状态值,以及所述用户交互类型寄存器对应于所述软触摸值,将所述状态寄存器设置为所述第三状态值。

该方法还可以包括:确定所述用户交互期间所述经处理压力信号的信号梯度。该方法还可以包括:响应于所述状态寄存器对应于所述第三状态值,以及所述经处理压力信号的所述信号梯度低于信号梯度阈值,将所述状态寄存器设置为第四状态值。

该方法还可以包括:如果所述状态寄存器对应于所述第一状态值,则对具有对应于增大的力的符号的所述经处理压力信号的值进行积分,而不对对应于减小的力的所述经处理压力信号的值进行积分。

该方法还可以包括:如果所述状态寄存器对应于所述第二状态值,则对所有的所述经处理压力信号的值进行积分。

该方法还可以包括:如果所述状态寄存器对应于所述第三状态值,则不对所述经处理压力信号的值进行积分。

该方法还可以包括:如果所述状态寄存器对应于所述第四状态值,对超过噪声阈值的所述经处理压力信号的值进行积分,并且不对未超过所述噪声阈值的所述经处理压力信号的值进行积分。

所述多个压电传感器中的每个压电传感器分别被设置所述状态寄存器。

该方法还可以包括:基于所述电容信号,确定与所述触摸面板进行的两次或多次所述用户交互。

该方法还可以包括:基于所述电容信号确定每个用户交互的位置。该方法还可以包括:将最接近于所述每个用户交互的位置的压电传感器分配为决策传感器。该方法还可以包括:分配其他的每个压电传感器,以对应于最接近的所述决策传感器。该方法还可以包括:响应于所述压电传感器为所述决策传感器,独立地更新对应于所述压电传感器的状态寄存器。该方法还可以包括:响应于所述压电传感器不为所述决策传感器,将对应于所述压电传感器的所述状态寄存器更新为与对应的所述决策传感器的状态寄存器相等。

该方法还可以包括:响应于所述压电传感器不为所述决策传感器,基于对应的决策通道,确定所述初始峰值的位置

该方法还可以包括:在处理来自其他所述压电传感器的信号之前,先处理来自所述决策传感器的信号。

该方法还可以包括:基于一个或多个测量的力,向图形用户界面和/或计算机程序提供输入。

状态寄存器可以以整数、字符、字符串或浮点值的形式存储值。

根据本发明的第二方面,提供了一种计算机程序产品,其存储有可以执行上文所述的方法的指令。

根据本发明的第三方面,提供了一种计算机程序,其被存储在非暂时性计算机可读介质上,所述计算机程序包括用于使得数据处理设备执行上文所述的方法的指令。

根据本发明的第四方面,提供了一种控制器,其被配置为执行上文所述的方法。

一种装置可以包括:上文所述的控制器,以及一种包括有多个压电传感器和多个电容触摸传感器的触摸面板。

根据本发明的第五方面,提供了一种被配置为用于被连接到包括有多个压电传感器和多个电容触摸传感器的触摸面板的控制器,该控制器被配置为:接收来自多个压电传感器的压力信号和来自多个电容触摸传感器的电容信号。该控制器还被配置为:基于所述电容信号,用户交互时段,在该用户交互时段期间发生了与所述触摸面板的用户交互。该控制器还被配置为:根据接收到的压力信号生成经处理压力信号。该控制器还被配置为:通过根据与所述用户交互对应的状态寄存器对相应的经处理压力信号进行有条件地积分,来测量所述用户交互时段期间通过所述用户交互被施加到所述多个压电传感器中的每个压电传感器上的力。所述状态寄存器取两个或多个值之一。每个用户交互被初始化为第一状态值。所述用户交互根据当前所述状态寄存器的值和一个或多个压力信号特性在所述状态寄存器的值之间转换。

压力信号特性可以包括以下至少之一:信号的值、信号梯度、信号方差、信号标准差、信号变程、信号最小值、信号最大值、自所述用户交互时段开始起经过的时间、从所述状态寄存器的值被改变起所经过的时间,以及从检测到所述压力信号中的峰值起所经过的时间等等。压力信号特性可以包括将信号的值、信号梯度、信号方差或标准偏差、信号变程、信号最小值或信号最大值,与一个或多个相应的预定阈值或预定变程进行比较。

一种装置可以包括:上文所述的控制器,以及一种包括有多个压电传感器和多个电容触摸传感器的触摸面板。

附图说明

现在将参考附图,通过示例的方式描述本发明的某些实施例,其中:

图1为一种用于压电和电容感测组合的触摸面板的示意性截面图;

图2示出了一种用于压电和电容组合的感测系统;

图3示意性地示出了与触摸面板进行的用户交互的力的分布;

图4示出了与图3所示的力分布相对应的理想化的压电压力信号;

图5示出了与触摸面板进行的用户交互相对应的测量的压电压力信号的示例;

图6示出了基于图5所示的压电压力信号而测量所施加的力;

图7为测量的被施加到触摸板上的力的方法的过程流程图;

图8为测量的被施加到触摸板上的力的方法的示例性实施方式的过程流程图;

图9为校准过程的过程流程图;

图10为重新校准过程的第一示例的过程流程图;

图11为重新校准过程的第二示例的过程流程图;

图12为推式细化过程的过程流程图;

图13示出了同时与触摸面板并发进行的多个用户交互的位置;

图14示出了触摸面板系统的决策电极的分配;

图15示出了触摸面板系统的非决策电极与决策电极的相关性分配;

图16示出了触摸面板系统的电极的信号处理;

图17示出了与触摸面板的“软”型用户交互相对应的测量的压电压力信号的示例;

图18示出了根据图17所示的压电压力信号测量所施加的力;

图19为电极通道更新过程的过程流程图;

图20示出了与触摸面板的“硬”型用户交互相对应的测量的压电压力信号的示例,该压电压力信号可转变为“软”型用户交互;

图21表示根据图20所示的压电压力信号测量所施加的力;

图22示出了与触摸面板的“软”型用户交互相对应的测量的压电压力信号的示例,该压电压力信号可转变为“硬”型用户交互;

图23表示根据图22所示的压电压力信号测量所施加的力;

图24为状态更新过程的第一示例的过程流程图;

图25为状态更新过程的第二示例的过程流程图;以及

图26为输出力更新过程的过程流程图。

具体实施方式

在下文的描述中,相同的元件将由相同的附图标记来表示。

压电压力感测中遇到的问题是,通过对压电材料施加力而生成的信号固有地是瞬态的。因此,来自压电压力传感器的输出信号需要进行处理,从而使得能够测量静态或缓慢变化的施加的力。本说明书的方法涉及提高使用基于压电的触摸板系统所测量的力的准确性和可靠性,同时保持或提高对从触摸面板接收的压电压力信号进行处理的速度。

压力和电容组合的触摸屏系统

参照图1,图1示出了一种用于压力和电容测量组合的触摸面板的简化截面图。

触摸面板1包括第一层结构2和第二层结构3、共用电极4、多个第一感测电极5和多个第二感测电极6。

第一层结构2具有第一面7和与之相对的第二面8。第一层结构2包括一层或多层,并且包括至少一层压电材料9。被包括在第一层结构2中的每一层都通常为平面的,并且在垂直于厚度方向z的第一方向x和第二方向y上延伸。第一层结构2中的一层或多层被布置在第一面7和第二面8之间,以使得第一层结构2的每一层的厚度方向z垂直于第一面7和第二面8。第一感测电极5被设置在第一层结构2的第一面7上,共用电极4被设置在第一层结构2的第二面8上。

优选地,压电层9由压电聚合物形成,例如合适的含氟聚合物(如聚偏二氟乙烯(polyvinylidenefluoride,pvdf))。但是,该压电层也可以替代性地由一层压电陶瓷形成,诸如锆钛酸铅(leadzirconatetitanate,pzt)。

第二层结构3具有第三面10和与之相对的第四面11。第二层结构3包括一个或多个介电层12。每个介电层12通常均为平面的,并且在垂直于厚度方向z的第一方向x和第二方向y上延伸。第二层结构3的一个或多个介电层12被布置在第三面10和第四面11之间,以使得第二层结构3的每个介电层12的厚度方向z垂直于第三面10和第四面11。第二感测电极6被设置在第二层结构3的第三面10上,并且第二层结构3的第四面11与第一感测电极5接触。可替选地,第一感测电极5可以被设置在第四面11上。

优选地,一个或多个介电层12包括诸如聚对苯二甲酸乙二醇酯(polyethyleneterephthalate,pet)的聚合物介电材料层或者压敏粘合剂(pressuresensitiveadhesive,psa)材料层。但是,介电层12可以包括诸如氧化铝的陶瓷绝缘材料层。

优选地,共用电极4、第一感测电极5和/或第二感测电极6由铟锡氧化物(indiumtinoxide,ito)或铟锌氧化物(indiumzincoxide,izo)形成。然而,共用电极4、第一感测电极5和/或第二感测电极6可以由诸如聚苯胺(polyaniline)、聚噻吩(polythiphene)、聚吡咯(polypyrrole)或聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐(polyethylenedioxythiophene/polystyrenesulfonate,pedot/pss)的导电聚合物形成。共用电极4、第一感测电极5和/或第二感测电极6可以采用金属膜的形式,诸如铝、铜、银或其他适于沉积和图案化为薄膜的金属。共用电极4、第一感测电极5和/或第二感测电极6可以由金属网、纳米线(可选地,银纳米线)、石墨烯或碳纳米管形成。

还可以参考图2,图2示出了一种用于压力和电容组合感测的系统13。

压力和电容组合的传感系统13包括:触摸面板1、测量前端14、压力信号处理模块15和电容信号处理模块16。

每个第一感测电极5均在第一方向x上延伸,并且第一感测电极5以在第二方向y上均匀间隔出阵列的方式进行设置。每个第二感测电极6均在第二方向y上延伸,并且第二感测电极6以在第一方向x上均匀间隔出阵列的方式进行设置。共用电极4为延伸的,以使得该共用电极4至少部分地位于第一感测电极5和第二感测电极6中的每个电极的下方。共用电极4可以基本上为与第一层结构2的第二面8一同延伸的。以此方式,第一感测电极5与第二感测电极6的每个交叉点17可以有效地提供单独的触摸传感器。并且由交叉点17形成的每个触摸传感器既是压电触摸传感器又是电容触摸传感器。

触摸面板1可以被粘结在结合有压力和电容组合的感测系统13的电子设备(未示出)的显示器(未示出)上。例如,压力和电容组合的感测系统13可以被结合到移动电话、平板计算机、便携式或膝上型计算机、显示器、电视机等中。

在此,术语“用户交互”可以指的是用户触摸或按压触摸面板1,或者用户触摸或按压覆盖于触摸面板上的一层材料。用户互动可能涉及用户的手指或手写笔(无论是否导电)。触摸交互可以包括在没有直接物理接触或没有施加很大压力的情况下,用户的手指或导电手写笔靠近触摸面板1。按压交互涉及用户用足够的力按压触摸面板1,以引起压电材料层9的应变并且产生压电响应。当用户移动手指或手写笔时,用户交互的位置可能会随时间而变化。触摸面板1和系统13支持对一个或多个并发的用户交互(有时称为“多触摸”交互)的测量和跟踪。

测量前端14在触摸面板1上执行压力和电容的组合测量。测量前端14通过响应于用户交互施加的压力,和/或在第二感测电极6和共用电极4之间感应的电压,而通过压电层9的应变来检测第一感测电极5和共用电极4之间感应的电压,从而测量压力。以此方式,测量前端14可以通过一个或多个用户交互来提供被施加到触摸面板1上的压力的一维或二维分辨测量。优选地,通过第一感测电极5和第二感测电极6两者来测量压力。测量前端14还可以测量第一感测电极5和第二感测电极6的每个交叉点17的互电容。

测量前端14可以同时测量压电压力信号和电容。例如,测量前端14可以如专利文献wo2017/109455a1中所述的,或者如专利文献wo2016/102975a2中所述的方式进行配置,并且这两个专利文献的全部内容将通过引用的方式并入本文。特别地,在专利文献wo2017/109455a1的图4至图23中示出并描述了合适的压力和电容组合的触摸面板系统13。此外,在专利文献wo2016/102975a2的图15至图29中示出并描述了合适的压力和电容组合的触摸面板系统13。

测量前端14可以输出压力信号18和电容信号19。压力信号18对应于在第一感测电极5和共用电极4之间和/或在第二感测电极6和共用电极4之间感应的放大和/或积分的压电电压。当测量前端14同时测量压电压力信号和电容时,例如,当依照专利文献wo2017/109455a1或wo2016/102975a2所述的方式配置测量前端14时,压力信号18和电容信号19通过对与每个感测电极5、6相对应的信号进行频率分离来获得信号18、19,从而获得压力信号18和电容信号19。测量前端14可以包括被配置为拒绝压电材料层9的热电响应的低频截止滤波器。该低频截止频率的取值介于1hz至7hz之间。测量前端14可以包括陷波滤波器,该陷波滤波器被配置为拒绝市电功率分配频率(例如50hz或60hz)。

电容信号处理模块16接收并处理电容信号19,以确定包括有用户交互的次数和每个用户交互的x-y坐标的电容信息20。该电容信号处理模块16可以以与常规电容触摸控制器相同的方式执行其功能,并且该电容信号处理模块16可以由常规电容触摸控制器来提供。在一些示例中,电容信号处理模块16还可以将用于电容测量的驱动信号,提供给测量前端14。感测电极5、6的自电容或在任一对第一感测电极5与第二感测电极6之间的互电容可以由电容信号处理模块16根据已知的方法来测量。

压力信号处理模块15接收压力信号18和电容信息20,该电容信息20包括有用户交互的次数和每个用户交互的x-y坐标。可选地,压力信号处理模块15还可以接收未处理的电容信号19。压力信号处理模块15被配置为使用瞬态压力信号18来测量与施加压力到触摸面板1的用户交互相对应的一个或多个输出力21。电容信息20用于测量输出力21。下文将对输出力21的测量方法进行详细说明。可选地,未处理的电容信号19也可以由信号处理模块15所使用,例如,以有助于估计给定的第一感测电极5或第二感测电极6的信号的质量和可靠性。

尽管第一感测电极5和第二感测电极6基本上被示出为矩形,但是也可以使用已知的任何其他用于投射电容触摸面板的形状。例如,菱形图案化的电极可以被用于第一感测电极5和第二感测电极6。

触摸传感器1的第一层结构2可以仅包括压电材料层9,以使得相对的第一面7和第二面8是压电材料层9上的面。可替选地,第一层结构2可以包括一个或多个附加的介电层(未示出),其被堆叠在压电材料层9和第一层结构2的第一面7之间。第一层结构2可包括被堆叠在第一层结构2的第二面8和压电材料层9之间的一个或多个附加介电层(未示出)。优选地,一个或多个附加介电层(未示出)包括诸如聚对苯二甲酸乙二酯(pet)的聚合物介电材料层或压敏粘合剂(psa)材料层。然而,该一个或多个附加的介电层(未示出)还可以包括诸如氧化铝的陶瓷绝缘材料层。该一个或多个附加介电层(未示出)可以类似于第二层结构3的介电层12。

第二层结构3可以包括单个介电层12,以使得第三面10和与之相对的第四面11为单个介电层12上的面。可替选地,不需要使用第二层结构3,并且第二感测电极6可以与第一感测电极5一同被设置于第一面7上。

在图1和2中,第一面7、第二面8以及第一层结构2和第二层结构3的层被示出为沿着被标记为x和y的正交轴延伸,并且第一层结构2和第二层结构3的每一层的厚度方向与x轴和y轴正交的被标记为z的轴对准。然而,第一方向x、第二方向y和厚度方向z也可以不需要形成如图所示的右手正交集合。例如,第一方向x和第二方向y可以以30度或45度的角度,或者大于0度且小于90度的任何其他角度相交。

为了理解本说明书所述的方法,本申请提供了上文所述的并且参考了专利文献wo2017/109455a1和wo2016/102975a2所描述的触摸面板1和系统13的细节,但是本说明书的方法并非仅限于触摸屏1和系统13。本说明书的方法还可以与包括压电传感器阵列和电容传感器阵列的任何触摸面板系统一同使用。

还可以参照图3,图3示出了被施加到触摸面板1的示意性的力输入22。

压电材料层9被极化,并且响应于由用户交互(施加了足够的力)所引起的应变而利用极化p进行极化操作。压电材料层9的极化p导致了在共用电极4和感测电极5、6之间产生有相应的电荷q压电(t)。产生极化p的应变可能是由于压缩或拉伸所引起的。产生极化p的应变也可以是压电材料层9的面内拉伸。压电材料层9和感测电极5、6之间不需要紧密接触。通常,压电材料层9的更大应变(由更大力的用户交互所引起)将导致更大的极化p,以及在感测电极5和6上感应出的相对应的更大的电荷差δq压电。压电响应i压电(t)是与电荷q压电(t)相关的电流,该压电响应i压电(t)可以被放大和/或被积分以确定压电压力信号23(如图4所示)。

还可以参照图4,图4示出了对应于力输入22的理想化压电压力信号23。

压电压力信号23(例如作为从测量前端14的输出的和/或由测量前端14放大的压电压力信号)基本上为瞬态信号。由于泄漏电流,感应的压电电压将随时间衰减。此外,可用于放大压电电流i压电的积分电荷放大器的输出也随将时间衰减。

例如,在第一加载时段t0≤t≤t1期间,力22从零稳定地增加到第一力值f1。假设力22的增加速度比压电压力信号23的衰减速度快,则相应的压电压力信号23在第一加载时段t0≤t≤t1期间稳定地减小,并且在力22达到第一力值f1时达到第一峰值v1。然后,力22在第一个保持时段t1<t≤t2内保持恒定在f1。并且在第一保持时段t1<t≤t2期间,压电压力信号23从第一峰值v1朝着零直流(directcurrent,dc)偏移向上衰减(在理想情况下)。

在第二加载时段t2<t≤t3期间,力22再次从第一力值f1增加到第二力值f2。假设力22的增加速度比压电压力信号23的衰减速度更快,则相应的压电压力信号23在第二加载时段t2<t≤t3期间稳定地减小,当力22达到第二力值f2时达到第二个峰值v2。然后,力22在第二保持时段t3<t≤t4期间被保持恒定在f2。在第二保持时段t3<t≤t4期间,压电压力信号23从第二峰值v2朝着零信号向上衰减(在理想情况下)。

在第二保持时段t3<t≤t4结束时,在去载时段t4<t≤t5期间,用户交互以释放力22结束。假设力22的下降速度比压电压力信号23的衰减速度更快,则相应的压电压力信号23在去载时段t4<t≤t5期间稳定地增加,并且当力22为0时,压电压力信号23达到第三峰值v3。由去载(而非加载)所产生的第三峰值v3具有与第一峰值v1和第二峰值v2相反的符号。在用户交互结束之后,压电压力信号23朝着零dc偏移衰减(在理想情况下)。

尽管图4示出了压电压力信号23响应于加载而变为负,并且响应于去载而变为正,但是,在其他示例中,取决于触摸面板1和系统13的配置,压电压力信号23的极性可以被反转。

当压电压力信号23为理想的时,如图4所示,可以通过各种方法来补偿压电压力信号23的衰减,例如,基于压电压力信号23的梯度和/或值,对压电压力信号23进行条件积分。当压电压力信号23的梯度和值具有相同的符号时,通过对压电压力信号23进行积分,可以恢复与施加的力22成比例的估计测量。

然而,当使用用于压力和电容组合测量的触摸面板1和系统13时,压电压力信号23实际上可能会遭受dc偏移和大量噪声源的连续变化,而这可能会阻止基于朴素值和基于梯度的条件积分的可靠操作。

不希望受限于理论或特定具体的示例,为了理解本说明书而讨论触摸面板1和系统13的dc偏移变化和噪声的潜在来源可能是有帮助的。触摸面板1和系统13通常可以被安装在手持式电池供电的设备(未示出)中。此类设备通常不接地,或仅接地较弱,而这可能会增加噪声吸收和dc偏移变化的敏感性。另外,由于用户的衣物、鞋类和/或其环境之间的相互作用,用户可能经常被带上静电。而这可能进一步导致dc偏移量的变化,并且还可能导致在初次接触触摸面板1时用户的手指和/或手写笔之间产生静电放电。这种静电放电可以将电荷qesd施加到接近用户交互的感测电极5、6,其可以等于或甚至基本上超过由于施加的力而导致的电荷q压电。此外,诸如快速连续地轻敲触摸面板1之类的短交互可能会使得基于梯度和值的方法混乱,因为来自一个轻敲操作的信号在下一轻敲操作开始之前可能尚未完全衰减,从而导致力的测量不准确。前文的讨论并不详尽,并且许多其他因素也可能会导致触摸面板1和系统13的dc偏移变化和噪声水平。因此,需要一种在不牺牲灵敏度和/或计算速度的情况下,以提高的可靠性的方式来测量被施加到触摸面板1上的力的方法。

例如,还可以参考图5,图5示出了使用触摸面板1和系统13的示例而获得的测量的压电压力信号24的示例。

可以观察到,所测量的压电压力信号24以数种重要方式偏离了理想压电压力信号23。首先,当压力信号24的值p(t)不处于零dc偏移时,发生了由电容信息20而确定的触摸事件的开始。相反,在相对于用户交互开始的时间t=0上,压力信号24的值p(t)可能经常显示初始dc偏移值p0=p(0)。这种情况可能由于多种原因而发生,例如,在先前的用户交互之后的残余dc偏移、在初始接触触摸面板1时用户手指的静电放电、先前用户交互的信号之前的重复触摸完全衰减等等。在实践中,初始偏移p0可能很重要。当用户的手指进行静电放电时,初始偏移量p0有时可能会伴随着一个初始的虚假峰值p5(如图17所示),该峰值被认为是由静电放电所引起的。包含了初始的虚假峰值p5(如图17所示)可能会导致力输出不准确。但是,简单地设置梯度和值的阈值以排除初始偏移p0和/或虚假峰值p5(如图17所示),将导致在其余的用户交互过程中出现灵敏度降低的情况。

其次,在达到初始峰值p1之后,压力信号24的值p(t)可以衰减到不等于零的偏移值poff。已经观察到,偏移值poff通常与初始峰值p1相反。还已经观察到,在每次用户与特定感测电极5、6的交互之后,偏移值poff可能发生改变,使得常规的dc偏移修正和校准方法可能不太有效。此外,在一定比例的用户交互期间,压力信号24的值p(t)可显示虚假峰值p2,在此期间压力信号24p(t)在稳定之前会超出偏移值poff。在某些用户交互期间,虚假峰值p2的大小可能很大。

如上文所解释的,通过简单地设置梯度和值的阈值以排除初始偏移和/或静电放电峰值、偏移值poff和虚假峰值p2和p5(如图17所示)可能会导致在其余的用户交互过程中出现灵敏度降低的情况。例如,其可能会导致无法检测到一个小峰值p3,而该峰值p3恰好对应于用户在主去载峰值p4之前略微抬起的压力。

本说明书中详述的方法旨在通过提供用于测量被施加到触摸面板1的力的方法来解决这些问题,该力对于dc偏移和其他噪声源的变化更鲁棒,而无需增加阈值以及造成灵敏度的降低。同时,本说明书中详述的方法可以由控制器、专用集成电路(applicationspecificintegratedcircuit,asic)、微控制器或微处理器以足以避免引入用户可能感觉到的过长延迟的速度来有效地执行。过长的延迟可能会使用户烦恼,或者,如果延迟变得太大,则可能使提供正确的输入变得困难或者不可能。

还可以参照图6和图7,来阐明本说明书的方法。

从支撑在触摸面板上或被嵌入在触摸面板中的多个压电传感器接收压力信号18(步骤s1)。

从被支撑在触摸面板上或被嵌入在触摸面板内的多个电容触摸传感器接收电容信号19(步骤s2)。

例如,触摸面板可以为用于使用共同的电极集合4、5、6进行压力和电容组合测量的触摸面板1。可替选地,触摸面板可以具有包括压电传感器的层,该压电传感器堆叠有包括电容触摸传感器的单独的层。

基于电容信号19,确定用户交互时段,在该用户交互时段期间发生了与触摸面板的用户交互(步骤s3),例如,时段t0至t5(如图3所示)。

如果并未发生用户交互(步骤s3),则获得压力信号的下一个采样(步骤s1)。

如果发生了用户交互(步骤s3),则基于接收到的压力信号,生成经处理压力信号(步骤s4)。例如,对于每个压电传感器,生成经处理压力信号可以包括从接收到的压力信号中减去dc偏移值。然后可以在接通触摸面板并经过了预热时段之后,对与每个压电传感器相对应的dc偏移值进行初始化。初始dc偏移值为基于在未发生用户交互的情况下所接收到的压力信号,例如基于压力信号的平均值、中值、模值或变程(range)。

可选地,可以使用附加的重新校准步骤。例如,对于每个压电传感器,系统13可以在未发生用户交互的时段期间维持所接收到的压力信号18的值的回归缓冲器。然后可以确定被存储在回归缓冲器中的值的梯度和方差,并且响应于梯度和方差小于预定阈值的情况,可以基于被存储在回归缓冲器中的值来更新dc偏移值。例如,可以基于被存储在回归缓冲器中的值的平均值、中值、模值或变程来修正dc偏移值。

生成经处理压力信号还可以包括对接收到的压力信号18进行滤波。

确定所接收到的信号是否对应于新开始的用户交互的第一采样(步骤s5),并且在新的用户交互开始时,将状态寄存器初始化为第一状态值s0(步骤s6)。

如果所接收到的信号18、19不对应于新开始的用户交互的第一次采样(步骤s5),则可以更新状态寄存器的值(步骤s7)。用户交互根据当前状态寄存器的值和一个或多个压力信号特性,在状态寄存器的值之间进行转换。压力信号特性可以包括以下一项或多项:信号的值、信号梯度、信号方差或标准偏差、信号变程、信号最小值、信号最大值、自用户交互时段开始起经过的时间、从所述状态寄存器的值被改变起所经过的时间,以及从检测到所压力信号中的峰值起所经过的时间等等。压力信号特性可包括:将信号的值、信号梯度、信号方差或标准差、信号变程、信号最小值或信号最大值与一个或多个相应的预定阈值或预定变程所进行的比较。

在一个示例中,状态寄存器可以被设置为四个值s0、s1、s2或s3之一。响应于自用户交互开始起经过的时间超过最小持续时间,以及经处理压力信号具有与增大的力相对应的符号,状态寄存器将从第一状态值s0改变为第二状态值s1。响应于经处理压力信号具有与减小的力相对应的符号,状态寄存器可以从第二状态值s1改变为第三状态值s2。响应于经处理压力信号具有低于信号梯度阈值的信号梯度,状态寄存器将从第三状态值s2改变为第四状态值s3。

尽管在此示例中,四个状态s0、s1、s2、s3之间的转换为线性的,但是,使得能够状态转换的同时也依赖于状态寄存器的当前值的本方法支持用于状态寄存器的值的分层、非线性和/或分支序列。这可以使得在不牺牲灵敏度的情况下能够提高压力信号处理的可靠性,因为可以使得信号处理的行为高度依赖于用户交互的主要条件。

通过用户交互而被施加到多个压电传感器中的每个压电传感器的力的测量值均被更新(步骤s8)。在用户交互期间,通过根据与用户交互相对应的状态寄存器的值,来对对应的已处理压力信号进行有条件的积分来测量力。可以使用诸如简单求和、梯形规则的应用等数值手段来实现积分。

在可以将状态寄存器设置为四个值s0、s1、s2或s3之一的示例中,可以将状态寄存器s0、s1、s2或s3的每个值设置为对应于对已处理的压力值进行积分的不同行为。

例如,如果状态寄存器对应于第一状态值s0,则可以对具有与增大的力相对应的符号的经处理压力信号的值进行积分,并且可以不对与减小的力相对应的经处理压力信号的值进行积分。如果状态寄存器对应于第二状态值s1,则可以对所有经处理压力信号的值进行积分。如果状态寄存器对应于第三状态值s2,则可以不对经处理压力信号值进行积分。如果状态寄存器对应于第四状态值s4,对超过噪声阈值的经处理压力信号的值进行积分,并且不对未超过噪声阈值的经处理压力信号的值进行积分。

在触摸面板系统继续操作的同时(步骤s9),获得压力信号的下一个采样(步骤s1)。

以此方式,由于状态寄存器的值之间的转换也取决于状态寄存器的当前值,因此,可以以响应更快的方式处理压力信号,而这可以提高所测量的力的可靠性。

可以为多个压电传感器中的每个分别设置状态寄存器的值。可替选地,可以为每个用户交互设置状态寄存器的值,使得当相邻的压电传感器集合中的传感器都受到相同的用户交互影响时,它们可以使用共同的状态寄存器。

该方法支持与触摸面板的多个并发的用户交互。

现在特别参照图5和图6,将描述采用了该方法的一种实施方式对图5中所示的测量压力信号24的应用。

随着用户交互的进行,压力信号处理模块15在至少四个可区分的状态s0、s1、s2和s4之间更新状态寄存器的值(步骤s7)。在图5和图6中指示了状态s0、s1、s2和s3的边界和状态间的转换以供参考。在该示例中,状态寄存器可以被设置为一个或四个值s0、s1、s2和s4。根据本说明书的方法处理所测量的压电压力信号24的值p(t),以确定经处理压力信号25(步骤s4),该经处理压力信号25又可以用于测量输出力26(步骤s8)。在图6中,相对于次y-轴绘制了输出力26。

当基于电容信息20而确定的用户交互开始时(步骤s3),用户交互被初始化为第一状态或初始状态s0(步骤s6)。在该示例中,在初始状态s0期间,不使用压力信号24的值p(t),除非它们具有用于增加触摸面板1上的负载的适当符号。对于图5和图6所示的示例,适当的符号为负,但是在其他示例中,压力信号24的值p(t)可以响应于增大的施加的力而增大。实际上,可以根据以下条件通过生成经处理压力信号25的值p*(t)来应用此条件:

在初始状态s0期间,通过将相应的经处理信号25值p*(t)与输出力信号的先前值相加,以获得压力信号24值p(t)的每个新采样的输出力信号f(t),即f(t)=f(t-1)+p*(t)(步骤s8)。由于当压力信号24的值p(t)具有针对增加的施加力的错误符号时,经处理信号25的值p*(t)被设置为零,因此,这些值对于输出力信号f(t)没有贡献。

值得注意的是,输出力信号26的值f(t)与所施加的力成比例,但是为了获得所施加的力的绝对估计测量值,需要将测量值f(t)乘以相应的比例因子。该比例因子可以使用已知的作用力曲线从校准实验中获得。该比例因子可以进一步取决于用户与触摸面板1的发生交互的位置。

一旦从用户交互开始之后经过了预定的持续时间,就可以发生向第二主加载状态s1的转换(步骤s7)。从电容信息20中可以高精度地了解到用户交互的开始。在主加载状态s1期间,可以无条件地使用所有样本压力信号24的值p(t),即可以将经处理信号设置为p*(t)=p(t)(步骤s4)和输出力信号f(t)可以被更新为f(t)=f(t-1)+p*(t)(步骤s8)。

当压力信号24的值p(t)的符号发生改变时,或者当压力信号处理模块15已经确定地检测到初始加载峰值p1时,可能发生了到第三状态或稳定状态s2的转换(步骤s7)。在图5和图6所示的示例中,由于压力信号24的值p(t)已经将符号从负改变为正,所以发生了从状态s1到状态s2的转变。当然,在其他示例中,当所施加的力的增大导致了压力信号24增大,则沿相反方向检测到该状态转换。将在下文中描述用于确定初始峰值p1的近似时间和值的示例过程。在稳定状态s2期间,可以不使用压力信号24的值p(t)(步骤s8),例如通过将经处理信号值p*(t)设置为p*(t)=0(步骤s4)。因此,在图5和图6中,可以观察到,在该示例中,在虚假的过冲峰值p2期间,经处理信号p*(t)的钳位为零。

一旦压力信号24的值p(t)已经稳定在dc偏移poff(步骤s7),则可以发生向第四状态或稳定状态s3的转变。通常,dc偏移poff可以随着时间和/或跟随压力信号24的每个加载/去载峰值的值p(t)而缓慢变化。在一些示例中,压力信号处理模块15维持数量为nbuff的先前压力样本{p(t),p(t-1),…,p(t-nbuff+1)}的缓冲器,在这种情况下,t、t-1、t-nbuff为表示采样时间的整数。当获得每个新的压力样本p(t)时,压力信号处理模块15对缓冲样本{p(t),p(t-1),…,p(t-nbuff+1)}计算线性回归。一旦缓冲的压力信号24的样本{p(t),p(t-1),…,p(t-nbuff+1)}的斜率的大小m和方差值var都低于预校准的阈值m稳定和var稳定时,则压力信号处理模块15将状态寄存器的值更新为稳定状态s3,并将缓冲的压力信号24的样本{p(t),p(t-1),…,p(t-nbuff+1)}的平均值设置为偏移修正值pcor,pcor=mean({p(t),p(t-1),…,p(t-nbuff+1)})。

在稳定状态s3期间,可以根据p*(t)=p(t)–pcor来设置经处理信号25的样本p*(t)(步骤s4)。然后可以根据以下步骤(s8)更新输出力信号26的值f(t):

其中,p噪声为噪声阈值。例如,在没有用户交互的校准时段期间,可以将p噪声设置为压力信号24的值p(t)的标准差的倍数。可以将噪声阈值p噪声设置为在校准期间记录的压力信号24的值p(t)的标准差的五倍的倍数。噪声阈值p噪声可以是预定的,或者可以在电容性信息20中未检测到用户交互的静默时段期间时段性地被更新。

无论所施加的力增大还是减小,在稳定状态s3期间都可以捕获用户压力的变化。在图5和图6所示的示例中,检测到与所施加的压力的轻微减小相对应的小峰值p3,并且输出力信号26的值f(t)相应地减小。

在稳定状态s3期间,用于检测被施加到触摸面板1的力的变化的阈值可以被设置为比应用于整个信号的基于常规梯度和基于值的条件积分而可能的值更低。这是因为可以通过使用其他状态寄存器的值s0、s1和s2来滤除诸如静电放电、初始偏移p0、过冲偏移poff和虚假峰值p2的影响。以此方式,本说明书的方法可以在用户的手指或导电手写笔与触摸面板1初次接触期间以及之后立即提高可靠性,并且在用户交互的主要阶段对所施加的力的较小用户调制进行灵敏检测。

实际上,在用户保持恒定压力的同时,所需的偏移修正值pcor可以缓慢地漂移。另外,如果用户实质上增加或减小所施加的压力,则可以改变压电压力信号24的值p(t)衰减到的偏移poff。但是,修正值pcor不能简单地被连续更新,而缓冲器{p(t),p(t-1),…,p(t-nbuff+1)}保持相对平坦(即m<m稳定和var<var稳定)。如果为此种情况,则所施加的压力的任何轻微升高或降低都会从已处理的压力25的样本p*(t)中连续地被去除,因此其均将不会被检测到。

相反,在稳定状态s3期间,压力信号处理模块15可以在每个新采样p(t)之后,对缓冲器{p(t),p(t-1),…,p(t-nbuff+1)}执行线性回归。缓冲器{p(t),p(t-1),…,p(t-nbuff+1)}保持平坦(即m<m稳定和var<var稳定)时,将缓冲样本的平均值与修正值pcor进行比较,如果该差值的大小(即|mean({p(t),p(t-1),…,p(t-nbuff+1)})-pcor|)小于阈值δpcor,则修正值pcor不变。但是,如果该差值(即|mean({p(t),p(t-1),…,p(t-nbuff+1)})-pcor|)超过阈值δpcor,则更新修正值为pcor=mean({p(t),p(t-1),…,p(t-nbuff+1)})。

阈值δpcor的值可以针对每个触摸面板1和系统13而改变。给定的触摸面板1和系统13的合适值可以通过测量与已知校准力分布的选择相对应的数据来获得。在简单的情况下,可以根据在已知的静态施加力的持续时间内所观察到的最大漂移来设置阈值δpcor。可替选地,使用已知的和测量的力的偏差作为成本函数,使用已知校准力分布所获得的测量值可用于生成拟合训练集。

稳定状态s3将在用户交互结束时结束。

在下文中将被进一步描述的一些示例中,区分用户交互可能会很有用,这些交互以压力明显增加到初始负载峰值p1开始(在本文中将其称为“硬”类型的用户交互),以及将压力逐渐地增加到初始负载峰值p1的其他用户交互(在本文中称为“软”类型的用户交互)。在一些“软”类型的用户交互中,当所施加的力逐渐增加时,可能不会观察到定义良好的初始加载峰值p1。在下文中描述了该方法的扩展以包括对“硬”类型和“软”类型的用户交互的区别处理。

实现方法的示例

还可以参照图8,图8示出了用于实现根据本说明书的方法的示例处理链的过程流程图。本说明书的方法不限于图8和示出了特定信号处理步骤的更多细节的后续附图中的步骤。

压力信号处理模块15接收对应于第一感测电极5和第二感测电极6的压力信号18的值p(t)(步骤s10)。可以同时接收每个第一感测电极5和第二感测电极6的压力信号18的值p(t)。可替选地,当根据预定的或动态确定的序列读出每对第一感测电极5和第二感测电极6时,可以顺序地接收与第一感测电极5和第二感测电极6相对应的压力信号18的值p(t)。通常,在每个采样时段期间,对于每个第一测电极5或第二感测电极6获得一个压力信号18的值p(t)。例如,如果有n个如图1和2所示的取向并在第二y方向上于坐标y1,y2,…,yn上间隔开的第一感应电极5,则在采样期间t处对应的压力样本集合可以表示为{p(t,y1),p(t,y2),…,p(t,yn)}。集合{p(t,y1),p(t,y2),…,p(t,yn)}可以由压力信号处理模块15同时地或顺序地接收。类似地,压力信号处理模块15从m个如图1和图2所示的定向并在第一x方向上以坐标x1,x2,…,xm间隔开的第二感应电极6中同时地或顺序地接收压力样本集合{p(t,x1),p(t,x2),…,p(t,xm)}。

当压力样本{p(t,y1),p(t,y2),…,p(t,yn)},{p(t,x1),p(t,x2),…,p(t,xm)}同时被接收,采样时间索引t的含义很清楚,它表示获得相应采样的时间,t-1为前一采样,t+1为后一采样,依此类推。当压力样本{p(t,y1),p(t,y2),…,p(t,yn)},{p(t,x1),p(t,x2),…,p(t,xm)}被依次获得时,索引t为读出的感测电极5和6的一个时段。例如,读出触摸面板1以获得压力样本集合{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,y1),p(t,y2),…,p(t,yn)},{p(t,x1),p(t,x2),…,p(t,xm)},然后当重复扫描时,获得随后的压力样本集合{p(t+1,y1),p(t+1,y2),…,p(t+1,yn)}、{p(t+1,x1),p(t+1,x2),…,p(t+1,xm)},依此类推。

通过从每个压力样本{p(t,y1),p(t,y2),…,p(t,yn)},{p(t,x1),p(t,x2),…,p(t,xm)}中减去第一dc偏移量dc1来执行粗略dc偏移量修正(步骤s11)。通常,每个感测电极5、6可以具有不同的第一偏移值,从而形成集合{dc1(y1),dc1(y2),…,dc1(yn)}和{dc1(x1),dc1(x2),…,dc1(xm)}。当触摸面板1和系统13被上电时,在预热阶段期间确定第一偏移dc1,并且在下文中进一步描述该过程(如图9所示)。

压力样本{p(t,y1),p(t,y2),…,p(t,yn)},{p(t,x1),p(t,x2),…,p(t,xm)}根据信号调节步骤进行处理,该信号调节步骤可以包括诸如滤波、抽取(decimation)等操作的过程(步骤s12)。先前接收到的压力样本{p(t-1,y1),p(t-1,y2),…,p(t-1,yn)}、{p(t-1,x1),p(t-1,x2),…,p(t-1,xm)}的缓冲器可以被保留以用于应用时域滤波器。

如有必要,压力样本{p(t,y1),p(t,y2),…,p(t,yn)},{p(t,x1),p(t,x2),…,p(t,xm)}将被缓冲和被延迟直至与接收到的电容信息20同步(步骤s13)。本说明书的方法使用电容信息20来例如指示一个或多个用户交互27(如图13所示)的数量、开始时间、结束时间和位置。然而,在电容信息20可以从电容信号处理模块16获得之前,通常可能存在传播和处理延迟。可以确定被施加到压力样本{p(t,y1),p(t,y2),…,p(t,yn)},{p(t,x1),p(t,x2),…,p(t,xm)}的延迟,以使得能够与电容信息20重新同步以进行进一步的处理。如果在电容信息20可用之前的传播和处理延迟小于触摸面板1的一个采样时段,则该延迟(步骤s13)可能并非是必需的。

除了接收压力信号18之外,压力信号处理模块16还可以接收从电容信号处理模块16中输出的电容信息20(步骤s14)。电容信息20包括关于电容信号处理模块16是否已经检测到用户交互27(图13)的信息,以及针对每个检测到用户交互的触摸面板上的对应x-y坐标。优选地,压力信号处理模块16同时支持两个或更多个用户交互27(如图13所述)的多点触摸检测。

可选地,如果电容信息20的采样时段和压力样本集合s{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}不相等,则电容信息20的时间基准可以被转换为与压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}相匹配(步骤s15)。

压力信号处理模块15检查在初始地为触摸面板1和系统13上电之后的预热时段是否已经结束(步骤s16)。预热时段的结束不必发生在接通触摸面板1和系统13之后的固定或预定时段。相反,当校准过程(步骤s17)已经确定触摸面板1和系统13已经达到稳定操作时,压力信号处理模块15将预热标志设置为“完成”的值。

压力信号处理模块15执行初始校准程序以确定压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}已达到稳定的dc偏移值(步骤s17)。如果压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}已达到稳定的dc偏移值,则预热标志被设置为“完成”。压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}对应于所有感测电极5、6的状态,应在预热时段被标记为“完成”之前达到稳定的dc偏移值。一旦所有感测电极5、6都满足此条件,就获得相应的第一dc偏移值集合{dc1(y1),dc1(y2),…,dc1(yn)}和{dc1(x1),dc1(x2),…,dc1(xm)}。初始校准程序的一个示例将在下文中进行详细说明(请参见图9)。

如果将预热标志设置为“完成”(步骤s18),则继续处理当前压力样本集合{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}(步骤s19)。否则,压力信号处理模块15获得下一压力样本集合{p(t+1,y1),p(t+1,y2),…,p(t+1,yn)},{p(t+1,x1),p(t+1,x2),…,p(t+1,xm)}(步骤s10)以及获得电容信息(步骤s14)。

可选地,可以对压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}进行进一步的信号调节(步骤s19)。例如,可以应用移动的平均滤波器。先前接收到的压力样本{p(t-1,y1),p(t-1,y2),…,p(t-1,yn)}、{p(t-1,x1),p(t-1,x2),…,p(t-1,xm)}的缓冲器可以被保留以用于施加过滤器。附加地或可替选地,可以在处理过程的不同点(例如,在步骤s20和步骤s21之间)执行进一步的信号调节。

但是,第一dc偏移值dc1在初始校准之后是准确的,但是,如前文所述,压力信号18的dc偏移值可以随时间稍微变化,并且还可以在用户交互27之后或在用户交互27期间发生变化(如图13所示)。在空闲期间,当从电容信息20未检测到用户交互27(如图13所示)时,进行重新校准过程以确定另外的第二dc偏移值或精细的dc偏移值dc2(步骤s20)。从每个压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}中减去第二dc偏移值dc2。通常,每个感测电极5、6可以对应于不同的第二偏移值,从而形成集合{dc2(y1),dc2(y2),…,dc2(yn)}和{dc2(x1),dc2(x2),…,dc2(xm)}。在下文中将进一步描述重新校准过程的示例(如图10所示)。

基于电容信息20,确定有效的用户交互27的数量ntouch(如图13所示)(步骤s21)。同时有效的用户交互27(如图13所示)的最大数量取决于电容性信号处理模块16的功能,并且该最大数量可以例如在一次和十次用户交互27(如图13所示)之间。

当前压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}被缓存,并且对先前接收到的压力样本{p(t-1,y1),p(t-1,y2),…,p(t-1,yn)}、{p(t-1,x1),p(t-1,x2),…,p(t-1,xm)}等进行分析,以确定对应于每个感应电极5、6的状态寄存器的值s0、s1、s2、s3(以及可选的用户交互类型)(步骤s22)。输出已处理的压力样本{p*(t,y1),p*(t,y2),…,p*(t,yn)}、{p*(t,x1),p*(t,x2),…,p*(t,xm)}也最终被确定。该过程在本文中被称为“推式细化(pushelaboration)”,并且在下文中进一步描述示例(如图12所示)。

取决于状态寄存器的值s0、s1、s2、s3,如上文所述,更新测量的输出力26值f(t)(步骤s23)。对于形成了第一集合{f(t,y1),f(t,y2),…,f(t,yn)}的每个第一感测电极5,以及对于形成了第二集合{f(t,x1),f(t,x2),…,f(t,xn)}的每个第二感测电极6,分别测量输出力26。

只要触摸面板1和系统13的力感测能力是有效的(步骤s24),压力信号处理模块15将通过接收下一集合测量的压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}(步骤s10)和相应的电容信息20(步骤s14)。

初始校准

还可以参考图9,图9示出了示例初始校准过程(步骤s17)的过程流程图。

当确定压力信号处理模块15尚未将预热阶段标记为“完成”时(步骤s16),执行初始校准过程(步骤s17)。

检查电容信息20以确定电容信号处理模块16是否已经检测到任何用户交互27(如图13所示)(步骤s25)。如果发生任何用户交互27(如图13所示),则不执行初始校准(步骤s18)。尽管针对每个感测电极5、6分别进行了校准,但是该校准要求在触摸面板1上的任何位置都不会发生用户交互27(如图13所示),因为触摸面板1的板弯曲通常将在整个压电层9上施加应变。这将干扰获得与零信号条件相对应的数据。

假设没有有效的用户交互27(如图13所示)(步骤s25),则压力信号处理模块15针对每个感测电极5、6计算被存储于校准缓冲器中的最新压力样本的数量nbuf2的平均值(步骤s26)。例如,对于n个第一感测电极5中的第n个(nth)第一感测电极,压力信号处理模块15计算对应的偏移值off(t,yn),off(t,yn)=mean({p(t,yn),p(t-1,yn),…,p(t-nbuf2+1,yn)})。以此方式,获得与每个第一感测电极5相对应的偏移值集合{off(t,y1),off(t,y2),…,off(t,yn)},并且获得与每个第二感测电极6相对应的偏移值集合{off(t,x1),off(t,x2),…,off(t,xm)}。

偏移值{off(t,y1),off(t,y2),…,off(t,yn)}、{off(t,x1),off(t,x2),…,off(t,xm)}被添加到偏移缓冲器中,该缓冲器保存了数量为nbuf3的最新获得的偏移值(步骤s27)。

对于每个感测电极5、6,确定被存储在偏移缓冲器中的对应的偏移值的变程(步骤s28)。例如,对于n个第一感测电极5中的第n个第一感测电极,压力信号处理模块15将相应的偏移值的集合的变程(range)计算为range({off(t,yn),off(t-1,yn),…,off(t-nbuf3+1,yn)})。

对于每个感测电极5、6,相对于预定的变程阈值p变程检查偏移缓冲器的相应变程(步骤s29)。如果任何确定的变程大于或等于预定的变程阈值p变程,则预热阶段尚未完成,并且将预热标志设置为“未完成”。该变程阈值p变程可以从校准实验中确定,在校准实验中,系统13被上电并且数据被记录直到达到稳定状态。在没有用户交互27(如图13所示)的情况下,压力信号18的统计可以用于确定变程阈值p变程。可以针对每个感测电极5、6分别设置变程阈值p变程。

然而,如果所有确定的变程均小于预定变程阈值p变程,则将预热标志设置为“完成”的值(步骤s30)。

基于各个偏移缓冲器的中点来设置与每个感测电极5、6相对应的dc1偏移值(步骤s31)。例如,对应于n个第一感测电极5的第n个第一感测电极的dc1偏移值被计算为dc1(yn)=0.5*(max({off(t,yn),off(t-1,yn),…,off(t-nbuf3+1,yn)})+min({off(t,yn),off(t-1,yn),…,off(t-nbuf3+1,yn)}),并且依此类推至感应电极5、6中的其他感应电极。

通过减去相应的dc1偏移值{dc1(y1),dc1(y2),…,dc1(yn)}、{dc1(x1),dc1(x2),…,dc1(xm)}来针对dc偏移分别调整压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}(步骤s32)。例如p(t,yn)的术语还用于指代针对dc1偏移进行调整后的压力样本。

第一校准过程

还可以参照图10,图10示出了第一示例性重新校准过程(步骤s20)的过程流程图。

检查电容信息20以确定电容信号处理模块16是否已经检测到任何用户交互27(如图13所示)(步骤s33)。尽管针对每个感测电极5、6分别进行了重新校准,但是该重新校准要求在触摸面板1上的任何位置都不会发生用户交互27(如图13所示),因为触摸面板的板弯曲通常将在压电层9上施加应变。这将干扰获得与零信号条件相对应的数据。

假设没有有效的用户交互27(如图13所示)(步骤s33),则压力信号处理模块15将触摸标记设置为值“真”(步骤s34),并添加压力样本集合{p(t,y1),p(t,y2),…,p(t,yn)},{p(t,x1),p(t,x2),…,p(t,xm)}到回归缓冲器,该缓冲器存储有数量为nbuf4的最新获得的压力样本(步骤s35)。

对于每个感测电极5、6,针对被存储在回归缓冲器中的相应压力样本计算线性回归线(步骤s36)。回归线为在回归缓冲器已被填充时有条件地计算出的。例如,对于n个第一感测电极5中的第n个第一感测电极,一旦回归缓冲器中存储有数量为nbuf4的先前样本,压力信号处理模块15就使用压力样本集合{p(t,yn),p(t-1,yn),…,p(t-nbuf4+1,yn)}来计算用于n个第一感测电极5中的第n个第一感测电极的回归线。

可以通过多种方式强制执行填充回归缓冲器的条件。例如,可以使用从电容信息20中检测到最后一次用户交互27(如图13所示)以来的样本数量的计数器。可替选地,例如回归缓冲器最初可以使用未定义的填充。“inf”或“nan”(非数字的)值,以使得在所有初始值均被实际数据覆盖之前,回归分析将不会返回数值,从而使得能够简单地检测出何时回归缓冲器已被填充。在这种情况下,当发生用户交互27(如图13所示)时,回归缓冲器可以被重置为该初始状态(步骤s41)。

对于每个感测电极5、6,将从对应压力样本的回归线分析获得的梯度m和方差var与预定梯度阈值mrecal和预定方差阈值varrecal进行比较,以进行重新校准(步骤s37)。

如果对应于特定感测电极5、6的梯度m和方差var均小于各自的梯度阈值mrecal和方差阈值varrecal(步骤s37),则更新对应的dc2偏移值(步骤s38)。例如,如果对于第n个第一感测电极5中的第n个第一感测电极,满足条件m<mrecal并且var<varrecal时,则将对应的dc2偏移值dc2(yn)更新为例如p(t,yn)或mean({p(t,yn),p(t-1,yn),…,p(t-nbuf4+1,yn)}),并且依此类推至感应电极5、6中的其他感应电极。

与初始校准不同(步骤s17),dc2偏移值不需要全部被同时更新。例如,如果对应于一些感测电极5、6的回归线满足梯度阈值和方差阈值,则对应的dc2偏移值将被更新,而其余的dc2偏移值将不被更新。

压力样本{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}分别通过减去相应的dc2偏移值{dc2(y1),dc2(y2),…,dc2(yn)},{dc2(x1),dc2(x2),…,dc2(xm)}(步骤s39)。如果没有更新任何dc2偏移值(步骤s38),则使用先前的dc2偏移值。当触摸面板1和系统13上电时,所有dc2偏移值都被初始化为零。

例如,术语p(t,yn)还用于指代针对dc2偏移值进行调整后的压力样本。

如果从电容信息20确定了有效的用户交互27(如图13所示)(步骤s33),则检查触摸标记是否具有值“真”(步骤s40)。

如果触摸标记的值为“真”(步骤s40),则清除回归缓冲器(步骤s41)。例如,当使用计数器确定回归缓冲器何时已满时,可以将回归缓冲器重置为全零。可替选地,如上文所述,可以通过将所有存储的值重置为“inf”或“nan”未定义的值来清理回归缓冲器。大多数计算机编程或脚本语言都包含对未定义值的支持,以使得能够对零除错误等的支持。

触摸标记被设置为“假”的值(步骤s42),并且压力样本{p(t,y1),p(t,y2),…,p(t,yn)},{p(t,x1),p(t,x2),…,p(t,xm)}分别通过减去相应的dc2偏移值{dc2(y1),dc2(y2),…,dc2(yn)}、{dc2(x1),dc2(x2),…,dc2(xm)}(步骤s39)。

步骤s33、s34、s40和s42的总体效果为:当没有用户交互时,触摸标志将取值为“真”,并且一旦接收到新的用户交互的第一个样本,则触摸标志被重置为“假”值,并清除回归缓冲器。

当没有用户交互27(如图13所示)时,在触摸面板1的静默时段期间dc2偏移值的连续重新校准保持了该方法可以抵抗dc偏移值随时间的漂移的准确性。

第二重新校准过程

还可以参考图11,图11示出了第二示例性重新校准过程(步骤s20)的过程流程图。

第二示例性重新校准过程(步骤s20)包括第一示例性重新校准过程(步骤s20)的所有步骤,以及旨在跟踪与每个感测电极5、6相对应的信号的方差的附加步骤。该信息对于估计与每个感测电极5、6相对应的测量质量可能是有用的,在该方法的一些示例中使用该信息来辅助分配决策通道。与第一重新校准方法相同的第二重新校准方法的各步骤均具有相同的编号。

使用电容信息确定是否存在任何有效的用户交互27(如图13所示)(步骤s33),如果没有用户交互27(如图13所示),如上文所述,触摸标志被设置为“真”的值(步骤s34)。

计数器cvar增加了1(步骤s43)。每当首先检测到用户交互27(如图13所示)时,计数器cvar就被重置为零(步骤s47)。

压力信号处理模块15将压力样本集{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}被相加到方差缓冲器,该缓冲器最多可以存储nbuf5个最新获得的压力样本(步骤s44)。

压力信号处理模块15检查计数器cvar是否等于方差缓冲器长度nbuf5(步骤s45)。如果是,则基于所填充的方差缓冲器来计算临时信道方差vartemp(步骤s46)。例如,对于n个第一感应电极中的第n个第一感测电极,压力信号处理模块15测量压力样本集合{p(t,yn),p(t-1,yn),…,p(t-nbuf5+1,yn)}的方差。通常,分别跟踪与每个感测电极5、6对应的通道方差,以使得测量的方差形成了集合{vartemp(y1),vartemp(y2),…,vartemp(yn)}、{vartemp(x1),vartemp(x2),…,vartemp(xm)}。

然后将计数器cvar重置为零(步骤s47)。以此方式,每nbuf5个样本更新临时信道变化vartemp以跟踪与每个感测电极5、6相对应的变化。

dc2偏移值检查和更新过程如上文所述的方式进行(步骤s35、s36、s37和s38)。

如果在电容信息20中检测到用户交互27(如图13所示)(步骤s33),则压力信号处理模块15如上文所述地检查触摸标志是否被设置为“真”值(步骤s40)。

如果触摸标志等于“真”(步骤s40)(即如果这是与新的用户交互27相对应的第一样本(如图13所示)),则压力信号处理模块15确定计数器cvar是否等于或超过最小值cmin(步骤s48)。如果计数器满足cvar<cmin,则最新获得的通道方差集{vartemp(y1),vartemp(y2),…,vartemp(yn)}、{vartemp(x1),vartemp(x2),…,vartemp(xm)}被设置为输出方差{var输出(y1),var输出(y2),…,var输出(yn)}、{var输出(x1),var输出(x2),…,var输出(xm)}对应于新开始的用户交互27(如图13所示)(步骤s50)。以此方式,如果第一用户交互和第二用户交互27(如图13所示)之间的间隙小于cmin,则在第一用户交互27(如图13所示)之前,最新获得的信道方差也被分配至第二用户交互27(如图13所示)。

但是,如果计数器cvar≥cmin(步骤s48),则将与每个感测电极5、6相对应的输出方差{var输出(y1),var输出(y2),…,var输出(yn)}、{var输出(x1),var输出(x2),…,var输出(xm)}确定为最新获得的信道方差{vartemp(y1),vartemp(y2),…,vartemp(yn)}、{vartemp(x1),vartemp(x2),…,vartemp(xm)}和方差缓冲器的当前填充部分的方差(步骤s49)。例如,对于n个第一感测电极5中的第n个第一感测电极,压力信号处理模块15获得对应的输出方差var输出(yn)作为vartemp(yn)与压力样本集合{p(t,yn),p(t-1,yn),…,p(t-cvar+1,yn)}等,并且依此类推至感应电极5、6中的其他感应电极。根据用于获得方差值的样本数量(即nbuf5和cvar)对总和加权。以此方式,可以获得导致新的用户交互27(如图13所示)的方差的最准确和时间上的测量。

在一些示例中,与每个感测电极5、6相对应的输出方差值{var输出(y1),var输出(y2),…,var输出(yn)}、{var输出(x1),var输出(x2),…,var输出(xm)}可以有助于各个感测电极5、6的质量度量。这样的质量度量可用于帮助确定用于测量输出力组{f(t,y1),f(t,y2),…,f(t,yn)}、{f(t,x1),f(t,x2),…,f(t,xn)}的关键或决策感测电极5、6。在下文中将描述分配和使用关键或决策感测电极5、6的功能。

对于新的用户交互27的第一样本(如图13所示),通过将所有的值重新初始化为零来清理方差缓冲器(步骤s51),如前文所述地清理回归缓冲器(步骤s41),计数器cvar被重置为零(步骤s47),并且如上所述将触摸标志设置为“假”值(步骤s42)

当从电容信息20中检测到用户交互27(如图13所示)时(步骤s33),并且触摸标志的值为“假”(步骤s40),即针对用户交互的第二次采样和后续的采样,重新使用输出方差{var输出(y1),var输出(y2),…,var输出(yn)}、{var输出(x1),var输出(x2),…,var输出(xm)}的最新值(步骤s52)。换而言之,在整个用户交互27中都使用了确定何时开始用户交互的输出方差var输出(如图13所示)。这是因为由于压力信号和/或与用户交互27(如图13所示)相关联的附加噪声源,在用户交互27(如图13所示)期间可能难以确定与每个感测电极5、6相对应的基本方差。

推式细化过程

还可以参照图12,该过程流程图确定了状态寄存器的值s0、s1、s2、s3和已处理的压力值{p*(t,y1),p*(t,y2),…,p*(t,yn)},{p*(t,x1),p*(t,x2),…,p*(t,xm)},并且可选地,示出了正在进行的用户交互27的类型(硬或软)(如图13所示)。为了简洁起见,此过程称为“推式细化”过程。

在确定有效的用户交互的数量之后(步骤s21),开始推式细化处理(步骤s22)。

有效传感器集合被分配给第一传感器集合(步骤s53)。通常,触摸面板1可以包括一组、两组或更多组不同的感测电极5、6的集合。例如,在图1和图2所示的触摸面板1中,第一感测电极5形成了用于测量在y方向上的力的y-集合,第二感测电极6形成了用于测量在x方向上的力的x-集合。

检索有效传感器组的物理参数(步骤s54)。例如,在图1和图2所示的触摸面板1中,具有第一y-集合电极5和第二x-集合电极6,第一电极5在y-方向上的间隔不必等于第二电极6在x-方向上的间隔。感测电极5、6的物理位置和间隔用于确定关键或决策电极5、6(步骤s58)。

当前的压力样本集合{p(t,y1),p(t,y2),…,p(t,yn)}、{p(t,x1),p(t,x2),…,p(t,xm)}被添加到推式细化的压力缓冲器中,该推式细化的压力缓冲器保持有最新接收的压力样本数量为nbuf6(步骤s55)。例如,对于n个第一感应电极5中的第n个第一感测电极,推式细化缓冲器保存压力样本集合{p(t,yn),p(t-1,yn),…,p(t-nbuf6+1,yn)},并且依此类推至感应电极5、6中的其他感应电极。

压力信号处理模块15基于电容信息20确定是否发生任何用户交互27(如图13所示)(步骤s56)。假设发生至少一个用户交互27(如图13所示),则增加用户交互持续时间的计数器cint(步骤s57)。计数器cint递增1。

基于电容信息20进行按g关键或决策感应电极5'、6'的初始分配(步骤s58)。通常,对于每组感测电极5、6,决策感应电极5'、6'的初始分配包括将一个或多个用户交互27(如图13所示)的2-d多点触摸数据,从电容信息20投射到相应电极集合的物理位置上,以确定与每个有效的用户交互27(如图13所示)最接近的感应电极5、6。最接近的感测电极5、6更可能具有最强的压力信号,因此,其最初被选择为决策感测电极5'、6'。但是,例如,如果确定相邻信道具有较高的质量,则可以随后改变初始分配。例如,最接近用户交互27(如图13所示)的感测电极5、6可能具有最强的压力信号,并且还受到用户手指的静电放电的影响最大,因此,相邻的感测电极5、6实际上可以提供更好的信号质量。如图1和图2所示,当将感应电极5、6布置为x和y电极时,用户交互的2-d位置在x-集合或y-集合上的投影可能会导致许多决策电极5'、6'小于有效的用户交互27的数量(如图13所示)。

还可以参照图13和图14,图13和图14示出了对于四个并发的用户交互27a、27b、27c、27d的示例进行决策感测电极5'、6'的初始分配的过程。

在图13和图14所示的示例中,存在n=8个第一感测电极51、52…,58,其被间隔开以使得最接近第n个第一感测电极5n的点的轨迹可以表示为yn-1≤y<yn,并且对应于压力样本p(t,yn)。类似地,存在m=15个第二感测电极61、62、…、615,其被间隔开以使得最接近第m个(mth)第二感测电极6m的点的轨迹可以表示为xm-1≤x<xm,并且对应于压力样本p(t,xm)。

尤其参照图13,第一用户交互27a具有质心坐标x=xa、y=ya,其由电容信号处理模块16确定并且被包括在电容信息20中。质心坐标xa、ya为使得x1≤xa<x2和y2≤ya<y3,即第一用户交互27a最靠近第三y电极53第二x电极62。类似地,第二用户交互27b具有的质心坐标为x5≤xb<x6并且y5≤yb<y6,第三用户交互27c具有的质心坐标为x5≤xc<x6并且y2≤yc<y3,第四用户交互27c具有的质心坐标为x11≤xd<x12并且y3≤yd<y4。

尤其参照图14,当四个用户交互27a、27b、27c、27d的质心坐标被投射到x轴上时,第二用户交互27b和第三用户交互27c均为不唯一的。第二用户交互27b和第三用户交互27c均对应于第六或x电极66。因此,由于决策感测电极5'、6'应该是唯一的,所以选择x电极66中的三个电极作为决策电极6',即对应于第一用户交互27a的第二个(2nd)x电极62、对应于第二户交互27b和第三用户交互27c的第六x电极66和对应于第四用户交互27d的第十二个(12th)x电极612。

类似地,当处理第一或y感测电极集合51、51、…、58时,选择三个决策y电极5',即,对应于第一用户交互27a和第三用户交互27c的第三个(3rd)y电极53、对应于第四个(4th)用户交互27d的第四个y电极54和与对应于第二用户交互27b的第六个(6th)y电极56。

压力信号处理模块15基于电容信息20确定从上一次采样以来一个或多个用户交互27的状态或模式是否已改变(步骤s59)。本说明书的方法首先处理与决策电极5'、6'相对应的样本,其余的非决策电极5、6被分配为取决于一个决策电极5'、6'。当决策电极5'、6'的数量或身份改变时,确定一个或多个用户交互27的状态已经改变,例如,当新的用户交互27在用户将附加数字触摸到触摸面板1时开始。可替选地,当用户从触摸面板1移除手指用户交互的数量减少时,一个或多个用户交互27的状态将被改变。可替选地,当一个或多个用户交互27已经移动足够远以使得相应的质心对应于不同的感测电极5、6等时,一个或多个用户交互27的状态将被改变。

当确定一个或多个用户交互27的状态已经改变时(步骤s59),感测电极5、6依赖性被分配或重新分配(取决于先前样本是否正在进行任何用户交互27)(步骤s60)。非决策电极5、6分别基于接近度而被分配给决策电极5'、6'。

还可以参照图15,图15示出了分配电极5、6依赖性的一个示例。

图15中所示的示例对应于图13和图14中所示的四个用户交互27a、27b、27c、27d。在第一迭代it1中,将决策电极6′分配为对应于x1≤x<x2的62、对应于x5≤x<x6的66和对应于x11≤x<x12的612。

在第二次迭代it2中,与决策电极62、66、612相邻的电极61、63、65、67、611、613被分配为依赖于相邻的决策电极62、66、612。例如,对应于x4≤x<x5的电极65和对应于x6≤x<x7的电极67都被分配为依赖于对应于x5≤x<x6的决策电极66。

执行进一步的迭代it3和it4,并且在每个迭代过程中,未分配的电极6被分配为依赖于与其近邻相同的决策通道6’,直到所有电极6都被分配到为止。可以使用任何适当的规则来解决冲突,例如,分配给编号较低的决策电极6'(如图15所示)、或者编号较高的决策电极6'、或者在发生冲突时始终将决策电极6'分配在左侧或右侧。以相同的方式分配非决策第一电极5的依赖性。

可替选地,不需要使用迭代过程。相反,所有非决策电极5、6可以被分配为在一个步骤中最接近的决策电极5'、6'的依赖性,并且如上文所述地解决了冲突。

然而,确定了电极的依赖性,解决冲突的替代方案是使用电容信息20中的精确质心坐标来确定哪个用户交互27最靠近电极5、6,然后分配该电极5、6使其依赖于相应的决策电极5'、6'。由于在传统的投射电容触摸感测期间应用了标准位置插值功能,因此,质心坐标可能比电极5、6的间隔更精确。

电极处理顺序将被分配或重新分配(步骤s61)。首先处理决策电极5'、6',随后非决策电极5、6根据它们所依赖的/与之相关的决策电极5'、6'进行分组。

例如,对于图13至15所示的用户交互集合27a、27b、27c、27d,将以对应于决策电极6'的顺序62、66、612对第二电极6进行处理,接着是以对应于第一决策电极62的顺序61、63、64对第二电极6进行处理,然后是以对应于第二决策电极66的65、67、68、69对第二电极6进行处理,随后是对应于第三决策电极612的顺序610、611、613、614、615对第二电极6进行处理。

如果一个或多个用户交互的状态不变(步骤s59),或者电极处理顺序的后续(重新)排序(步骤s61),则选择先前或新的顺序中的第一电极5、6(步骤s62),然后处理各个压力样本p(t)以确定相应的状态寄存器的值s0、s1、s2、s3以及已处理的压力样本p*(t)(步骤s63)。例如,当处理第n个第一感测电极中的第n个第一感测电极时,处理对应的压力样本p(t,yn)以确定对应的状态寄存器的值s0、s1、s2、s3和对应的已处理的压力样本p*(t,yn)。

对电极的处理(步骤s63)不仅限于确定状态寄存器的值s0、s1、s2、s3,并且还可以在该步骤期间实现许多优化,包括例如分配触摸类型(诸如“硬”类型或“软”类型)。参照图16至图23将更详细地描述了这些可选过程。但是,对于本说明书的方法而言,只有确定的状态s0、s1、s2、s3和已处理的压力样本{{p*(t,y1),p*(t,y2),…,p*(t,yn)}、{p*(t,x1),p*(t,x2),…,p*(t,xm)}是必不可少的。

如果在当前已处理的电极集合内还有其他电极5、6(步骤s64),则选择当前排序中的下一个电极(步骤s65)并对其进行处理(步骤s63)。

如果在当前已处理的电极集合内没有其他电极5、6(步骤s64),则检查是否还有其他传感器集合需要处理(步骤s66),如果没有,则该方法将继续更新输出力的值的集合{f(t,y1),f(t,y2),…,f(t,yn)}、{f(t,x1),f(t,x2),…,f(t,xm)}(步骤s23)。

如果还有其他传感器集合需要处理(步骤s66),则选择下一个传感器集合(步骤s67),检索下一个传感器集合的参数(步骤s54)并且对于新的传感器集合重复进行推式细化处理(步骤s22)。

当没有根据电容信息20所确定的用户交互27时(步骤s56),所有缓冲器和输出力的值{f(t,y1),f(t,y2),…,f(t,yn)}、{f(t,x1),f(t,x2),…,f(t,xm)}均被重置为例如零(步骤s68),并且计数器cint也被重置为零(步骤s69)。

电极处理

还可以参照图16,图16示出了电极处理(步骤s63)的示例的处理流程图。为了实现清楚说明这一目的,涉及了处理n个第一感测电极5中的第n个第一感测电极来描述该处理过程,但是该处理过程也同样适用于任何感测电极5、6。

对被存储在推式细化的压力缓冲器中的当前已处理的电极5、6的数据进行线性回归分析(步骤s70)。测量斜率m、方差var、以及对应的压力样本集合{p(t,yn),p(t-1,yn),…,p(t-nbuf6+1,yn)}的平均值。

可以执行可选的数据截取处理(步骤s71、s72)。当触摸面板1和系统13受到用户手指的静电放电时,数据截取过程可能会有用,而这可能会导致压力样本p(t,yn)的正值或负值过大。对照截取阈值p截取检查压力样本p(t,yn)(步骤s71),如果压力样本的大小|p(t,yn)|超过截取阈值p截取,根据以下条件将压力样本p(t,yn)设置为等于截取阈值(步骤s72):

另外,对于正在处理的电极,将数据截取标记设置为“截取”的值(步骤s72)。如果数据的截取标记等于值“截取”,则省略更新对应于电极的残余偏移的处理(步骤s80),以避免如果截取电极数据而错误检测平坦区域。数据截取标记还可以用于指示与已处理的电极相对应的输出力的值f(t,yn)可能具有较低的可靠性。例如,可以通过向触摸面板1施加已知的上限校准力来预先确定截取阈值p截取,以确定最大可能压力样本值p(t,yn)。通常,由于触摸面板1的板弯曲与触摸面板1边界处的机械边界条件相结合,来自触摸面板1两端的压力信号18可以根据位置而变化。因此,截取阈值p截取可以针对每个感测电极5、6单独地进行预先校准,以获得截取阈值的集合{p截取(y1),p截取(y2),…,p截取(yn)},{p截取(x1),p截取(x2),…,p截取(xm)}。

检查当前压力样本p(t,yn)以考虑是否可以分配初始加载峰值p1(步骤s73)。当新的用户交互27开始时,临时峰值ptemp1被设置为零。将每个随后接收到的压力样本p(t,yn)与临时峰值ptemp1进行比较。如果当前样本p(t,yn)超过临时峰值ptemp1,则将临时峰值更新为ptemp1=p(t,yn)。例如,如果增加的所施加的力对应于负值,则根据以下条件更新临时峰值ptemp1:

每当更新临时峰值ptemp1时,根据电容信息20所确定的,将峰值计数器c峰值设置为正整数值n检测,并且将峰值时间t峰值设置为自用户交互27开始起经过的时间。对于由电容信号处理模块16检测到并包括在电容信息20中的每个单独的用户交互27,以及可选地对于每个感测电极5、6,存储并跟踪单独的临时峰值ptemp1、峰值计数器c峰值和峰值时间t峰值。

当新的用户交互27开始时,峰值计数器c峰值被初始化为值负一,并且每当接收到新的压力样本p(t,yn)时,峰值计数器c峰值就被减一。因此,在更新临时峰值ptemp1之后,峰值计数器c峰值仅在n检测个采样时段内为正。当峰值计数器c峰值向下计数并等于c峰值=0之后,通过将临时峰值ptemp1和相应的峰值时间t峰值设置为分别对应于初始加载峰值p1的振幅和时间来确认初始峰值p1(步骤s74)。

为了避免在压力相对缓慢增加时无法确定初始加载峰值p1,如果在峰值计数器c峰值满足条件0<c峰值≤n检测/2时更新临时峰值ptemp1,则将峰值计数器设置为c峰值=1,因此,当c峰值减为零时,下一个样本将强制决定初始峰p1的位置。此条件对应于在第一个峰之后不久(但不立即)就检测到另一个峰。因此,应将值n检测设置为使得倒计时时段的一半长于潜在噪声的典型波动时段(最好长于几个时段),因此,除了压力信号24的波动之外,不会触发强制确定初始峰值p1位置的其他条件。例如,可以通过在没有任何用户交互的情况下获得压力信号24的频谱来确定基础噪声的波动时段。

优选地,因为首先处理决策电极5'、6',所以当处理非决策电极5、6时,确定是否发现峰值的步骤(步骤s73)可以包括检查决策电极5'、6'已经找到了初始加载峰值p1,即,如果决策电极5、6的峰值发现标记具有值“真”,则设置对应地处理的非决策电极的时间和振幅(步骤s74)。例如,对于图13至图15所示的示例性用户交互27,一旦为决策电极62找到峰值p1,则设置时间索引t峰值,并且振幅为p(t峰值,y2)。然后,对于非决策电极61、63、64,可以基于在峰值时间t峰值的各个压力样本简单地分配峰值振幅,即,可以将各个振幅设置为p(t峰值,y1)、p(t峰值,y3)、p(t峰值,y4)。以此方式,可以跳过对非决策形成电极5、6的实质性处理,从而提高了推式细化处理的速度(步骤s22),从而减少了更新测量的输出力的值f(t)的延迟。因为一个或多个决策电极5'、6'对于相应的一个或多个用户交互27可能具有相对最强的信号,所以可以保留准确性。

在该方法的可选扩展中,基于例如在对应的用户交互作用27(参见图11所示)之前对应于感测电极5、6的方差和/或当前压力样本p(t,yn)与相应的决策电极5'的比率,为每个感测电极5、6分配质量度量。例如,如果正在处理n个第一感应电极5中的第n个第一感测电极,并且相应的决策电极5'是n个第一感应电极5中的第p个(pth),那么比率p(t,yn)/p(t,yp)可以用作质量指标。当然,质量度量不限于这些示例,并且可以使用感测电极5、6信号质量的其他统计测量。如果非决策电极5、6的质量度量小于预先校准的阈值,然后,非决策电极5、6可以从相应的决策电极5',6'中获取初始加载峰值p1的检测。然而,如果非决策电极5、6的质量度量超过预先校准的阈值,则非决策电极5、6可以独立地检测初始加载峰值p1。当非决策电极5、6在决策电极5'、6'之前检测到峰值p1时,这可能是有利的,因为这可能表明决策电极5'、6'实际上没有最佳信号,并且检测到峰值p1的非决策电极5、6可以被更新为用于相应的用户交互27的决策电极5'、6'。

基于电容信息20,将与正在处理的感测电极5、6相对应的用户交互27的质心坐标与先验值进行对照,以确定差δx、δy,并且如果差值满足以下条件,则确定用户交互正在移动(步骤s75):

其中,δ移动是预先校准的移动阈值。移动阈值δ移动可以通过例如实验来确定,在该实验中,用户手指的质心坐标被保持在同一位置,从而可以量化质心坐标中的噪声。然后,在整个校准实验中,可以将运动阈值δ移动设置为相对于平均质心坐标的所测量的质心坐标的标准误差的五倍。优选地,移动阈值δ移动还可以考虑随着施加的压力的增大或减小,用户手指接触面积的变化,这可能导致质心坐标发生偏移。同样,可以通过进行适当的校准实验来解释这种影响。

如果确定与正在处理的电极相对应的用户交互27正在移动(步骤s75),则将移动标志设置为值“真”(步骤s76)。

优选地,因为首先处理决策电极5'、6',所以可以通过根据相应的决策电极5'、6'的值,分配每个非决策电极5、6的移动标志状态,从而可以简化针对非决策电极5、6的移动标志的分配(步骤s75、s76)。

可选地,可以将类型分配给与正在处理的感测电极5、6相对应的用户交互27(步骤s77、s78)。图5和图6中所示的测量压力信号24是第一类型或“硬”类型,并且对应于用户相对快速地放置数字或导电手写笔的用户,从而产生初始冲击。然而,当用户在缓慢增加所施加的力之前,将手指或导电手写笔轻轻地放在触摸面板1上时,通过状态寄存器的值s0、s1、s2、s3来修改级数可能是有利的。而用户交互的这种第二类型在本文中被称为第二类型或“软”类型。

还可以参照图17,图17示出了与状态寄存器的值s0、s1、s2、s3之间的转换一同显示了所测量的压力信号24的值p(t)和对应于“软”类型的用户交互的相应的经处理压力信号25的值p*(t)。如下文所讨论的,当处理“软”类型的用户交互27时,可以省略第三状态或稳定状态s2。

还可以参照图18,图18示出了对应于图17的软类型触摸的输出力26的值f(t)。

可以观察到,在用户互动27开始后,使用电容信息20确定的初始偏移量p0,压力信号24的值p(t)增加到零以上到假峰值p5(据认为这可能是由于用户手指的静电放电所引起的)。在虚假峰值p5期间,由于状态寄存器的值被设置为初始状态s0,因此在错误峰值p5期间,处理后的压力信号p*(t)不会增加到零以上。

但是,对于“软”类型的用户交互,初始加载峰值p1可能会比“硬”类型的用户交互发生得相对较晚。此外,压力信号24的值p(t)可能不会立即衰减到主要的dc偏移poff。相反,由压电材料层9的增加的应变所产生的电荷可以与压力信号24的值p(t)的衰减大致平衡,而不会达到或越过零。例如,如图17所示,在测量的压力信号24中可能没有明确定义的初始加载峰值p1。

当实施“硬”类型和“软”类型的用户互动时,压力信号处理模块15检查是否已经将类型分配给与正在处理的电极5、6相对应的用户交互(步骤s77),如果尚未分配类型,则执行类型分配处理(步骤s78)。类型分配过程可能有三个可能的结果,即“硬”、“软”或“未定义”,当尚未满足分配给“硬”或“软”的条件时,将应用后者“未定义”。直到峰值计数器c峰值等于零时,才分配初始峰值p1才进行类型分配。在这一点上,如果从用户交互的开始以来的峰值时间t峰值(由电容信息20确定)超过最大延迟δtmax,从而t峰值>δtmax,并且将用户交互设置为“软”类型。否则,将用户交互设置为“硬”类型。当用户交互被设置为“软”类型的用户交互时,第三状态s2可以如下文所述地被跳过。

最大延迟δtmax可以根据特定的触摸面板1和系统13而变化,并且可以通过使用具有受控的和已知的倾斜速率的施加的力分布图,来进行适当的实验来预先校准。可以分别将校准数据处理为“硬”类型和“软”类型的用户交互,并且在临界斜率以下时,“软”类型处理可以提供所施加的校准力分布的更紧密的重构。然后可以调节最大延迟δtmax,直到类型分配过程(步骤s78)处于或低于临界斜率的校准力分布分配为“软”类型。设置了合适的最大延迟δtmax的其他方法也可以被技术人员使用。

在以下两种广泛的情况下,可能会检测到“软”类型的用户交互。第一种情况是在最大延迟δtmax之后出现的初始加载峰值p1的清除检测。第二种情况如图17和图18所示,当逐渐增大的所施加的力导致所测量的压力信号24出现波动时,其会导致当峰值计数器c峰值满足条件0<c峰值≤n检测/2时临时峰值ptemp1被更新,因此,将峰值计数器设置为c峰值=1,并在下一个样本上强制决定初始峰值p1位置和用户交互类型。

为正在处理的电极设置斜率阈值m平坦和方差阈值var平坦(步骤s79)。斜率阈值m平坦和方差阈值var平坦取决于相应的用户交互27是否正在移动。当使用用户互动类型为“硬”和“软”时,可以根据用户交互27是“硬”类型还是“软”类型来设置用于不移动的用户交互27的斜率阈值m平坦和方差阈值var平坦。采用已知的施加的力的分布,通过校准实验确定特定的阈值,并且特定的阈值应被选择以使得电极通道更新步骤(步骤s80)不检测平坦区域并不更新残余偏移量pcor,除非在已知的所施加的力的分布不增加或减少的时候。通常,用于移动用户交互27的斜率阈值m平坦和方差阈值var平坦小于用于“软”类型用户交互27的斜率阈值m平坦和方差阈值var平坦,而这些值依次小于“硬”类型用户交互27的斜率阈值m平坦和方差阈值var平坦。

执行电极通道更新处理,并且在此期间,确定正在处理的电极5、6的压力信号18是平坦的还是至少缓慢地变化的,以更新残余偏移修正值pcor(步骤s80)。通过将推算缓冲器中的压力样本{p(t,yn),p(t-1,yn),…,p(t-nbuf6+1,yn)}的斜率m和方差var与先前确定的率阈值m平坦和方差阈值var平坦进行比较来进行确定(步骤s79)。可选地,还可以确定“硬”类型的用户交互是否应该过渡到“软”类型的用户交互,反之亦然。

通过根据p*(t,yn)=p(t,yn)–pcor(yn),从压力样本p(t,yn)中减去残余偏移pcor(yn)的当前值,以获得已处理的压力样本p*(t,yn)(步骤s81)。

然后,通过状态机处理来更新正在处理的感测电极5、6的状态寄存器的值s0、s1、s2、s3(步骤s82),其细节将在下文中进行讨论(图24)。

电极通道更新步骤

还可以参考照19,图19示出了电极通道更新过程(步骤s80)的示例的过程流程图。

当状态寄存器的值对应于第一状态s0或第二状态s1时(步骤s83),或者尚未分配初始峰值p1时(步骤s84),不进行信道更新处理。

如果正在处理的感测电极具有与第三状态s2或第四状态s3相对应的状态寄存器的值(步骤s83)并且已经分配了初始峰值p1(步骤s84),则继续电极通道更新处理。注意,如果采用“硬”类型和“软”类型的用户交互的可选分配,则在已分配初始峰值p1的情况下进行分配。

如果根据线性回归所确定的斜率m(步骤s70)小于斜率阈值m平坦(步骤s85),并且来自线性回归的方差var(步骤s70)小于方差阈值var平坦(步骤s86),然后将正在处理的感测电极5、6的平坦区域标志设置为值“真”(步骤s87)。通常,用于移动的用户交互的斜率阈值m平坦和方差阈值var平坦小于用于“软”类型的用户交互的斜率阈值m平坦和方差阈值var平坦,而这些值依次小于“硬”类型的用户交互的斜率阈值m平坦和方差阈值var平坦。以此方式,用于移动的或“软”类型的用户交互27的更新残余偏移修正值pcor的条件可能比用于“硬”类型的用户交互27的条件相对更严格。这可以避免对残余偏移修正值pcor的连续更新,从而在移动的或“软”类型的用户交互过程中错误地折减逐渐增大或减小的所施加的力。

如果使用了可选的“软”类型和“硬”类型分配,然后,响应于确定平坦区域,将“软”类型的用户交互27重新分配为“硬”类型的用户交互(步骤s88)。

在用于处理的感测电极5、6的压力信号18的平坦时段期间,残余偏移修正值pcor不能被连续更新,因为这将导致忽略所施加的力的微小变化。相反,根据pcor-mean({p(t,yn),p(t-1,yn),…,p(t-nbuf6+1,yn)}),获得当前残余偏移值pcor和从线性回归(步骤s70)平均值之差,如果该差值的大小超过阈值δpcor(步骤s89),残余偏移修正值pcor被更新为pcor=mean({p(t,yn),p(t-1,yn),…,p(t-nbuf6+1,yn)})(步骤s90)。

但是,如果根据线性回归确定的斜率m(步骤s70)大于或等于斜率阈值m平坦(步骤s85),或者根据线性回归确定的方差var(步骤s70)大于或等于方差阈值var平坦(步骤s86),然后针对正在处理的感测电极5、6将平坦区域标志设置为值“假”(步骤s94)。

可选地,如果用户交互27是“硬”类型的(步骤s91),则压力信号处理模块15确定是否应该将用户交互27重新分配为“软”类型的用户交互27(步骤s92)。如果压力样本p(t,yn)超过初始加载峰值p1所存储的大小预定分数为f软,并且当通过线性回归确定的斜率m的大小(步骤s70)超过最大值m软时,则应将用户交互27重新分配为“软”类型的用户交互。当满足这些条件时,不再可以将用户交互假定为“硬”类型,而是将其设置为“软”类型(步骤s93)。分数f软和最大值m软可以使用预定的所施加的力分布通过适当的校准实验为给定的触摸面板1和系统13确定,并可能在0.1≤f软≤0.9和0.5<m软<5的范围内发生变化。

还可以参照图20和图21,图20和图21示出了针对“硬”类型的用户交互27所测量的压力信号24、经处理压力信号25和输出力26,该“硬”类型用户交互27转变为“软”型用户交互27。转变点在图中由标记有“软转换”的箭头指示。注意,术语“硬”和“软”并不一定与压力信号24和力输出26的实际大小相关。相反,术语“硬”和“软”与压力信号24的初始增加速率更紧密相关。发明人发现,对于其余的用户交互27,对压力信号24的初始增加的不当处理可能会对输出力26的后续测量产生重大影响,并且在一些示例中,“硬”类型和“软”类型的用户交互27之间的区别可以提高所测量的输出力的准确性。

还可以参考图22和图23,所测量的压力信号24示出了针对“软”类型的用户交互27的已处理压力信号25和输出力26,该“软”类型的用户交互27由于所施加的力变得恒定并且检测到平坦区域而转变为“硬”类型的用户交互27。转换点在图中由标有“硬转换”的箭头指示。

第一状态机

还可以参照图24,图24示出了状态机处理(步骤s82)的第一示例的处理流程图。状态机处理的第一示例(步骤s82)不包括用户交互27的“硬”类型和“软”类型的可选分配。

在第一(初始)状态s0中初始化所有新的用户交互27,并且状态机(步骤s82)以接收到的每个压力样本p(t,yn)处理正在处理的传感电极5、6的状态寄存器的值s0、s1、s2、s3,并在满足特定条件时更新状态寄存器的值。

如果正在处理的感测电极5、6具有对应于初始状态s0的状态寄存器(步骤s95),压力样本p(t,yn)小于零(步骤s96),并且由计数器cint(步骤s57)跟踪到的、自用户交互开始起经过的时间超过了预定的最小值wait(等待)(步骤s97),然后,将正在处理的感测电极5、6的状态寄存器更新为第二主加载状态s1(步骤s98)。

在步骤s96中检查的符号取决于触摸面板1和系统13的配置。如本说明书的示例所示,如果增加的所施加的力被记录为减小的压力信号18,则测试为p(t,yn)<0。但是,如果增加的所施加的力被记录为增加的压力信号18,则该测试将改为p(t,yn)>0。

如果正在处理的感测电极5、6具有对应于第二主加载状态s1的状态寄存器(步骤s99),并且压力样本p(t,yn)大于零(步骤s100),然后,将正在处理的感测电极5、6的状态寄存器更新为第三稳定状态s2(步骤s101)。

在步骤s100中检查的符号取决于触摸面板1和系统13的配置。如本说明书的示例所示,如果增加的所施加的力被记录为减小的压力信号18,则测试为p(t,yn)>0。但是,如果增加的所施加的力被记录为增加的压力信号18,则该测试将被改为p(t,yn)<0。

如果正在处理的感测电极5、6具有对应于第三稳定状态s2的状态寄存器(步骤s102),并且平坦区域标志具有值“真”(步骤s103),然后,将正在处理的感测电极5、6的状态寄存器更新为第四稳定状态s3(步骤s104)。注意,直到确定了初始加载峰值p1之后,才可以将平坦区域标记设置为值“真”。

第二状态机

还可以参照图25,图25示出了状态机处理(步骤s82)的第二示例的处理流程图。状态机处理的第二示例(步骤s82)包括“硬”类型和“软”类型的用户交互27的可选分配。

状态寄存器的值s0和s1之间的转换与第一状态机的转换相同(步骤s95至步骤s98)。

如果正在处理的感测电极5、6具有对应于第二主加载状态s1的状态寄存器(步骤s99),当用户交互27的类型为“软”(步骤s105)时,正在处理的感测电极5、6的状态寄存器被更新为第四稳定状态s3(步骤s104)。以此方式,“软”类型的用户交互27可以跳过第三稳定状态s2。

如果正在处理的感测电极5、6具有对应于第二主加载状态s1的状态寄存器(步骤s99),用户交互27的类型并非“软”(步骤s105),或者压力样本p(t,yn)大于零(步骤s100)或者用户交互27的类型为“硬”(步骤s106),然后,将正在处理的感测电极5、6的状态寄存器更新为第三稳定状态s2(步骤s101)。

如果正在处理的感测电极5、6具有与第三稳定状态s2相对应的状态寄存器(步骤s102),并且用户交互27的类型为“软”(步骤s107),然后,将被处理的感测电极5、6的状态寄存器更新为第四稳定状态s3(步骤s104)。

如果正在处理的感测电极5、6具有对应于第三稳定状态s2的状态寄存器(步骤s102),则用户交互27的类型不是“软”(步骤s107),用户交互27的类型为“硬”(步骤s108),并且平坦区域标志具有值“真”(步骤s103),然后,将被处理的感测电极5、6的状态寄存器更新为第四稳定状态s3(步骤s104)。

注意,在已经确定了初始加载峰值p1之后,才能进行平坦区域标志,以及“硬”类型或“软”类型的分配。

更新输出力的值

还可以参照图26,图26示出了为更新输出力26的值{f(t,y1),f(t,y2),…,f(t,yn)},{f(t,x1),f(t,x2),…,f(t,xm)}(步骤s23)。

对每个感测电极5、6执行更新输出力的值的步骤(步骤s23),并且感测电极5、6的顺序对于该过程并不重要。例如,可以使用用于推式细化处理(步骤s22)的排序。将参考n个第一感测电极5中的第n个第一感测电极来解释输出力更新过程,然而,输出力更新过程对于感测电极5、6中每一个都是相同的。

如果n个第一感测电极5中的第n个第一感测电极具有对应于第一初始状态s0的状态寄存器(步骤s109),并且已处理的压力样本p*(t,yn)大于零(步骤s110),然后将已处理的压力样本p*(t,yn)设置为零(步骤s111),并将输出力更新为f(t,yn)=f(t-1,yn)+p*(t,yn)(步骤s116)。

在步骤s110中检查的符号取决于触摸面板1和系统13的配置。如本说明书的示例所示,如果增加的所施加的力被记录为减小的压力信号24,则测试为p*(t,yn)>0。但是,如果增加的所施加的力被记录为增加的压力信号24,则该测试将被改为p(t,yn)<0。

如果n个第一感测电极5中的第n个第一感测电极具有对应于第一初始状态s0的状态寄存器(步骤s109)并且已处理的压力样本p*(t,yn)小于或等于零(步骤s110),然后将输出力更新为(t,yn)=f(t-1,yn)+p*(t,yn)(步骤s116)。

如果n个第一感测电极5中的第n个第一感测电极具有对应于第二主加载状态s1的状态寄存器(步骤s112),然后将输出力更新为f(t,yn)=f(t-1,yn)+p*(t,yn)(步骤s116)。

如果n个第一感测电极5中的第n个第一感测电极具有对应于第三稳定状态s2的状态寄存器(步骤s113),然后将压力样本p*(t,yn)无条件设置为零(步骤s114)并且将输出力更新为f(t,yn)=f(t-1,yn)+p*(t,yn)(步骤s116)。

如果n个第一感测电极5中的第n个第一感测电极具有对应于第四稳定状态s3的状态寄存器(即不在初始状态s0)(步骤s109)、主加载状态s1(步骤s112)或稳定状态s2(步骤s113),然后,如果已处理的压力样本p*(t,yn)的大小超过预定的噪声阈值p噪声(步骤s115),然后将输出力更新为f(t,yn)=f(t-1,yn)+p*(t,yn)(步骤s116)。

如果n个第一感测电极5中的第n个第一感测电极具有对应于第四稳定状态s3的状态寄存器(即不在初始状态s0)(步骤s109)、主装载状态s1(步骤s112)或稳定状态s2(步骤s113),然后,如果已处理的压力样本p*(t,yn)的大小不超过预定的噪声阈值p噪声(步骤s115),然后将输出力更新为f(t,yn)=f(t-1,yn)+p*(t,yn)(步骤s117)。

在其他示例中,输出力f(t)的更新可以使用更高阶的数值积分,例如梯形法则,即(t,yn)=f(t-1,yn)+0.5*(p*(t,yn)+p*(t-1,yn))。

修改

需要理解的是,可以对上述实施例进行许多修改。这种修改可以涉及在电容触摸面板的设计、制造和使用中已经公知的等效特征和其他特征,并且可以用来替代或补充本发明已经描述的特征。一个实施例的特征可以由另一实施例的特征代替或补充。例如,一个显示堆叠或嵌入式显示堆叠的特征可以由其他显示堆叠和/或其他嵌入式显示堆叠的特征所取代或补充。

本说明书的方法可以在能够使用电容触摸方法来测量包括一个或多个用户交互的数量和位置的电容信息20的任何触摸面板系统中使用,并且还能够同时或者连续地测量通过使压电材料层9应变而生成的压力信号18。在触摸面板1和系统13中,压力信号18和电容信号19由单组电极生成。然而,本说明书的方法同样适用于完全分开的压电触摸传感器和电容触摸传感器,它们相互交错或堆叠在一起。

尽管已经将测量前端14、压力信号处理模块15和电容信号处理模块16描述为单独的组件,但是并不限于此。在一些示例中,压力信号处理模块15和电容信号处理模块16可以由单个控制器或者专用集成电路(asic)集成并提供。在另外的示例中,测量前端14、压力信号处理模块15和电容信号处理模块16的功能可以全部由单个控制器或专用集成电路(asic)来提供。

尽管已经参照图8至图26描述了本说明书的方法的详细实现,应当理解的是,在本说明书的方法中,可以将示例性实施方式的任何给定步骤或过程隔离并单独实施,其仅受制于还实现为给定步骤或过程提供的必要输入的步骤或过程。

尽管在本申请中已经针对特定特征组合提出了权利要求,但是应当理解的是,本发明的公开范围还包括在本文中明示或暗示地所公开的任何新颖特征或任何新颖特征的组合或其任何概括,是否与任何权利要求中目前要求保护的同一发明有关,以及是否减轻了与本发明相同的任何或所有技术问题。申请人特此通知,在本申请或由此派生的任何进一步申请的起诉期间,可以针对这些特征和/或这些特征的组合提出新的权利要求。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1